Skip to main content
Log in

Experimental evidence of a non-extensive statistical physics behavior of electromagnetic signals emitted from rocks under stress up to fracture. Preliminary results

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The application of mechanical stress on a rock sample can induce electromagnetic emissions. Such emissions can be detected experimentally and in principle could be used as precursors of the upcoming failure.

Using experimental observations of stress-induced electromagnetic emissions (SIEME), we apply the concepts of non-extensive statistical physics (NESP) to the time intervals between consecutive SIEME. The application of NESP is appropriate to systems such as fracture-induced effects, where non-linearity, long-range interactions and scaling are important. We find that the SIEME energy release distribution and the inter-event time distribution reflect a sub-extensive system with thermodynamic q-values of the order of q E = 1.67 and q τ ≈ 1.7, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, S., and N. Suzuki (2003), Law for the distance between successive earthquakes, J. Geophys. Res. 108,B2, 2113, DOI: 10.1029/2002JB002220.

    Article  Google Scholar 

  • Abe, S., and N. Suzuki (2005), Scale-free statistics of time interval between successive earthquakes, Physica A 350,2–4, 588–596, DOI: 10.1016/j.physa.2004.10.040.

    Article  Google Scholar 

  • Anastasiadis, C., D. Triantis, I. Stavrakas, F. Vallianatos (2004), Pressure Stimulated Currents (PSC) in marble samples, Ann. Geophys. 47,1, 21–28.

    Google Scholar 

  • Benson, P.M., B.D. Thompson, P.G. Meredith, S. Vinciguerra, and R.P. Young (2007), Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography, Geophys. Res. Lett. 34,3, L03303, DOI: 10.1029/2006GL028721.

    Article  Google Scholar 

  • Benson, P.M., S. Vinciguerra, P.G. Meredith, and R.P. Young (2008), Laboratory simulation of volcano seismicity, Science 322,5899, 249–252, DOI: 10.1126/science.1161927.

    Article  Google Scholar 

  • Burridge, R., and L. Knopoff (1967), Model and theoretical seismicity, Bull. Seismol. Soc. Am. 57,3, 341–371.

    Google Scholar 

  • Carlson, J.M., J.S. Langer, B.E. Shaw, and C. Tang (1991), Intrinsic properties of a Burridge-Knopoff model of an earthquake fault, Phys. Rev. A 44,2, 884–897, DOI: 10.1103/PhysRevA.44.884.

    Article  Google Scholar 

  • Chakrabarti, B.K., and L.G. Benguigui (1997), Statistical Physics of Fracture and Breakdown in Disordered Systems, Oxford University Press, Oxford, 161 pp.

    Google Scholar 

  • Enomoto, Y., and H. Hashimoto (1990), Emission of charged particles from indentation fracture of rocks, Nature 346, 641–643, DOI: 10.1038/346641a0.

    Article  Google Scholar 

  • Frid, V., A. Rabinovitch, and D. Bahat (2003), Fracture induced electromagnetic radiation, J. Phys. D: Appl. Phys. 36,13, 1620–1628, DOI: 10.1088/0022-3727/36/13/330.

    Article  Google Scholar 

  • Frid, V., A. Rabinovitch, and D. Bahat (2006), Crack velocity measurement by induced electromagnetic radiation, Phys. Lett. A 356,2, 160–163, DOI: 10.1016/j.physleta.2006.03.024.

    Article  Google Scholar 

  • Frid, V., J. Goldbaum, A. Rabinovitch, and D. Bahat (2009), Electric polarization induced by mechanical loading of Solnhofen limestone, Phil. Mag. Lett. 89,7, 453–463, DOI: 10.1080/09500830903022636.

    Article  Google Scholar 

  • Frid, V., J. Goldbaum, A. Rabinovitch, and D. Bahat (2011), Time-dependent Benioff strain release diagrams, Phil. Mag. 91,12, 1693–1704, DOI: 10.1080/14786435.2010.544684.

    Article  Google Scholar 

  • Hasumi, T. (2007), Interoccurrence time statistics in the two-dimensional Burridge-Knopoff earthquake model, Phys. Rev. E 76,2, 026117, DOI: 10.1103/PhysRevE.76.026117.

    Article  Google Scholar 

  • Hayakawa, M. (ed.) (1999), Electromagnetic Phenomena Related to Earthquake Prediction, TERRAPUB, Tokyo.

    Google Scholar 

  • Hayakawa, M., and Y. Fujinawa (eds.) (1994), Electromagnetic Phenomena Related to Earthquake Prediction, TERRAPUB, Tokyo.

