ORIGINAL ARTICLE
Exergetic Diagnostics of A Gas-And-Steam Power Plant
 
 
More details
Hide details
1
Silesian University of Technology, Gliwice, Poland
 
 
Online publication date: 2019-04-15
 
 
Publication date: 2019-03-01
 
 
Civil and Environmental Engineering Reports 2019;29(1):1-17
 
KEYWORDS
ABSTRACT
Evaluation of thermodynamic efficiency of a power plant is usually performed using the method of so-called thermal diagnostics, based on energy balancing. Energetic analysis is however suitable only for a quantitative assessment and for comparing similar technologies. In order to properly assess the origins of energy losses in the given system, an exergetic analysis has to be applied. The paper describes the rules of exergetic diagnostics, which greatly extends the potential of classic thermal diagnostics. A calculation example of a combined cycle power plant is included. The example demonstrates the potential of exergetic diagnostics for locating exergy losses and explains the reasons for increased consumption of fuels by comparing two working conditions of the system: reference and operational.
 
REFERENCES (15)
1.
Kopaliński, W 1970. Słownik wyrazów obcych i zwrotów obcojęzycznych. Warszawa: Wiedza Powszechna.
 
2.
Rusinowski, H 2010. Diagnostyka cieplna eksploatacji w energetyce. Katowice-Gliwice: Wydawnictwo Polskiej Akademii Nauk - Oddział w Katowicach.
 
3.
Kościelny, JM 2001. Diagnostyka zautomatyzowanych procesów przemysłowych. Warszawa: Akademicka Oficyna Wydawnicza EXIT.
 
4.
Torres, C and Valero, A 2014. Thermoeconomic Analysis. CIRCE University of Zaragoza. Access [20.05.2014] www.exergoecology.com.
 
5.
Torres, C, Valero, A, Serra, L and Royo, J 2002. Structural theory and thermoeconomic diagnosis. Part I: on malfunction and dysfunction analysis. Energy Conversion and Management 43, 1503-1518.
 
6.
Torres, C 2006. Symbolic Thermoeconomic Analysis of Energy Systems. Oxford: EOLSS Publishers.
 
7.
Correas, L 2007. On the thermoeconomic approach to the diagnosis of energy system malfunctions. Suitability to real-time monitoring. International Journal of Thermodynamics 7, 85-94.
 
8.
Valero, A, Correas, L and Serra, L 1999. On-line thermoeconomic diagnosis of thermal power plants. Thermodynamic Optimization of Complex Energy Systems. Bejan, A, Mamut, A, editors. New York: Kluwer Academic Publishers, 117-136.
 
9.
Valero, A, Correas, L, Zaleta, A, Lazzaretto, A, Verda, V, Reini, M and Rangel, V 2004. On the thermoeconomic approach to the diagnosis of energy system malfunctions. Part 1: the TADEUS problem. Energy 29, 1875-1887.
 
10.
Valero, A, Correas, L, Zaleta, A, Lazzaretto, A, Verda, V, Reini, M and Rangel, V 2004. On the thermoeconomic approach to the diagnosis of energy system malfunctions. Part 2. Malfunction definitions and assessment. Energy 29, 1889-1907.
 
11.
Rusinowski, H and Stanek, W 2007. Neural modelling of steam boilers. Energy Conversion and Management 48, 2802-2809.
 
12.
Stanek, W and Rusinowski, H 2008. Application of empirical modellng for construction of auxiliary models of steam boiler. Archives of Thermodynamics 29, 165-176.
 
13.
Rusinowski, H and Stanek, W 2010. Hybrid model of steam boiler. Energy 35, 1107-1113.
 
14.
Stanek, W, Rusinowski, H and Budnik, M 2009. Energy and exergy evaluation of a boiler’s operation with the application of a hybrid model. 22nd International Conference ECOS’09, 31 Aug - 3 Sep, Foz do Iguaçu, Paraná, Brazil.
 
15.
Lomania, K 2015. Analiza termo-ekonomiczna elektrociepłowni gazowoparowej [MSc thesis written under supervision of W. Stanek]. Gliwice: Instytut Techniki Cieplnej, Politechnika Śląska.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top