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Foreword

A I is making significant inroads in the space sector. Artifi-
cial Intelligence (AI) systems are contributing to numerous space missions includ-
ing theHubble Space Telescope, Mars Exploration Rovers, the International Space

Station, and Mars Express. Many different areas of AI are already, or may be in the near
future, of particular interest from a space applications point of view. ese include topics
as diverse as: intelligent search and optimization methods in aerospace applications, im-
age analysis for guidance navigation and control, autonomous exploration of interplanetary
and planetary environments, intelligent algorithms for fault identification, as well as data
mining and visual presentation of large data sets.
is issue contains selected papers from the 2013 AI in Space workshop, held as a satel-
lite event at the 23 International Conference on Artificial Intelligence (IJCAI) in Beijing,
China. Now in its fourth edition, this workshop was co-organized by the Advanced Con-
cepts Team of the European Space Agency and the Artificial Intelligence Group of NASA’s
Jet Propulsion Laboratory. e goal of the AI in Space workshop is to highlight the most
recent AI applications related to space, encourage collaboration between the two areas, and
to provide an overview of current research. e following 9 papers were presented at the
AI in Space workshop and selected for revised submission. As a result, this issue provides
an interesting compilation of current research directions in the area of artificial intelligence
applied to the space domain.
Sensor FaultDetection andCompensation inLunar/PlanetaryRobotMissionsUsingTime-Series
Prediction Based on Machine Learning by Tim Köhler et al. introduces a system that detects
sensor drop outs and compensates missing sensor signals. Planning Mars Rovers with Hi-
erarchical Timeline Networks by Juan M. Delfa Victoria et al. presents a heuristic planner
to solve highly constrained temporal problems for autonomous on-ground and on-board
planning. Onboard Autonomous Response for UAVSAR as a Demonstration Platform for Fu-
ture Space-Based Radar Missions by Joshua Doubleday et al. discusses a system for onboard
processing and interpretation of radar data as well as autonomous retasking of the vehi-
cle and instrument. Lunar Crater Identification from Machine Learning Perspective by Chak
Pong Chung, Cheuk On Chung, and Chit Hong Yam explores different methods for lunar
crater detection based on digital elevation model data provided by the Chinese Chang’E-1
and Chang’E-2 spacecrafts. GPU Accelerated Genetic Algorithm for Low-thrust GEO Trans-
fer Maneuvers by Kai Yu and Ming Xu presents a GPU based implementation of a novel
genetic algorithm for low-thrust trajectory design. How Ants Can Manage Your Satellites
by Claudio Iacopino et al. discusses the design of an innovative ground-based automated
planning and scheduling system based on ant colony optimization. Pattern-Based Modeling
for Timeline Planning in Space Domains by Simone Fratini, Nicola Policella and Alessan-
dro Donati describes a system for pattern-based modeling to bridge the gap between AI
planning languages and the current practice in the space operational context. Procedural
Onboard Science Autonomy for Primitive Bodies Exploration by Steve Chien et al. presents
a close loop autonomous approach for onboard science target detection and response for
time constraint missions to primitive bodies. Space Hopper: a Serious Game Crowdsourcing
the Design of Interplanetary Trajectories by Wiktor Piotrowski et al. introduces an online
crowdsourcing experiment that aims to improve automated trajectory design.

Daniel Hennes and Dario Izzo
(Associate editors)
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Sensor Fault Detection and Compensation in Lunar/Planetary
Robot Missions Using Time-Series Prediction Based

on Machine Learning
T K*¹, E B¹, C R²  F K¹

¹DFKI GmbH, Robotics Innovation Center, Robert-Hooke-Straße 5, 28359 Bremen, Germany
²University of Bremen, Robotics Research Group, Robert-Hooke-Straße 5, 28359 Bremen, Germany

Abstract. Mobile robots operating in a lunar
or planetary space mission can usually neither be
repaired from nor brought back to earth. In case
of sensor damages or drop outs an overhaul of the
hardware leading to a properly working sensor is
not possible in most cases. Instead, the system
has to continue working as reliable as possible. In
the special case of an autonomous space robot this
means that the robot, first, needs to detect a sen-
sor drop out automatically. Second, the missing
sensor signal needs to be compensated. In typical
mobile robot setups this is possible by using other
sensor modalities. Presented is a method to de-
tect single sensor faults by model-based predictions
covering multiple sensor modalities. e methods
are learned using one of two methods: tested and
compared are a multi-layer perceptron (MLP) and
a “Neural Gas (NG)” vector quantization method.
e test use case is a turning skid-steered robot
with four different sensor modalities (velocities left
and right wheels, gyroscope Z-axis, and horizontal
optical flow). With the collected training and test
data the model predictions turns out to be accurate
enough for the purpose of a sensor fault detection.
Moreover, by using learnedmodels a compensation
in case of a sensor fault can be possible.

