Skip to main content
Log in

The discrete maximum principle for Galerkin solutions of elliptic problems

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

This paper provides an equivalent characterization of the discrete maximum principle for Galerkin solutions of general linear elliptic problems. The characterization is formulated in terms of the discrete Green’s function and the elliptic projection of the boundary data. This general concept is applied to the analysis of the discrete maximum principle for the higher-order finite elements in one-dimension and to the lowest-order finite elements on simplices of arbitrary dimension. The paper surveys the state of the art in the field of the discrete maximum principle and provides new generalizations of several results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bramble J.H., Hubbard B.E., New monotone type approximations for elliptic problems, Math. Comp., 1964, 18, 349–367

    Article  MathSciNet  MATH  Google Scholar 

  2. Bramble J.H., Hubbard B.E., On a finite difference analogue of an elliptic boundary problem which is neither diagonally dominant nor of non-negative type, Journal of Mathematics and Physics, 1964, 43, 117–132

    MathSciNet  MATH  Google Scholar 

  3. Brandts J.H., Korotov S., Křížek M., Dissection of the path-simplex in ℝn into n path-subsimplices, Linear Algebra Appl., 2007, 421(2–3), 382–393

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandts J.H., Korotov S., Křížek M., Simplicial finite elements in higher dimensions, Appl. Math., 2007, 52(3), 251–265

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandts J.H., Korotov S., Křížek M., The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem, Linear Algebra Appl., 2008, 429(10), 2344–2357

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandts J., Korotov S., Křížek M., Šolc J., On nonobtuse simplicial partitions, SIAM Rev., 2009, 51(2), 317–335

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet P.G., Discrete variational Green’s function. I, Aequationes Math., 1970, 4(1–2), 74–82

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet P.G., Discrete maximum principle for finite-difference operators, Aequationes Math., 1970, 4(3), 338–352

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet P.G., The Finite Element Method for Elliptic Problems, Stud. Math. Appl., 4, North-Holland, Amsterdam-New York-Oxford, 1978

    Google Scholar 

  10. Ciarlet P.G., Raviart P.-A., Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 1973, 2(1), 17–31

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet P.G., Varga R.S., Discrete variational Green’s function. II. One dimensional problem, Numer. Math., 1970, 16(2), 115–128

    Article  MathSciNet  MATH  Google Scholar 

  12. Drăgănescu A., Dupont T.F., Scott L.R., Failure of the discrete maximum principle for an elliptic finite element problem, Math. Comp., 2005, 74(249), 1–23

    Article  MathSciNet  MATH  Google Scholar 

  13. Duffy D.G., Green’s Functions with Applications, Stud. Adv. Math., Chapman&Hall/CRC, Boca Raton, 2001

    Google Scholar 

  14. Eppstein D., Sullivan J.M., Üngör A., Tiling space and slabs with acute tetrahedra, Comput. Geom., 2004, 27(3), 237–255

    Article  MathSciNet  MATH  Google Scholar 

  15. Faragó I., Horváth R., Discrete maximum principle and adequate discretizations of linear parabolic problems, SIAM J. Sci. Comput., 2006, 28(6), 2313–2336

    Article  MathSciNet  MATH  Google Scholar 

  16. Faragó I., Horváth R., A review of reliable numerical models for three-dimensional linear parabolic problems, Internat. J. Numer. Methods Engrg., 2007, 70(1), 25–45

    Article  MathSciNet  MATH  Google Scholar 

  17. Faragó I., Horváth R., Korotov S., Discrete maximum principle for linear parabolic problems solved on hybrid meshes, Appl. Numer. Math., 2005, 53(2–4), 249–264

    Article  MathSciNet  MATH  Google Scholar 

  18. Faragó I., Korotov S., Szabó T., On modifications of continuous and discrete maximum principles for reaction-diffusion problems, Adv. Appl. Math. Mech., 2011, 3(1), 109–120

    MathSciNet  Google Scholar 

  19. Fiedler M., Special Matrices and their Applications in Numerical Mathematics, Martinus Nijhoff, Dordrecht, 1986

    Book  MATH  Google Scholar 

  20. Fujii H., Some remarks on finite element analysis of time-dependent field problems, In: Theory and Practice in Finite Element Structural Analysis, Univ. Tokyo Press, Tokyo, 1973, 91–106

    Google Scholar 

  21. Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin-New York, 1977

    Google Scholar 

  22. Glowinski R., Numerical Methods for Nonlinear Variational Problems, Springer Ser. Comput. Phys., Springer, New York, 1984

    Google Scholar 

  23. Ikeda T., Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, Lecture Notes Numer. Appl. Anal., 4, Kinokuniya Book Store, Tokyo, 1983

    Google Scholar 

  24. Karátson J., Korotov S., Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions, Numer. Math., 2005, 99(4), 669–698

