Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 19, 2010

The heterogeneity of cell subtypes from a primary culture of human amniotic fluid

  • Shengli Zhang EMAIL logo , Hongquan Geng , Hua Xie , Qiquan Wu , Xiaorong Ma , Junmei Zhou and Fang Chen

Abstract

Heterogeneous human amniotic fluid contains various cell types. Herein, we report on the possibility of simultaneously isolating three subtypes of cells from one primary culture. Using a stainless steel instrument named a colony poculum, two of the three cell subtypes could be efficiently cultured, and these were further characterized. The results indicated that these two cell subtypes had different morphologies and were characterized by different cell marker expression profiles, including the differential expression of CD105, CD117 and EBAF. Furthermore, their gene expression array data revealed their different gene expression profiles. Although both cell types expressed several embryonic stem cell-specific markers, they were non-tumorigenic in vivo. This paper not only provides new insight into the heterogeneity of human amniotic fluid, it also presents a simple yet efficient cell isolation method. These results will contribute to the thorough investigation of the properties and potential future applications of human amniotic fluid-derived cells.

[1] Huisjes, H.J. Origin of the cells in the liquor amnii. Am. J. Obstet. Gynecol. 106 (1970) 1222–1228. 10.1016/0002-9378(70)90522-3Search in Google Scholar

[2] Prusa, A.R., Marton, E., Rosner, M., Bernaschek, G. and Hengstschläger, M. Oct-4 expressing cells in human amniotic fluid: a new source for stem cell research. Hum. Reprod. 18 (2003) 1489–1493. http://dx.doi.org/10.1093/humrep/deg27910.1093/humrep/deg279Search in Google Scholar PubMed

[3] In’ t Anker, P.S., Scherjon, S.A., Kleijburg-van der, Keur C., Noort, W.A., Claas, F.H., Willemze, R., Fibbe, W.E. and Kanhai, H.H. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102 (2003) 1548–1549. http://dx.doi.org/10.1182/blood-2003-04-129110.1182/blood-2003-04-1291Search in Google Scholar PubMed

[4] Tsai, M.S., Lee, J.L., Chang, Y.J. and Hwang, S.M. Isolation of human multipotent mesenchymal stem cells from second trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod. 19 (2004) 1450–1456. http://dx.doi.org/10.1093/humrep/deh27910.1093/humrep/deh279Search in Google Scholar PubMed

[5] Tsai, M.S., Hwang, S.M., Tsai, Y.L., Cheng, F.C., Lee, J.L. and Chang, Y.J. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol. Reprod. 74 (2006) 545–551. http://dx.doi.org/10.1095/biolreprod.105.04602910.1095/biolreprod.105.046029Search in Google Scholar PubMed

[6] DeCoppi, P., Bartsch, G. Jr., Siddiqui, M.M., Xu, T., Santos, C.C., Perin L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., Furth, M.E., Soker, S. and Atala, A. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25 (2007) 100–106. http://dx.doi.org/10.1038/nbt127410.1038/nbt1274Search in Google Scholar PubMed

[7] Kim, J., Lee, Y., Kim, H., Hwang, K.J., Kwon, H.C., Kim, S.K., Cho, D.J., Kang, S.G. and You, J. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif. 40 (2007) 75–90. http://dx.doi.org/10.1111/j.1365-2184.2007.00414.x10.1111/j.1365-2184.2007.00414.xSearch in Google Scholar PubMed PubMed Central

[8] Pesce, M., Anastassiadis, K. and Scholer, H.R. Oct-4: lessons of totipotency from embryonic stem cells. Cells Tissues Organs 165 (1999) 144–152. http://dx.doi.org/10.1159/00001669410.1159/000016694Search in Google Scholar PubMed

[9] Holden, C. Versatile stem cells without the ethical baggage. Science 315 (2007) 170. http://dx.doi.org/10.1126/science.315.5809.17010.1126/science.315.5809.170Search in Google Scholar PubMed

[10] Prusa, A.R. and Hengstschläger, M. Amniotic fluid cells and human stem cell research: a new connection. Med. Sci. Monit. 8 (2002) 253–257. Search in Google Scholar

[11] Siegel, N., Rosner, M., Hanneder, M., Freilinger, A. and Hengstschläger, M. Human amniotic fluid stem cells: a new perspective. Amino Acids 35 (2008) 291–293. http://dx.doi.org/10.1007/s00726-007-0593-110.1007/s00726-007-0593-1Search in Google Scholar PubMed

[12] Chiavegato, A., Bollini, S., Pozzobon, M., Callegari, A., Gasparotto, L., Taiani, J., Piccoli, M., Lenzini, E., Gerosa, G., Vendramin, I., Cozzi, E., Angelini, A., Iop, L., Zanon, G.F., Atala, A., DeCoppi, P. and Sartore, S. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immunodeficient rat. J. Mol. Cell. Cardiol. 42 (2007) 746–759. http://dx.doi.org/10.1016/j.yjmcc.2006.12.00810.1016/j.yjmcc.2006.12.008Search in Google Scholar PubMed

[13] Bossolasco, P., Montemurro, T., Cova, L., Zangrossi, S., Calzarossa, C., Buiatiotis, S., Soligo, D., Bosari, S., Silani, V., Deliliers, G.L., Rebulla, P. and Lazzari, L. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell. Res. 16 (2006) 329–336. http://dx.doi.org/10.1038/sj.cr.731004310.1038/sj.cr.7310043Search in Google Scholar PubMed

[14] Kosaki, K., Bassi, M.T., Kosaki, R., Lewin, M., Belmont, J., Schauer, G. and Casey, B. Characterization and mutation analysis of human LEFTY A and LEFTY B: Homologues of murine genes implicated in left-right axis development. Am. J. Hum. Genet. 64 (1999) 712–721. http://dx.doi.org/10.1086/30228910.1086/302289Search in Google Scholar PubMed PubMed Central

[15] Besser, D. Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. J. Biol. Chem. 279 (2004) 45076–45084. http://dx.doi.org/10.1074/jbc.M40497920010.1074/jbc.M404979200Search in Google Scholar PubMed

[16] Dvash, T., Sharon, N., Yanuka, O. and Benvenisty, N. Molecular analysis of LEFTY-expressing cells in early human embryoid bodies. Stem Cells 25 (2007) 465–472. http://dx.doi.org/10.1634/stemcells.2006-017910.1634/stemcells.2006-0179Search in Google Scholar PubMed

[17] Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. and Jones, J.M. Embryonic stem cell lines derived from human blastocysis. Science 282 (1998) 1145–1147. http://dx.doi.org/10.1126/science.282.5391.114510.1126/science.282.5391.1145Search in Google Scholar PubMed

[18] Takahashi, K. and Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (2006) 663–676. http://dx.doi.org/10.1016/j.cell.2006.07.02410.1016/j.cell.2006.07.024Search in Google Scholar PubMed

[19] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 (2007) 861–872. http://dx.doi.org/10.1016/j.cell.2007.11.01910.1016/j.cell.2007.11.019Search in Google Scholar PubMed

[20] Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I. and Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science 318 (2007) 1917–1920. http://dx.doi.org/10.1126/science.115152610.1126/science.1151526Search in Google Scholar PubMed

Published Online: 2010-6-19
Published in Print: 2010-9-1

© 2010 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-010-0017-1/html
Scroll to top button