*Corresponding author. E-mail: tim.koehler@dfki.de

1 Introduction

Robotic applications in space have a high demand on
the system’s reliability: there are only short communi-
cation windows, a high latency in communication, and
there is nearly no way of recovering a system when it is
in a fault state. Different hierarchical behavior archi-
tectures were developed (e.g., [2]) to enable the robot
to carry out high-level plans and to supervise the be-
havior execution. However, faults in the sensor hard-
ware would still be a critical problem in plan execution
– although there might be several cases of single sen-
sor drop-outs that could be compensated. For a typi-
cal lunar or planetary space mission, an example could
be a wheeled mobile robot with a three-axes gyroscope,
a camera or laser range finder, and wheel encoders. A
malfunctioning single sensor in such a setup could be
compensated (at least partly) by a combination of the
motor commands and the data obtained from the other
sensors.
By learning the correlation between actions executed

by the robot and the corresponding sensor feedback, a
prediction of sensor signals could be possible. us, a
model of the motor-to-sensor relation is learned which
is used to generate expected sensor values when execut-
ing a learned action again. Such a model is specific for

9
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the learned action (or actions) andmight depend on cer-
tain properties of the environment. A model-based pre-
diction with three different methods of model genera-
tion and with an application of detecting environmen-
tal conditions rather than sensor failures is presented by
Rauch et al. [7].
Comparing the prediction error (between the learned,

expected state and the actual sensor feedback) of several
sensor modalities could lead to an identification of sin-
gle sensor drop-outs. Furthermore, if a sensor failure
is identified, a compensation could be possible by us-
ing the predicted sensor values instead of the measured
ones.
Presented is the application of a vector-quantization-

based method and a neural network model to generate
prediction models for typical sensor modalities and typ-
ical motions of a mobile robot in a lunar environment.
e motor-sensor model is learned with training data in
a so called normal case: All variations and disturbances
that occur in this training set are expected to be covered
by the model. Predictions based on this trained model
are evaluated on test cases where different sensor faults
are simulated. e aim is therefore, first, to model the
correlation of actions and perception (the sensorimotor
loop) for the normal case, i.e. for situations where no
sensor drop-outs occur, second, to recognize when ex-
pectations in the sensorimotor loop do not match the
measured values, e.g. when a sensor drop-out occurs,
and, third, to use predicted sensor values instead of the
faulty real sensor values. Depending on the overall ar-
chitecture, this switching could also be done transpar-
ently. However, in many cases a signaling of the error
condition to higher layers is demanded.
In the field of fault detection, several publications can

be found. For example, a more general review on pro-
cess fault detection is published by Venkatasubramanian
et al. ([10] and following two parts). Some publica-
tions concentrate on the sensor fault detection without
giving a possibility to correct or compensate faulty sen-
sor signals, e.g., using a classifier. e combination of
detection and correction can be done using an analyti-
cal model based on prior knowledge or using a learned
model. Lishuang et al. present a very interesting so-
lution including even an identification of bias faults and
drift faults of a sensor [4]. However, their method uses a
relatively complex setup based on least squares support
vector machine. With the methods presented in this
work, an alternative solution is proposed. Furthermore,
especially the combination of multiple sensor modali-
ties and the comparison of different sensors’ behaviours

is examined.
e first method used to train the prediction model

is called “Neural Gas”. Neural gas (NG, Martinetz et
al. 1993, [6]) is a vector quantization method which
preserves the structure of the action-perception relation
and does not fit a functional description to this relation.
is especially can be useful if the prediction model has
to cover different situations where the sensor feedback
differs depending on environmental properties only (i.e.
if ambiguities exist in one modality).

