Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 15, 2014

Systematic investigation and in vitro biocompatibility studies on mesoporous europium doped hydroxyapatite

  • Cristina Popa EMAIL logo , Carmen Ciobanu , Simona Iconaru , Miruna Stan , Anca Dinischiotu , Constantin Negrila , Mikael Motelica-Heino , Regis Guegan and Daniela Predoi
From the journal Open Chemistry

Abstract

This paper reports the systematic investigation of europium doped hydroxyapatite (Eu:HAp). A set of complementary techniques, namely Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and the Brunauer-Emmett-Teller (BET) technique were used towards attaining a detailed understanding of Eu:HAp. The XPS analysis confirmed the substitution of Ca ions by Eu ions in the Eu:HAp samples. Secondly, Eu:HAp and pure HAp present type IV isotherms with a hysteresis loop at a relative pressure (P/P0) between 0.4 and 1.0, indicating the presence of mesopores. Finally, the in vitro biological effects of Eu:HAp nanoparticles were evaluated by focusing on the F-actin filament pattern and heat shock proteins (Hsp) expression in HEK293 human kidney cell line. Fluorescence microscopy studies of the actin protein revealed no changes of the immunolabelling profile in the renal cells cultured in the presence of Eu:HAp nanoparticles. Hsp60, Hsp70 and Hsp90 expressions measured by Western blot analysis were not affected after 24 and 48 hours exposure. Taken together, these results confirmed the lack of toxicity and the biocompatibility of the Eu:HAp nanoparticles. Consequently, the possibility of using these nanoparticles for medical purposes without affecting the renal function can be envisaged.

[1] R. Cortesi, C. Nasturzzi, S.S. Davis, Biomaterials 19, 1641 (1998) http://dx.doi.org/10.1016/S0142-9612(98)00034-910.1016/S0142-9612(98)00034-9Search in Google Scholar

[2] P. Yang, Z. Quan, C. Li, X. Kang, H. Lian, J. Lin, Biomaterials 29, 4341(2008) http://dx.doi.org/10.1016/j.biomaterials.2008.07.04210.1016/j.biomaterials.2008.07.042Search in Google Scholar

[3] S.L. Iconaru, A.M. Prodan, P. Le Coustumer, D. Predoi, J. Chem., doi:10.1155/2013/412079 10.1155/2013/412079Search in Google Scholar

[4] C.S. Ciobanu, S.L. Iconaru, P. Le Coustumer, L.V. Constantin, D. Predoi, Nanoscale Res. Lett. 7, 324 (2012) http://dx.doi.org/10.1186/1556-276X-7-32410.1186/1556-276X-7-324Search in Google Scholar

[5] C.S. Ciobanu, S.L. Iconaru, I. Pasuk, B.S. Vasile, A.R. Lupu, A. Hermenean, A. Dinischiotu, D. Predoi, Mater. Sci. Eng. C 33(3), 1395 (2013) http://dx.doi.org/10.1016/j.msec.2012.12.04210.1016/j.msec.2012.12.042Search in Google Scholar

[6] A.M. Beshensky, J.A. Wesson, E.M. Worcester, J. Am. Soc. Nephrol. 12, 2108 (2001) 10.1681/ASN.V12102108Search in Google Scholar

[7] A. Doat, M. Fanjul, F. Pellé, E. Hollande, A. Lebugle, Biomaterials 24, 3365 (2003) http://dx.doi.org/10.1016/S0142-9612(03)00169-810.1016/S0142-9612(03)00169-8Search in Google Scholar

[8] R.S. André, E.C. Paris, M.F.C Gurgel, I.L.V. Rosa, C.O. Paiva-Santos, M.S. Li, J.A. Varela, E. Longo, J. Alloys Compd. 531, 50 (2012) http://dx.doi.org/10.1016/j.jallcom.2012.02.05310.1016/j.jallcom.2012.02.053Search in Google Scholar

[9] C.A. Barta, K. Sachs-Barrable, J. Jia, K.H. Thompson, K.M. Wasan, C. Orvig, Dalton Trans. 21(43), 5019 (2007) http://dx.doi.org/10.1039/b705123a10.1039/b705123aSearch in Google Scholar PubMed

[10] F. Chen, P. Huang, Y.J. Zhu, J. Wu, C.L. Zhang, D.X. Cui, Biomaterials 32, 9031 (2011) http://dx.doi.org/10.1016/j.biomaterials.2011.08.03210.1016/j.biomaterials.2011.08.032Search in Google Scholar PubMed

