Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 17, 2014

Countable contraction mappings in metric spaces: invariant sets and measure

  • María Barrozo EMAIL logo and Ursula Molter
From the journal Open Mathematics

Abstract

We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {F i: i ∈ ℕ}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps F i are of the form F i(x) = r i x + b i on X = ℝd, we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supi r i is strictly smaller than 1.

Further, if ρ = {ρ k}k∈ℕ is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set.

[1] Bandt C., Self-similar sets. I. Topological Markov chains and mixed self-similar sets, Math. Nachr., 1989, 142, 107–123 http://dx.doi.org/10.1002/mana.1989142010710.1002/mana.19891420107Search in Google Scholar

[2] Barnsley M.F., Demko S., Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 1985, 399(1817), 243–275 http://dx.doi.org/10.1098/rspa.1985.005710.1098/rspa.1985.0057Search in Google Scholar

[3] Falconer K.J., The Geometry of Fractal Sets, Cambridge Tracts in Math., 85, Cambridge University Press, Cambridge, 1986 Search in Google Scholar

[4] Falconer K., Fractal Geometry, John Wiley & Sons, Chichester, 1990 Search in Google Scholar

[5] Hille M.R., Remarks on limit sets of infinite iterated function systems, Monatsh. Math., 2012, 168(2), 215–237 http://dx.doi.org/10.1007/s00605-011-0357-610.1007/s00605-011-0357-6Search in Google Scholar

[6] Hutchinson J.E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30(5), 713–747 http://dx.doi.org/10.1512/iumj.1981.30.3005510.1512/iumj.1981.30.30055Search in Google Scholar

[7] Kravchenko A.S., Completeness of the space of separable measures in the Kantorovich-Rubinshtein metric, Siberian Math. J., 2006, 47(1), 68–76 http://dx.doi.org/10.1007/s11202-006-0009-610.1007/s11202-006-0009-6Search in Google Scholar

[8] Mattila P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge Stud. Adv. Math., 44, Cambridge University Press, Cambridge, 1995 http://dx.doi.org/10.1017/CBO978051162381310.1017/CBO9780511623813Search in Google Scholar

[9] Mauldin R.D., Infinite iterated function systems: theory and applications, In: Fractal Geometry and Stochastics, Progr. Probab., 37, Birkhäuser, Basel, 1995, 91–110 http://dx.doi.org/10.1007/978-3-0348-7755-8_510.1007/978-3-0348-7755-8_5Search in Google Scholar

[10] Mauldin R.D., Urbanski M., Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 1996, 73(1), 105–154 http://dx.doi.org/10.1112/plms/s3-73.1.10510.1112/plms/s3-73.1.105Search in Google Scholar

[11] Mauldin R.D., Williams S.C., Random recursive constructions: asymptotic geometric and topological properties, Trans. Amer. Math. Soc., 1986, 295(1), 325–346 http://dx.doi.org/10.1090/S0002-9947-1986-0831202-510.1090/S0002-9947-1986-0831202-5Search in Google Scholar

[12] Mihail A., Miculescu R., The shift space for an infinite iterated function system, Math. Rep. (Bucur.), 2009, 11(61)(1), 21–32 Search in Google Scholar

[13] Secelean N.A., The existence of the attractor of countable iterated function systems, Mediterr. J. Math., 2012, 9(1), 61–79 http://dx.doi.org/10.1007/s00009-011-0116-x10.1007/s00009-011-0116-xSearch in Google Scholar

Published Online: 2014-1-17
Published in Print: 2014-4-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11533-013-0371-0/html
Scroll to top button