A second method used in comparison to the NG is
the “Multi Layer Perceptron” (MLP) (Rummelhart et
al. 1986, [8]). e MLP is a neuronal method that is
capable of learning functional correlations between in-
put and output values. Once an MLP is trained on ex-
ample data, like described for the NG above, it can be
used to predict sensor values. However, in contrast to
NG there might be multiple MLP networks needed if
different environments lead to ambiguous data.

is work covers (1) learning of models for a sensor
value prediction, (2) evaluation of prediction and sen-
sor measurements, and (3) compensation of a sensor
fault. In Section 2 the methods are described. Sec-
tion 3 presents the results which are discussed in Sec-
tion 4. e paper finishes with a Conclusion and an
Outlook.

2 Methods

An overview of the single components of the fault de-
tection and compensation is given in Figure 1. Shown
is the setup when predicting sensor responses using
learned models. e configuration to train a model is
not depicted. In the figure, three different ways of op-
eration can be seen.

Using a prediction based on the motor commands
only (method A in the figure) is an application of the bi-
ological model called reafference principle proposed by
von Holst and Mittelstaedt [11, 12]. We use this con-
figuration for the tests described in Section 3. As input
the history of the last 15 motor commands is used. In
variant B, the predictions are based on the sensor states.
e advantage of this configuration is that the sensor
state expectations can also been matched to robot states
in cases where the motion was not initiated by the robot.
An example is a mobile robot rolling down a slope. But
one disadvantage is that presumably the matching of the
predictions and actual sensor states is worse without the
motion commands. Furthermore, a sensor fault would

10 DOI: 10.2420/AF09.2014.9
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Figure 1: Overview of the proposed fault detection and compensation. ree different ways of operation are
discussed.

have an influence on the prediction result. Finally, vari-
ant C combines both sources as a basis for the predic-
tions. However in this work, variant C is not studied in
more detail because the main difference to configuration
A, i.e. tolerating externally induced or passive motions,
is actually a disadvantage in the chosen application. If a
mobile robot in unknown lunar or planetary terrain for
example slips down a crater rim the predictions could
perhaps be matched in configuration C. But the state of
slipping is to be avoided or at least detected. Compar-
isons of the prediction results of variant A and C have
yet been carried out, see Section 2.3.

2.1 Prediction UsingMLP

One of the methods we used for the sensor value predic-
tion is known as “Multi-Layer Perceptron” (Rummel-
hart et al. 1986, [8]) which is a well known method in
the field of artificial neural networks. e architecture of

a standard MLP is that it has one input layer that has a
number of neurons equal to the dimension of the desired
input and an output layer containing a number of output
neurons equal to the dimension of the desired output. In
between those input and output layers the network has
a predefined number of “hidden” layers which can con-
tain each an independently chosen number of neurons
which are normally fully forward connected. e MLP
can be seen as a general function approximator which
can in theory approximate every arbitrary function with
only one hidden layer as long as this layer has enough
neurons. e network is trained to minimize an error
function (least mean square error) on a given training
dataset, in this paper we used the back propagation ap-
proach and an optimization method called Levenberg-
Marquardtmethod which is a combination of the meth-
ods described by Levenberg in [3] and extended byMar-
quardt in [5]. As the activation function for the hidden

DOI: 10.2420/AF09.2014.9 11
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layers we used tanh and for the output layer a linear
function.

Using the MLP for sensor value prediction we have
to define input and output sensor channels for which we
want to train an MLP. As an input channel the motion
commands of the robot (including a short history of past
commands), the values of any of the other sensors, or a
combination of both can be used to predict one or some
of the other sensors. At least of course the sensor values
selected as output should have a correlation to at least
one of the input channels. We tested different variants
where only a single sensor or a combination of multiple
ones was predicted given only the motion commands as
well as variants where also information of other sensors
was available as input. e results of these analysis will
be described in Section 3.1.

2.2 Prediction Using NG

e secondmethod to learn a model studied for the pro-
posed fault detection is the vector quantization method
“Neural Gas” (NG) by Martinetz et al. [6]. In con-
trast to MLP, this method is able to preserve any distri-
bution of the action-perception relation (in the training
data set). Especially it is possible to cover ambiguities
in the motor-sensor relation like sensor responses which
vary depending on environmental properties (e.g., turn-
ing rate depending on the type of ground).