[11] E. Boanini, M. Gazzano, A. Bigi, Acta Biomater. 6, 1882 (2010) http://dx.doi.org/10.1016/j.actbio.2009.12.04110.1016/j.actbio.2009.12.041Search in Google Scholar

[12] C.S. Ciobanu, S.L. Iconaru, F. Massuyeau, L.V. Constantin, A. Costescu, D. Predoi, J. Nanomater. doi:10.1155/2012/94280 (2012) Search in Google Scholar

[13] H.G. Tiselius, I. Hojgaard, A.M. Fornander, M.A. Nilsson, Urolithiasis (Millet the Printer Inc., Dallas, 1996) Search in Google Scholar

[14] N.S. Mandel, G.S. Mandel, J. Urol. 142, 1516 (1989) 10.1016/S0022-5347(17)39145-0Search in Google Scholar

[15] M. Zelenková, O. Sohnel, F. Grases, Urology 79(4), (2012) 10.1016/j.urology.2011.11.020Search in Google Scholar PubMed

[16] C.S. Ciobanu, E. Andronescu, B.S. Vasile, C.M. Valsangiacom, R.V. Ghita, D. Predoi, J. Optoelectron Adv. Mat. 4(10), 1515 (2010) Search in Google Scholar

[17] J. Kolmas, A. Jaklewicz, A. Zima, M. Bućko, Z. Paszkiewicz, J. Lis, A. Ślosarczyk, W. Kolodziejski, J. Mol. Struct. 987, 40 (2011) http://dx.doi.org/10.1016/j.molstruc.2010.11.05810.1016/j.molstruc.2010.11.058Search in Google Scholar

[18] B. Matsuhiro, P. Rivas, J. Appl. Phycol. 5, 45 (1993) http://dx.doi.org/10.1007/BF0218242110.1007/BF02182421Search in Google Scholar

[19] E. Gómez-Ordóñez, P. Rupérez, Food Hydrocolloids 25, 1514 (2011) http://dx.doi.org/10.1016/j.foodhyd.2011.02.00910.1016/j.foodhyd.2011.02.009Search in Google Scholar

[20] S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60(2), 309 (1938) E.P. Barret, P.B. Joyner, P. Halenda, J. Am. Chem. Soc. 73, 373 (1951) http://dx.doi.org/10.1021/ja01269a02310.1021/ja01269a023Search in Google Scholar

[21] C.S. Ciobanu, F. Massuyeau, E. Andronescu, M.S. Stan, A. Dinischiotu, D. Predoi, Dig. J. Nanomater. Bios. 6(4), 1639 (2011) Search in Google Scholar

[22] S.L. Iconaru, M. Motelica-Heino, D. Predoi, J. Spectros. doi:10.1155/2013/284285 (2013) 10.1155/2013/284285Search in Google Scholar

[23] B.O. Fowler, Infrared studies of apatites. I. Inorg. Chem. 13, 194 (1974) http://dx.doi.org/10.1021/ic50131a03910.1021/ic50131a039Search in Google Scholar

[24] A. Slosarczyk, Z. Paszkiewicz, C. Paluszkiewicz, J. Mol. Struct. 744–747, 657 (2005) http://dx.doi.org/10.1016/j.molstruc.2004.11.07810.1016/j.molstruc.2004.11.078Search in Google Scholar

[25] M. Lebon, I. Reiche, F. Fröhlich, J.-J. Bahain, C. Falguères, Anal. Bioanal. Chem. 392, 1479 (2008) http://dx.doi.org/10.1007/s00216-008-2469-y10.1007/s00216-008-2469-ySearch in Google Scholar

[26] M. Markovik, B.O. Fowler, M.S. Tung, J. Res. Natl. Inst. Stan. 109, 553 (2004) http://dx.doi.org/10.6028/jres.109.04210.6028/jres.109.042Search in Google Scholar

[27] C. Castro Ribeiro, I. Gibson, M.A. Barbosa, Biomaterials 27, 1749 (2006) http://dx.doi.org/10.1016/j.biomaterials.2005.09.04310.1016/j.biomaterials.2005.09.043Search in Google Scholar

[28] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd edition (John Wiley and Sons, New York, 1978) Search in Google Scholar