    Google Scholar 

  • Hayakawa, M., and O.A. Molchanov (eds.) (2002), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 478 pp.

    Google Scholar 

  • Herrmann, H.J., and S. Roux (1990), Statistical Models for the Fracture of Disordered Media, North-Holland, Amsterdam.

    Google Scholar 

  • Nardi, A. (2001), Emissioni elettromagnetiche in rocce sottoposte a sollecitazione meccanica. Un possibile precursore sismico?, Master thesis, University of Rome “La Sapienza” (in Italian).

  • Nardi, A., (2005), Emissioni elettromagnetiche naturali come precursori di fenomeni sismici, Ph.D. thesis, University of Rome “La Sapienza” (in Italian).

  • Nardi, A., and M. Caputo (2006), A perspective electric earthquake precursor observed in the Apennines, Boll. Geofis. Teor. Appl. 47,1–2, 3–12.

    Google Scholar 

  • Nardi, A., and M. Caputo (2009), Monitoring the mechanical stress of rocks through the electromagnetic emission produced by fracturing, Int. J. Rock Mech. Min. Sci. 46,5, 940–945, DOI: 10.1016/j.ijrmms.2009.01.005.

    Article  Google Scholar 

  • Nardi, A., M. Caputo, and C. Chiarabba (2007), Possible electromagnetic earthquake precursors in two years of ELF-VLF monitoring in the atmosphere, Boll. Geofis. Teor. Appl. 48,2, 205–212.

    Google Scholar 

  • O’Keefe, S.G., and D.V. Thiel (1995), A mechanism for the production of electromagnetic radiation during fracture of brittle materials, Phys. Earth Planet. In. 89,1–2, 127–135, DOI: 10.1016/0031-9201(94)02994-M.

    Article  Google Scholar 

  • Rundle, J.B., D.L. Turcotte, and W. Klein (eds.) (2000), Geocomplexity and the Physics of Earthquakes, American Geophysical Union, Washington, 284 pp.

    Google Scholar 

  • Slifkin, L. (1993), Seismic electric signals from displacement of charged dislocations, Tectonophysics 224,1–3, 149–152, DOI: 10.1016/0040-1951(93)90066-S.

    Article  Google Scholar 

  • Stavrakas, I., C. Anastasiadis, D. Triantis, and F. Vallianatos (2003), Piezo stimulated currents in marble samples: Precursory and concurrent-with-failure signals, Nat. Hazards Earth Syst. Sci. 3,3/4, 243–247, DOI: 10.5194/nhess-3-243-20.

    Article  Google Scholar 

  • Stavrakas, I., D. Triantis, Z. Agioutantis, S. Maurigiannakis, V. Saltas, F. Vallianatos, and M. Clarke (2004), Pressure stimulated currents in rocks and their correlation with mechanical properties, Nat. Hazards Earth Syst. Sci. 4, 563–567, DOI: 10.5194/nhess-4-563-2004.

    Article  Google Scholar 

  • Takeuchi, A., and H. Nagahama (2001), Voltage changes induced by stick-slip of granites, Geophys. Res. Lett. 28,17, 3365–3368, DOI: 10.1029/2001GL012981.

    Article  Google Scholar 

  • Telesca, L. (2010a), Nonextensive analysis of seismic sequences, Physica A 389,9, 1911–1914, DOI: 10.1016/j.physa.2010.01.012.

    Article  Google Scholar 

  • Telesca, L. (2010b), A non-extensive approach in investigating the seismicity of L’Aquila area (central Italy), struck by the 6 April 2009 earthquake (M L = 5.8), Terra Nova 22,2, 87–93, DOI: 10.1111/j.1365-3121.2009.00920.x.

    Article  Google Scholar 

  • Tsallis, C. (1988), Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52,1–2, 479–487, DOI: 10.1007/BF01016429.

    Article  Google Scholar 

  • Tsallis, C. (1999), Nonextensive statistics: theoretical, experimental and computational evidences and connections, Braz. J. Phys. 29,1, 1–35, DOI: 10.1590/S0103-97331999000100002.

    Article  Google Scholar 

  • Tsallis, C. (2009), Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, Springer, New York, DOI: 10.1007/978-0-387-85359-8.

    Google Scholar 

  • Tsallis, C. (2001), Nonextensive statistical mechanics and thermodynamics: Historical background and present status. In: S. Abe and Y. Okamoto (eds.), Nonextensive Statistical Mechanics and Its Applications, Springer, Berlin, 3–98.