In the application of NG, the NG center vectors
(CV) are adapted to a multi-dimensional training data
set with n input dimensions (motor commands) andm

output dimensions (sensor modalities to be predicted)
combined in one n + m-dimensional space. e in-
put/output modalities and the training set can be the
same as for the MLP (see above). At recall, the current
(and p past) motor commands are used to find the clos-
est trained CV. e winning CV gives the sensor value
(single or multi dimensional) which is used as predic-
tion value (expected sensor response). is method was
already proposed by Hoffmann et al. [1] and Schenck
et al. [9]. One advantage of using a vector quantization
like NG in this application is that after learning further
dimensions can be used for recall. For example, the win-
ning CV for a sensor value prediction can be selected by
the p past motor commands and them−1 other sensor
values.

2.3 Evaluation and Compensation

Fault Types ere are different kinds of sensor faults
possible. Independent of the specific type of sensor,
general misbehaviours can be distinguished. First of
all, the temporal conditions of a fault can be classified
in persistent and temporarily. When a failure is active
typically three cases can be distingushed: a) the sensor
reading stays at a fixed value (e.g. 0, maximum, or last
reading before the fault), b) the sensor reading is ar-
bitrarily changing (free floating), and c) the defective
sensor reading follows another signal (e.g. a connec-
tion to another sensor). For simulation and test, fault
models have been designed which cover typical misbe-
haviours. Examples for the three cases are a) stuck-at-0
fault model, b) open fault model, and c) bridging fault
model. e stuck-at-0 case and the bridging case are
used for the tests described below. Open faults can in
principle be detected in the same way. However, the
appearance of such a fault can vary a lot from trial to
trial. us, an evaluation with artificial data would have
to be done with a wide range of different sensor reading
frequency spectra and sensor reading courses. Further-
more, an identification of such a fault could be possible
more easily by frequency spectrum analyses.

Detection Given there are m predictions (expecta-
tions) x̂i ofm current sensor data xi, the sensor-specific
absolute error ei = |xi − x̂i| is used for sensor fault
detection. Depending on the sensor fault type to be
detected and depending on the application, the single
normalized absolute errors enorm,i = ei/σi (where σi

is the standard deviation of the training data in sen-
sor channel i), the single relative errors erel,i = m ∗
ei/

∑m
j ej or a combination of both needs to be used.

e distinction between the sensor fault condition
and the no fault condition can be drawn based on single
error values or based on the history of a number of past
error values. In both cases either fixed or dynamically
adapting thresholds are possible solutions. In the tests
described below, a fixed threshold can be applied.

Compensation Using prediction models not only al-
lows to detect a sensor fault but also offers a way for
compensation. Depending on error model and applica-
tion, a fault detection can respond instantaneous or af-
ter a buffering period (e.g. to accumulate error). When
a fault is detected the further sensor processing com-
ponents (e.g. robot motion control) can either be trig-
gered (e.g. to switch to a safe system hold mode) or

12 DOI: 10.2420/AF09.2014.9
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Figure 2: e mobile robot platform used for data col-
lection. e environment is a lunar crater model.

they can be supplied with the expected sensor readings
generated by the prediction. In cases where just a sin-
gle sensor fails and where other sensors deliver enough
information such a combination of real measurements
and expectations might lead to a still controllable sys-
tem – depending on the system possibly even without
any changes in the control architecture.

3 Experimental Results

e two prediction approaches are trained on real sensor
data of a four-wheel skid-steered robot (see Figure 2).
e robot is equipped with a three-axes gyroscope, cam-
eras, and wheel encoders. e system was placed on flat
ground in a black hall which contains the model of a
moon crater rim. In the cratermodel, the lighting can be
controlled to cover typical cases occurring in space mis-
sions, like glares or harsh shadows (as can be seen in the
figure). In training, the robot carried out turning mo-
tions at different speeds, each repeated multiple times.
During the whole data recording the robot was placed
so that the cameras mainly recording only the crater rim.
Since we analysed the optical flow, this represents an en-
vironment that could be found in a similar way on a real
moon mission.e test data is generated by simulating
different types of sensor faults within the sampled real
sensor and actuator data.
To analyse and compare the performance of the pre-

diction on sensor data in the normal case in which all
sensors working properly. e data of different sen-
sors are recorded which are, an inertial measuring unit
(IMU)with a gyroscopewhich provides ameasure of the
turning speed of the robot, the robot odometer giving
values for the speed of the right and the left wheels, and
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Figure 3: Test data to evaluate the prediction results.