[29] R.Z. LeGeros, G. Bonel, R. Legros, Calcif. Tissue Res. 26, 111 (1978) http://dx.doi.org/10.1007/BF0201324510.1007/BF02013245Search in Google Scholar

[30] D.W. Holcomb, R.A. Yung, Calcif. Tissue Int. 31, 189 (1980) http://dx.doi.org/10.1007/BF0240718110.1007/BF02407181Search in Google Scholar

[31] J.C. Elliott, PhD Thesis (London University, London, 1974) Search in Google Scholar

[32] D.A. Lopez, S.R. de Sanchez, S.N. Simison, Electrochim. Acta. 48(7), 845 (2003) http://dx.doi.org/10.1016/S0013-4686(02)00776-410.1016/S0013-4686(02)00776-4Search in Google Scholar

[33] J. Serra, P. Gonzalez, S. Liste, C. Serra, S. Chiussi, B. Leon, M. Perez-Amour, H.O. Ylanen, M. Hupa, J. Non-Cryst. Solids. 332, 20 (2003) http://dx.doi.org/10.1016/j.jnoncrysol.2003.09.01310.1016/j.jnoncrysol.2003.09.013Search in Google Scholar

[34] K. McLeod, S. Kumar, R. St. Claire Smart, N.K. Dutta, N.H. Voelcker, G.I. Anderson, R. Sekel, Appl. Surf. Sci. 253, 2644 (2006) http://dx.doi.org/10.1016/j.apsusc.2006.05.03110.1016/j.apsusc.2006.05.031Search in Google Scholar

[35] M. Yoshinari, Y. Oda, H. Ueki, S. Biomaterials 22(7), 709 (2001). http://dx.doi.org/10.1016/S0142-9612(00)00234-910.1016/S0142-9612(00)00234-9Search in Google Scholar

[36] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics Inc., Minnesota, USA, 1995) Search in Google Scholar

[37] G. Gaggiotti, A. Galdikas, S. Kaciulis, G. Mattongo, A. Setkus, J. Appl. Phys. 76(8), 4467 (1994) http://dx.doi.org/10.1063/1.35727710.1063/1.357277Search in Google Scholar

[38] T. Kawabe, S. Shimomura, T. Karasuda, K. Tabata, E. Suzuki, Y. Yamaguchi, Surf. Sci. 448, 101 (2000) http://dx.doi.org/10.1016/S0039-6028(99)00997-810.1016/S0039-6028(99)00997-8Search in Google Scholar

[39] M.S. Hegde, M. Ayyoob, Surf. Sci. 173(2–3), L635 (1986) 10.1016/0039-6028(86)90190-1Search in Google Scholar

[40] C.N.R. Rao, V. Vijayakrishnan, G.U. Kulkarni, M.K. Rajumon, Appl. Surf. Sci. 84, 285 (1995) http://dx.doi.org/10.1016/0169-4332(94)00548-610.1016/0169-4332(94)00548-6Search in Google Scholar

[41] G.U. Kulkarni, C.N.R. Rao, M.W. Roberts, Langmuir 11, 2572 (1995) http://dx.doi.org/10.1021/la00007a04110.1021/la00007a041Search in Google Scholar

[42] S. Kaciulis, G. Mattogno, L. Pandolfi, M. Cavalli, G. Gnappi, A. Montenero, Appl. Surf. Sci. 151, 1 (1999) http://dx.doi.org/10.1016/S0169-4332(99)00267-610.1016/S0169-4332(99)00267-6Search in Google Scholar

[43] A. Boyd, M. Akay, B.J. Meenan, Surf. Interface Anal. 35, 188 (2003) http://dx.doi.org/10.1002/sia.151210.1002/sia.1512Search in Google Scholar

[44] T.F. Stoica, C. Morosanu, A. Slav, T. Stoica, P. Osiceanu, C. Anastasescu, M. Gartner, M. Zaharescu, Thin Solid Films 516, 8112 (2008) http://dx.doi.org/10.1016/j.tsf.2008.04.07110.1016/j.tsf.2008.04.071Search in Google Scholar

[45] C. Battistoni, M.P Casaletto, G.M. Ingo, S. Kaciulis, G. Mattogno, L. Pandolfi, Surf. Interface Anal. 29(11), 773 (2000) http://dx.doi.org/10.1002/1096-9918(200011)29:11<773::AID-SIA928>3.0.CO;2-210.1002/1096-9918(200011)29:11<773::AID-SIA928>3.0.CO;2-2Search in Google Scholar