    Chapter  Google Scholar 

  • Tzanis, A., and F. Vallianatos (2001), A critical review of ULF electric earthquake precursors, Ann. Geofis. 44,2, 429–460.

    Google Scholar 

  • Tzanis, A., and F. Vallianatos (2002), A physical model of Electric Earthquake Precursors due to crack propagation and the motion of charged edge dislocations. In: M. Hayakawa and O.A. Molchanov (eds.), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 117–130.

    Google Scholar 

  • Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards Earth Syst. Sci. 9,1, 211–216, DOI: 10.5194/nhess-9-211-2009.

    Article  Google Scholar 

  • Vallianatos, F. (2011), A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field, Physica A 390,10, 1773–1778, DOI: 10.1016/j.physa.2010.12.040.

    Article  Google Scholar 

  • Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics?, Physica A 389,21, 4989–4993, DOI: 10.1016/j.physa.2010.06.056.

    Article  Google Scholar 

  • Vallianatos, F., and P. Sammonds (2011), A non-extensive statistics of the faultpopulation at the Valles Marineris extensional province, Mars, Tectonophysics 509,1–2, 50–54, DOI: 10.1016/j.tecto.2011.06.001.

    Article  Google Scholar 

  • Vallianatos, F., and D. Triantis (2008), Scaling in Pressure Stimulated Currents related with rock fracture, Physica A 387,19–20, 4940–4946, DOI: 10.1016/j.physa.2008.03.028.

    Article  Google Scholar 

  • Vallianatos, F., and A. Tzanis (1998), Electric current generation associated with the deformation rate of a solid: Preseismic and coseismic signals, Phys. Chem. Earth 23,9–10, 933–939, DOI: 10.1016/S0079-1946(98)00122-0.

    Article  Google Scholar 

  • Vallianatos, F., and A. Tzanis (1999a), A model for the generation of precursory electric and magnetic fields associated with the deformation rate of the earthquake focus. In: M. Hayakawa (ed.), Atmospheric and Ionospheric electromagnetic phenomena associated with Earthquakes, TERRAPUB, Tokyo, 287–305.

    Google Scholar 

  • Vallianatos, F., and A. Tzanis (1999b), On possible scaling laws between electric earthquake precursors (EEP) and earthquake magnitude, Geophys. Res. Lett., 26,13, 2013–2016, DOI: 10.1029/1999GL900406.

    Article  Google Scholar 

  • Vallianatos, F., and A. Tzanis (2003), On the nature, scaling and spectral properties of pre-seismic ULF signals, Nat. Hazards Earth Syst. Sci. 3,3/4, 237–242, DOI: 10.5194/nhess-3-237-2003.

    Article  Google Scholar 

  • Vallianatos, F., D. Triantis, A. Tzanis, C. Anastasiadis, and I. Stavrakas (2004), Electric earthquake precursors: from laboratory results to field observations, Phys. Chem. Earth 29,4–9, 339–351, DOI: 10.1016/j.pce.2003.12.003.

    Google Scholar 

  • Vallianatos, F., E. Kokinou, and P. Sammonds (2011a), Non-extensive statistical physics approach to fault population distribution. A case study from the Southern Hellenic Arc (Central Crete), Acta Geophys. 59,4, 770–784, DOI: 10.2478/s11600-011-0015-3.

    Article  Google Scholar 

  • Vallianatos, F., D. Triantis, and P. Sammonds (2011b), Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks, EPL 94,6, 68008, DOI: 10.1209/0295-5075/94/68008.

    Article  Google Scholar 

  • Varotsos, P. (2005), The Physics of Seismic Electric Signals, TERRAPUB, Tokyo.

    Google Scholar 

  • Yamashita, T. (1976), On the dynamical process of fault motion in the presence of friction and inhomogeneous initial stress. Part I. Rupture propagation, J. Phys. Earth 24,4, 417–444, DOI: 10.4294/jpe1952.24.417.

    Article  Google Scholar 

  • Yoshida, S., M. Uyeshima, and M. Nakatani (1997), Electric potential changes associated with slip failure of granite: Preseismic and coseismic signals, J. Geophys. Res. 102,B7, 14883–14897, DOI: 10.1029/97JB00729.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippos Vallianatos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallianatos, F., Nardi, A., Carluccio, R. et al. Experimental evidence of a non-extensive statistical physics behavior of electromagnetic signals emitted from rocks under stress up to fracture. Preliminary results. Acta Geophys. 60, 894–909 (2012). https://doi.org/10.2478/s11600-012-0030-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-012-0030-z

Key words

Navigation