finally optical flow generated on the camera data. e
motion commands which tell the robot how to move
will also be recorded. e recorded data are divided into
training and test data. e training dataset contains 8
repetitions of each of the different turning speeds that
were tested while the test data set contains the remain-
ing 2 repetitions of each speed. is guarantees, that
both methods are trained and tested on the same data
and therefore, render the results comparable. e test
data is shown in Figure 3.
e data of different sensor streams was aligned with

a frequency of 10 Hz while for each sensor the latest da-
tum is used. During training the algorithms received a
history of the last 15 motion commands which contains
a translation and rotation command along with sensor
data for the next future time step which should be pre-
dicted by the algorithms. ese sensor data which shall
be predicted contain data of 4 different sensor modali-
ties which are the rotation velocity given by the IMUgy-
roscope Z axis, the velocity of the left wheels, the veloc-
ity of the right wheels, and the horizontal optical flow.
e results for the NG and MLP methods on these test
dataset are described in the following.

3.1 Results of MLP Prediction

As described in 2.1 we used an MLP network with
tanh as the activation function of the neurons in the
hidden layers and a linear activation function for the
neurons in the output layer. We used two hidden layers
bothwith 20 neurons which are fully forward connected.
e network is trained using the Levenberg-Marquardt
optimizationmethod tominimize themean square error

DOI: 10.2420/AF09.2014.9 13
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Figure 4: Part of the test data showing measured sensor
values and predictions of the MLP trained on all four
sensor modalities.

in 50 training epochs on the training dataset.
For the MLP we tested two different variants, to pre-

dict all target sensor modality with a single MLP and as
reference one MLP was trained just to predict the opti-
cal flow value separately. For the prediction of all sensor
modalities using one MLP it turned out to be useful to
normalise the values of the optical flow first. In doing
this on the training data the mean value for all optical
flow values and their standard deviation were calculated
and all training and test data were normalised by sub-
tracting the mean and dividing them by the standard
deviation.
As it can be seen in Figure 4 the MLP is able to pre-

dict all sensor modalities quite well. e prediction of
the optical flow values in the multi modal dataset pro-
duced a root mean square error (RMSE) of 68.44 digits
and for the single modality case a RMSE of 66.91 dig-
its. ese results seem to be quite small compared to the
large absolute variance of the target signal.
In Figure 5 a histogram of the occurred errors while

predicting the test data is shown. It can be seen, that in
most of the times the prediction is quite close to the true
sensor values and therefore, the histogram plot has high
peaks at or around an error of zero. Figure 6 shows a
rescaled version of the same plot “zoomed” at the lower
part of the plot. Comparing these two plots it can be
seen, that the prediction of the different sensor chan-
nels has also different quality. e values for the right
and left velocity as well as the gyro Z-axis rotation have
mostly very low errors, shown by the high peaks in the
middle of the histogram. In contrast to that it can be
seen, that the optical flow more often has a higher er-
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Figure 6: Error histogram of theMLP-based prediction
using a single MLP for all four sensor modalities, lower
part.

ror and therefore a wider distribution of occurred errors
in the histogram. Comparing these with Figure 4 we
can see that the optical flow values are also much more
noisy than the values from the other sensors. Since also
the error is higher for the optical flow we can assume
that the correlation between the motion commands of
the robot and the resulting optical flow values is more
loose than for the other sensors, and therefore, also the
prediction is not as accurate as for the other sensors.