[46] A.J. Nathanael, D. Mangalaraj, S.I. Hong, Y. Masuda, Mater. Charact. 62, 1109 (2011) http://dx.doi.org/10.1016/j.matchar.2011.09.00810.1016/j.matchar.2011.09.008Search in Google Scholar

[47] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985) http://dx.doi.org/10.1351/pac19855704060310.1351/pac198557040603Search in Google Scholar

[48] C. Zhang, C. Li, S. Huang, Z. Hou, Z. Cheng, P. Yang, Biomaterials 31, 3374 (2010) http://dx.doi.org/10.1016/j.biomaterials.2010.01.04410.1016/j.biomaterials.2010.01.044Search in Google Scholar

[49] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edition (Academic Press, London, 1982) Search in Google Scholar

[50] Y. Liu, C.Y. Liu, J.H. Wei, R. Xiong, C.X. Pan, J. Shi, Appl. Surf. Sci. 256, 6390 (2010) http://dx.doi.org/10.1016/j.apsusc.2010.04.02210.1016/j.apsusc.2010.04.022Search in Google Scholar

[51] J. Leiser, B.A. Molitoris, Biochim. Biophys. Acta 1225, 1 (1993) http://dx.doi.org/10.1016/0925-4439(93)90115-H10.1016/0925-4439(93)90115-HSearch in Google Scholar

[52] D.A. Parsell, S. Lindquist, Annu. Rev. Genet. 27, 437 (1993) http://dx.doi.org/10.1146/annurev.ge.27.120193.00225310.1146/annurev.ge.27.120193.002253Search in Google Scholar

[53] T.J. Webster, E.A. Massa-Schlueter, J.L. Smith, E.B. Slamovich, Biomaterials 25, 2111 (2004) http://dx.doi.org/10.1016/j.biomaterials.2003.09.00110.1016/j.biomaterials.2003.09.001Search in Google Scholar

[54] M. Kheradmandfard, M.H. Fathi, J. Alloys. Compd. 504, 141 (2010) http://dx.doi.org/10.1016/j.jallcom.2010.05.07310.1016/j.jallcom.2010.05.073Search in Google Scholar

[55] A. Bianco, I. Cacciotti, M. Lombardi, L. Montanaro, E. Bemporad, M. Sebastiani, Ceram. Int. 36, 313 (2010) http://dx.doi.org/10.1016/j.ceramint.2009.09.00710.1016/j.ceramint.2009.09.007Search in Google Scholar

[56] R.Z. Le Geros, G. Quirolgico, J.P. Le Geros, J. Dent. Res. 60B, 452 (1981) Search in Google Scholar

[57] J. Christoffersen, M.R. Christoffersen, N. Kolthoff, O. Barenholdt, Bone 20, 47 (1997) http://dx.doi.org/10.1016/S8756-3282(96)00316-X10.1016/S8756-3282(96)00316-XSearch in Google Scholar

[58] C. Ergun, T.J. Webster, R. Bizios, R.H. Doremus, J. Biomed. Mater. Res. 59, 305 (2002) http://dx.doi.org/10.1002/jbm.124610.1002/jbm.1246Search in Google Scholar PubMed

[59] G. Bonel, G. Montel, Compt. Rend. 258, 923 (1964) Search in Google Scholar

[60] R.Z. Le Geros, O.R. Trautz, J.P. Le Geros, E. Klein, Extrait du bulletin de la Societe? Chimique de France 1712 (1968) (in French) Search in Google Scholar

[61] C. Yang, P.P. Yang, W.X. Wang, J. Wang, M.L. Zhang, J. Lin, J. Colloid Interf. Sci. 328, 203 (2008) http://dx.doi.org/10.1016/j.jcis.2008.09.01010.1016/j.jcis.2008.09.010Search in Google Scholar PubMed

[62] Z.Y. Hou, P.P. Yang, H.Z. Lian, L.L. Wang, C.M. Zhang, C.X. Li, R.T. Chai, Z.Y. Cheng, J. Lin, Chem. Eur. J. 15, 6973 (2009) http://dx.doi.org/10.1002/chem.20090026910.1002/chem.200900269Search in Google Scholar

[63] I.R. Gibson, S.M. Best, W. Bonfield, J. Biomed. Mater. Res. 44, 422 (1999) http://dx.doi.org/10.1002/(SICI)1097-4636(19990315)44:4<422::AID-JBM8>3.0.CO;2-#Search in Google Scholar

