Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 12, 2012

Minimization of the number of periodic points for smooth self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers

  • Grzegorz Graff EMAIL logo and Agnieszka Kaczkowska
From the journal Open Mathematics

Abstract

Let f be a smooth self-map of m-dimensional, m ≥ 4, smooth closed connected and simply-connected manifold, r a fixed natural number. For the class of maps with periodic sequence of Lefschetz numbers of iterations the authors introduced in [Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math. (in press)] the topological invariant J[f] which is equal to the minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of f.

In this paper the invariant J[f] is computed for self-maps of 4-manifold M with dimH 2(M; ℚ) ≤ 4 and estimated for other types of manifolds. We also use J[f] to compare minimization of the number of periodic points in smooth and in continuous categories.

[1] Abramowitz M., Stegun I.A. (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, 1972 Search in Google Scholar

[2] Apéry R., Irrationalité de ζ(2) et ζ(3), Astérisque, 1979, 61, 11–13 Search in Google Scholar

[3] Batko B., Mrozek M., The Euler-Poincaré characteristic of index maps, Topology Appl., 2007, 154(4), 859–866 http://dx.doi.org/10.1016/j.topol.2006.09.00910.1016/j.topol.2006.09.009Search in Google Scholar

[4] Chow S.-N., Mallet-Parret J., Yorke J.A., A periodic orbit index which is a bifurcation invariant, In: Geometric Dynamics, Rio de Janeiro, July–August, 1981, Lecture Notes in Math., 1007, Springer, Berlin, 1983, 109–131 10.1007/BFb0061414Search in Google Scholar

[5] Gierzkiewicz A., Wójcik K., Lefschetz sequences and detecting periodic points, Discrete Contin. Dyn. Syst., 2012, 32(1), 81–100 http://dx.doi.org/10.3934/dcds.2012.32.8110.3934/dcds.2012.32.81Search in Google Scholar

[6] Gompf R.E., The topology of symplectic manifolds, Turkish J. Math., 2001, 25(1), 43–59 Search in Google Scholar

[7] Graff G., Existence of periodic orbits for a perturbed vector field, Topology Proc., 2007, 31(1), 137–143 Search in Google Scholar

[8] Graff G., Jezierski J., Minimal number of periodic points for C 1 self-maps of compact simply-connected manifolds, Forum Math., 2009, 21(3), 491–509 http://dx.doi.org/10.1515/FORUM.2009.02310.1515/FORUM.2009.023Search in Google Scholar

[9] Graff G., Jezierski J., Minimizing the number of periodic points for smooth maps. Non-simply connected case, Topology Appl., 2011, 158(3), 276–290 http://dx.doi.org/10.1016/j.topol.2010.11.00210.1016/j.topol.2010.11.002Search in Google Scholar

[10] Graff G., Jezierski J., Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds, Discrete Contin. Dyn. Syst. Supplements, 2011, Issue Special, 523–532 Search in Google Scholar

[11] Graff G., Jezierski J., Combinatorial scheme of finding minimal number of periodic points for smooth self-maps of simply-connected manifolds, J. Fixed Point Theory Appl., 2012, DOI: 10.1007/s11784-012-0076-1 (in press) 10.1007/s11784-012-0076-1Search in Google Scholar

[12] Graff G., Jezierski J., Nowak-Przygodzki P., Fixed point indices of iterated smooth maps in arbitrary dimension, J. Differential Equations, 2011, 251(6), 1526–1548 http://dx.doi.org/10.1016/j.jde.2011.05.02410.1016/j.jde.2011.05.024Search in Google Scholar

[13] Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math. (in press) Search in Google Scholar

[14] Graff G., Kaczkowska A., Nowak-Przygodzki P., Signerska J., Lefschetz periodic point free self-maps of compact manifolds, Topology Appl., 2012, 159(10–11), 2728–2735 http://dx.doi.org/10.1016/j.topol.2012.03.01110.1016/j.topol.2012.03.011Search in Google Scholar

[15] Heath P.R., A survey of Nielsen periodic point theory (fixed n), In: Nielsen Theory and Reidemeister Torsion, Warsaw, June 24–July 5, 1996, Banach Center Publ., 1999, 49, 159–188 10.4064/-49-1-159-188Search in Google Scholar

[16] Jezierski J., Wecken’s theorem for periodic points in dimension at least 3, Topology Appl., 2006, 153(11), 1825–1837 http://dx.doi.org/10.1016/j.topol.2005.06.00810.1016/j.topol.2005.06.008Search in Google Scholar

[17] Jezierski J., Marzantowicz W., Homotopy Methods in Topological Fixed and Periodic Points Theory, In: Topol. Fixed Point Theory Appl., 3, Springer, Dordrecht, 2006 10.1007/1-4020-3931-XSearch in Google Scholar

[18] Jiang B.J., Fixed point classes from a differential viewpoint, In: Fixed Point Theory, Sherbrooke, June 2–21, 1980, Lecture Notes in Math., 886, Springer, Berlin-New York, 1981, 163–170 10.1007/BFb0092182Search in Google Scholar

[19] Jiang B.J., Lectures on Nielsen Fixed Point Theory, Contemp. Math., 14, American Mathematical Society, Providence, 1983 http://dx.doi.org/10.1090/conm/01410.1090/conm/014Search in Google Scholar

[20] Marzantowicz W., Wójcik K., Periodic segment implies infinitely many periodic solutions, Proc. Amer. Math. Soc., 2007, 135(8), 2637–2647 http://dx.doi.org/10.1090/S0002-9939-07-08750-310.1090/S0002-9939-07-08750-3Search in Google Scholar

[21] Sándor J., Mitrinovic D.S., Crstici B., Handbook of Number Theory I, Springer, Dordrecht, 2006 Search in Google Scholar

[22] Yeates A.R., Hornig G., Dynamical constraints from field line topology in magnetic flux tubes, J. Phys. A, 2011, 44(26), #265501 10.1088/1751-8113/44/26/265501Search in Google Scholar

Published Online: 2012-10-12
Published in Print: 2012-12-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11533-012-0122-7/html
Scroll to top button