3.2 Results of NG Prediction

e NG center vectors are adapted to a 34-dimensional
training data set (history of 15 two-dimensional motor
commands, four exemplary sensor dimensions: wheel
speed left and right, gyroscope response Z-axis, hori-
zontal optical flow). For these tests, 300 center vectors

14 DOI: 10.2420/AF09.2014.9
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Figure 7: Example of the test data showing measured
sensor values and predictions of the NG model trained
with normalized training data. e test data depicted
here was adapted with mean and standard deviation of
the training data normalization.

were used with the NG parameters learning step size
ϵ and neighbourhood decay constant λ decreasing from
1.0 to 0.001 and from 150 to 0.01, respectively (see [6]).
1,000,000 adaptation steps were carried out. In a first
training test, the measured test data was used without
any preprocessing. In a second trial, the measured data
was normalized to a mean of 0.0 and a standard devi-
ation of 1.0. Such a normalization is needed for the
MLP prediction especially in case of the optical flow
data. However, in the given training and test data also
the NG results improved. In Figure 7 an example part
of the test data and the NG-based predictions is shown.

Like for the MLP results an error histogram for the
NG-model trained on normalized data is given in Fig-
ure 8. e lower part can be seen in Figure 9. MLP and
NG histograms are comparable. Especially, again the
higher errors of the optical flow can be seen.
In case normalized data is used for training, the same

adaptation needs to be carried out for the test data (i.e.
the current sensor measurements in the application).
Mean and standard deviation need to be stored together
with the trained NG center vectors (see Section 2.3).

3.3 Comparison of Predictions

In Table 1 the RMS errors of MLP and NG, each in
two different configurations are given. To be compa-
rable (over method and over sensor modality), all er-
ror values have been normalized using the training data
standard deviations.
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Figure 9: Error histogram of the NG-based prediction
using normalized training data, bottom part.

As can be seen, MLP and NG show similar perfor-
mances with the chosen settings and the chosen com-
putational effort. Both results could of course be im-
proved. For both methods, the acceleration dynamics
when starting and stopping the motion is covered by the
learning in average. However, varying latency in motion
start/stop from trial to trial and the noise in the steady
state phases are not covered in learning. is leads to
the prediction error, especially for the optical flow sen-
sor channel.
In the last row in Table 1 the NG results for variant C

of Figure 1 are given. In this configuration, in recall
all dimensions are used to find the corresponding center
vector. is means that besides the motor commands
also the current sensor values have an influence on the
winning center vector. is leads to better matching re-
sults, as can be seen in Table 1. However, in case of a
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Method Condition RMSE RMSE RMSE RMSE
Modality 1 Modality 2 Modality 3 Modality 4

MLP single MLP 0.173 0.160 0.185 0.333
MLP separate MLP optical flow 0.326
NG raw training data 0.225 0.217 0.272 0.482
NG normalized training data 0.165 0.145 0.172 0.331
NG norm. train. data, var. “C” 0.144 0.114 0.150 0.279

Table 1: Comparison of the prediction methods’ errors. To compare the different methods and modalities the
RMS errors of the results for raw training data (rows 1 to 3) have been scaled by the training data set standard
deviations. e same scaling was done for the test data in the evaluation of the NG run with normalized training
data (rows 4, 5). In row 5 the results for variant C in Figure 1 are given, see text. e four sensor modalities are
(1) velocity left, (2) velocity right, (3) gyroscope Z-axis, and (4) horizontal optical flow.

sensor fault the center vector selection is influenced in
the same way. us, the error might be smaller and a
fault could be harder to be detected. Training data and
learning was like in the run for row 4 in the table.

3.4 Results Evaluation and Compensation

In the following tests, the NG method with normal-
ized test and training data is used for the prediction. As
shown in Section 3.3 the difference to the otherMLP or
NG methods is not that large. eir main practical dis-
advantage is the need to normalize the prediction error
before comparing the sensor channels.
At first, a stuck-at-0 fault in a setup of three sensor

modalities (channel 1: velocity left, channel 2: velocity
right, channel 3: gyroscope Z-axis) is tested. Test and
training data was sampled with the turning robot (see
the evaluation of the prediction methods). Afterwards
test and training sets were normalized with the training
set’s mean and standard deviation. In Figure 10 the ab-
solute error for a stuck-at-0 of channel 1 is shown. Fig-
ure 11 shows three of the 12 runs in more detail (com-
pare Figure 4 for start and stop of themotion). As can be
seen, an identification of the sensor fault is easily possi-
ble (when the robot is moving). e difference between
the error of the defective channel 1 and the other two
channels is very pronounced in these runs. However,
the error is varying depending on the motion speed.
To avoid such a dependence, the relative errors can

be compared. Figure 12 shows this metric for the three
sensors. A value of 3 for one sensor means that there is
no error on the other channels. A value of 1 means the
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Figure 10: Stuck-at-0 fault of channel 1 (velocity left) in
a setup of three sensor modalities. Shown are the three
absolute errors and the absolute error sum.

