Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 9, 2009

Bioresorbable carbonated hydroxyapatite Ca10−xNax(PO4)6−x(CO3)x(OH)2 powders for bioactive materials preparation

  • Elena Kovaleva EMAIL logo , Maxim Shabanov , Valery Putlyaev , Yury Tretyakov , Vladimir Ivanov and Nikolay Silkin
From the journal Open Chemistry

Abstract

The purpose of this work was to find and investigate a correlation between the carbonate ion content in crystalline lattice and defect structure, and solubility of the materials; finally, to prepare the materials under study for in vitro tests. Various techniques, such as XRD, FTIR, TEM, FESEM/EDX, TG/DTA, AES (ICP), wet chemical analysis, Ca-ionometry, microvolumetric analysis of evolved CO2, BET adsorption, were applied to determine the efficiency of carbonate substitution, and to quantify the elemental composition, as well as to characterize the structure of the carbonated hydroxyapatite and the site(s) of carbonate substitution,. It was shown that AB-type substitution prevails over other types with the carbonate content increase. According to in vitro tests, the bioactivity of the samples is correlated with the carbonate content in carbonate-doped hydroxyapatite due to accumulation of defects in carbonated hydroxyapatite nanocrystals.

[1] J.P. Lafon, E. Champion, D. Bernache-Assollant, J. Eur. Cer. Soc. 28, 139 (2008) http://dx.doi.org/10.1016/j.jeurceramsoc.2007.06.00910.1016/j.jeurceramsoc.2007.06.009Search in Google Scholar

[2] R.Z. LeGeros, Clin. Orthoped. Rel. Res. 395, 81 (2002) http://dx.doi.org/10.1097/00003086-200202000-0000910.1097/00003086-200202000-00009Search in Google Scholar

[3] I.R. Gibson, W. Bonfield, J. Biomed. Mater. Res. 59, 697 (2002) http://dx.doi.org/10.1002/jbm.1004410.1002/jbm.10044Search in Google Scholar

[4] L.G. Ellies, D.G.A. Nelson, J.D.B. Featherstone, J. Biomed. Mater. Res. 22, 541 (1988) http://dx.doi.org/10.1002/jbm.82022060910.1002/jbm.820220609Search in Google Scholar

[5] A. Ito, K. Maekawa, S. Tsutsumi, F. Ikazaki, T. Tateishi, J. Biomed. Mater. Res. 36, 522 (1997) http://dx.doi.org/10.1002/(SICI)1097-4636(19970915)36:4<522::AID-JBM10>3.0.CO;2-C10.1002/(SICI)1097-4636(19970915)36:4<522::AID-JBM10>3.0.CO;2-CSearch in Google Scholar

[6] M. Vignoles, G. Bonel, D.W. Holcomb, R.A. Young, Calcif. Tissue Int. 43, 33 (1988) http://dx.doi.org/10.1007/BF0255516510.1007/BF02555165Search in Google Scholar

[7] F.C.M. Driessenrs, PhD thesis, Edinburgh University (Edinburgh, UK, 1995) Search in Google Scholar

[8] T. De Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels, J. of Appl. Cryst. 15, 3087 (1982) 10.1107/S0021889882012035Search in Google Scholar

[9] S.E. Dahlgren, Z. Analyt. Chem. 189, 243 (1962) http://dx.doi.org/10.1007/BF0049757110.1007/BF00497571Search in Google Scholar

[10] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, Y. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990) http://dx.doi.org/10.1002/jbm.82024060710.1002/jbm.820240607Search in Google Scholar

[11] J. Barralet, S. Best, W. Bonfild, J. Biomed. Mater. Res. 41, 79 (1998) http://dx.doi.org/10.1002/(SICI)1097-4636(199807)41:1<79::AID-JBM10>3.0.CO;2-C10.1002/(SICI)1097-4636(199807)41:1<79::AID-JBM10>3.0.CO;2-CSearch in Google Scholar

[12] I.Y. Pieters, E.A.P. De Maeyer, R.M.H. Verbeeck, Inorg. Chem. 35, 5791 (1996) http://dx.doi.org/10.1021/ic960213i10.1021/ic960213iSearch in Google Scholar

[13] T. Kanazawa, Inorganic phosphate materials (Elsevier Science Publishing, Amsterdam, 1989) Search in Google Scholar

[14] J.D. Pasteris, B. Wopenka, J.J. Freeman, K. Rogers, E. Valsami-Jones, J.A.M. van der Houwen, M.J. Silva, Biomat. 25, 229 (2004) http://dx.doi.org/10.1016/S0142-9612(03)00487-310.1016/S0142-9612(03)00487-3Search in Google Scholar

Published Online: 2009-4-9
Published in Print: 2009-6-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-009-0018-y/html
Scroll to top button