[64] H. Owada, K. Yamashita, T. Umegaki, T. Kanazawa, M. Nagai, Solid State Ionics 35(3–4), 401(1989) http://dx.doi.org/10.1016/0167-2738(89)90327-510.1016/0167-2738(89)90327-5Search in Google Scholar

[65] P. Dancker, I. Low, W. Hasselbach, T. Wieland, Biochim. Biophys. Acta. 400, 407 (1975) http://dx.doi.org/10.1016/0005-2795(75)90196-810.1016/0005-2795(75)90196-8Search in Google Scholar

[66] Z. Spoerl, M. Stumpf, A.A. Noegel, A. Hasse, Oligomerization, J. Biol. Chem. 277(50), 48858 (2002) http://dx.doi.org/10.1074/jbc.M20513620010.1074/jbc.M205136200Search in Google Scholar

[67] K.J. Kelly, Contrib. Nephrol. 148, 86 (2005) http://dx.doi.org/10.1159/00008605410.1159/000086054Search in Google Scholar

[68] S.D. Westerheide, R.I. Morimoto, J. Biol. Chem. 280(39), 33097 (2005) http://dx.doi.org/10.1074/jbc.R50001020010.1074/jbc.R500010200Search in Google Scholar

[69] F. Amorim, P.L. Moesley, In: A.A.A. Asea, B.K. Pedersen (Eds.), Heat Shock Proteins and Whole Body Physiology (Springer Science Business Media B.V., Dordrecht, Heidelberg, London, New York, 2010) Search in Google Scholar

[70] S.C. Gupta, A. Sharma, M. Mishra, R.K. Mishra, D.K. Chowdhuri Life Sci. 86, 377 (2010) http://dx.doi.org/10.1016/j.lfs.2009.12.01510.1016/j.lfs.2009.12.015Search in Google Scholar

[71] B.M. Sanders, L.S. Martin, Sci. Total Environ. 139–140, 459 (1993) http://dx.doi.org/10.1016/0048-9697(93)90043-610.1016/0048-9697(93)90043-6Search in Google Scholar

[72] S.W.Y. Wong, P.T.Y. Leung, A.B. Djurišić, K.M.Y. Leung, Anal. Bioanal. Chem. 396, 609 (2010) http://dx.doi.org/10.1007/s00216-009-3249-z10.1007/s00216-009-3249-zSearch in Google Scholar PubMed

[73] M. Ahamed, R. Posqai, T.J. Gorey, M. Nielsen, S.M. Hussain, J.J. Rowe, Toxicol. Appl. Pharmacol. 242(3), 263 (2010) http://dx.doi.org/10.1016/j.taap.2009.10.01610.1016/j.taap.2009.10.016Search in Google Scholar PubMed

[74] W.J. Chirico, M.G. Waters, G. Blobel, Nature 332, 805 (1988) http://dx.doi.org/10.1038/332805a010.1038/332805a0Search in Google Scholar PubMed

[75] S.M. Van der Vies, A.A. Gatenby, P.V. Viitanen, G.H. Lorimer, In: J.L. Cleland (Ed.), Molecular chaperones and their role in protein assenbly. Protein folding in vivo and in vitro (American Chemical Society, Washington DC, 1993) pp. 72–83 10.1021/bk-1993-0526.ch006Search in Google Scholar

[76] K. Jimbow, Y. Tamura, A. Yoneta, T. Kamiya, I. Ono, T. Yamashita, A. Ito, H. Honda, K. Wakamatsu, S. Ito, S. Nohara, E. Nakayama, T. Kobayashi, J. Biomat. Nanobiotechnol. 3, 140 (2012) http://dx.doi.org/10.4236/jbnb.2012.3202010.4236/jbnb.2012.32020Search in Google Scholar

[77] J. Xu, P. Xu, Z. Li, J. Huang, Z. Yang, J. Biomed. Mater. Res. A 100(3), 738 (2012) http://dx.doi.org/10.1002/jbm.a.3327010.1002/jbm.a.33270Search in Google Scholar PubMed

[78] Z. Xu, C. Liu, J. Wei, J. Sun, J. Appl. Toxicol. 32(6), 429 (2012) http://dx.doi.org/10.1002/jat.174510.1002/jat.1745Search in Google Scholar PubMed

Published Online: 2014-5-15
Published in Print: 2014-10-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-014-0554-y/html
Scroll to top button