    Article  MathSciNet  MATH  Google Scholar 

  25. Knobloch P., Tobiska L., On the stability of finite-element discretizations of convection-diffusion-reaction equations, IMA J. Numer. Anal., 2011, 31(1), 147–164

    Article  MathSciNet  MATH  Google Scholar 

  26. Křížek M., There is no face-to-face partition of R5 into acute simplices, Discrete Comput. Geom., 2006, 36(2), 381–390

    Article  MathSciNet  MATH  Google Scholar 

  27. Křížek M., Liu L., On a comparison principle for a quasilinear elliptic boundary value problem of a nonmonotone type, Appl. Math. (Warsaw), 1996, 24(1), 97–107

    MathSciNet  MATH  Google Scholar 

  28. Křížek M., Qun L., On diagonal dominance of stiffness matrices in 3D, East-West J. Numer. Math., 1995, 3(1), 59–69

    MathSciNet  MATH  Google Scholar 

  29. Kuzmin D., Shashkov M.J., Svyatskiy D., A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems, J. Comput. Phys., 2009, 228(9), 3448–3463

    Article  MathSciNet  Google Scholar 

  30. Nečas J., Les Méthodes Directes en Théorie des Équations Elliptiques, Masson et Cie, Éditeurs, Paris, 1967

    MATH  Google Scholar 

  31. Protter M.H., Weinberger H.F., Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, 1967

    Google Scholar 

  32. Roos H.-G., Stynes M., Tobiska L., Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd ed., Springer Ser. Comput. Math., 24, Springer, Berlin, 2008

    MATH  Google Scholar 

  33. Schatz A.H., A weak discrete maximum principle and stability of the finite element method in L on plane polygonal domains. I, Math. Comp., 1980, 34(149), 77-91

    Google Scholar 

  34. Šolín P., Segeth K., Doležel I., Higher-Order Finite Element Methods, Stud. Adv. Math., Chapman&Hall/CRC, Boca Raton, 2004

    Google Scholar 

  35. Stakgold I., Green’s Functions and Boundary Value Problems, 2nd ed., Pure Appl. Math. (N.Y.), John Wiley & Sons, New York, 1998

    MATH  Google Scholar 

  36. Szabó B., Babuška I., Finite Element Analysis, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1991

    MATH  Google Scholar 

  37. VanderZee E., Hirani A.N., Zharnitsky V., Guoy D., A dihedral acute triangulation of the cube, Comput. Geom., 2010, 43(5), 445–452

    Google Scholar 

  38. Vanselow R., About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation, Appl. Math., 2001, 46(1), 13–28

    Article  MathSciNet  MATH  Google Scholar 

  39. Varga R.S., Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, 1962

    Google Scholar 

  40. Varga R.S., On a discrete maximum principle, SIAM J. Numer. Anal., 1966, 3, 355–359

    Article  MathSciNet  MATH  Google Scholar 

  41. Vejchodský T., Angle conditions for discrete maximum principles in higher-order FEM, In: Numerical Mathematics and Advanced Applications, ENUMATH 2009, Uppsala, June 29–July 3, 2009, Springer, Berlin, 2010, 901–909

    Google Scholar 

  42. Vejchodský T., Higher-order discrete maximum principle for 1D diffusion-reaction problems, Appl. Numer. Math., 2010, 60(4), 486–500

    Article  MathSciNet  MATH  Google Scholar 

  43. Vejchodský T., Šolín P., Discrete Green’s function and maximum principles, In: Programs and Algorithms of Numerical Mathematics, 13, Institute of Mathematics, Academy of Sciences, Czech Republic, 2006, 247–252, available at http://www.math.cas.cz/~panm13

    Google Scholar 

  44. Vejchodský T., Šolín P., Discrete maximum principle for a 1D problem with piecewise-constant coefficients solved by hp-FEM, J. Numer. Math., 2007, 15(3), 233–243

    Article  MathSciNet  MATH  Google Scholar 

  45. Vejchodský T., Šolín P., Discrete maximum principle for higher-order finite elements in 1D, Math. Comp., 2007, 76(260), 1833–1846

    Article  MathSciNet  MATH  Google Scholar 

  46. Vejchodský T., Šolín P., Discrete maximum principle for Poisson equation with mixed boundary conditions solved by hp-FEM, Adv. Appl. Math. Mech., 2009, 1(2), 201–214

    MathSciNet  Google Scholar 

  47. Xu J., Zikatanov L., A monotone finite element scheme for convection-diffusion equations, Math. Comp., 1999, 68(228), 1429–1446

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Vejchodský.

About this article

Cite this article

Vejchodský, T. The discrete maximum principle for Galerkin solutions of elliptic problems. centr.eur.j.math. 10, 25–43 (2012). https://doi.org/10.2478/s11533-011-0085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-011-0085-0

MSC

Keywords

Navigation