sensor shows an average error.
Using the relative error metric is especially helpful in

applications where an external “fault” condition is pos-
sible and should not lead to a sensor fault detection (like
in the application described in [7]). Characteristical for
such external “failure” conditions is (1) that the current
situation differs from the situation when learning the
predictionmodels and thus the predictions do notmatch
the current sensor readings and (2) that this is the case
for all sensor modalities. In the test depicted in Fig-
ure 13 that was simulated by having all sensor channels
stuck at 0. Of course this is an artificial “ideal” case.
Nevertheless it is important to notice how close the rel-
ative errors approache 1.0 (and how far they differ while

16 DOI: 10.2420/AF09.2014.9



Sensor Fault Detection and Compensation in Lunar/Planetary Robot Missions Using Time-Series Prediction
Based on Machine Learning

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 150  200  250  300  350

A
b
s
o
lu

te
 E

rr
o
r 

[n
o
rm

a
liz

e
d
]

Sample [index]

Absolute Error Channel Vel Left
Absolute Error Channel Vel Right

Absolute Error Channel Gyro Z
Absolute Error Sum

Figure 11: Stuck-at-0 fault of channel 1 (velocity left) in
a setup of three sensor modalities. Shown are the three
absolute errors and the absolute error sum for only three
motion trials. Compare Figure 4.

the robot is not moving).
One problem occures (especially for the relative error)

if one of the sensors is very noisy. In the test data this is
the case for the optical flow measurements. Here, even
in the standing phases motion in the camera images was
noticed. is of course can happen in several applica-
tions. e results of using all four sensor modalities are
depicted in the Figure 14 for the absolute error and in
the Figure 15 for the relative error. While in motion
phases the relative error is still a good detection mea-
sure, in standing phases the absolute error sum needs to
be taken into account to reject the fault detection by the
optical flow channel relative error.
As test case of a bridging fault a connection between

channels 3 (gyroscope Z-axis) and 4 (horizontal optical
flow) was chosen. e values assumed to be read from
channel 3 were the values of channel 4. While typi-
cally a bridging fault is simulated with a bit-wise logical
“or” or “and”, an overwriting of one channel is no usual
simulation. However, it mimics the possible case of a
short-circuit of a strong and a weak driver. Moreover,
this failure is not an easy detectable problem because the
faulty sensor behaviour itself may have the same proper-
ties of the correct signal and is even correctly related to
the robot motion. e channels 3 and 4 chosen in this
test case show a relatively similar behaviour and further-
more the noisy properties of channel 4 are here present
in two of four channels. is leads to hard test case, as
can be seen in the Figures 16 and 17. Given this data,
a fault detection by the absolute error values is not eas-
ily possible. A detection by the relative errors would be
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Figure 12: Stuck-at-0 fault of channel 1 (velocity left) in
a setup of three sensor modalities. Shown are the three
realtive errors and the absolute error sum for only three
motion trials.
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Figure 13: Stuck-at-0 fault at all three channels 1, 2,
and 3 in a setup of three sensor modalities. Shown are
the three relative errors and the absolute error sum for
only three motion trials.

possible at least in most of the trials.
In Figures 18 and 19 the compensation of a sensor

fault is shown. In the simple example used here, at each
sample just the relative error is considered. Moreover,
a fixed threshold of 2.0 is used (center value between
minimum and maximum possible threshold values 1.0
and m =3.0). us, whenever a single sample of the
relative error exceeds the threshold then the predicted
sensor value is used as output (signal “Vel., Left (comp.)”
in Figure 19). If the threshold is not exceeded then the
measured value can be used by, e.g., the robot motion
control.
Such a very simple evaluation can be improved in two
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Figure 14: Stuck-at-0 fault of channel 1 (velocity left)
in a setup of four sensor modalities. Shown are the four
absolute errors and the absolute error sum for only three
motion trials.
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Figure 15: Stuck-at-0 fault of channel 1 (velocity left)
in a setup of four sensor modalities. Shown are the four
relative errors and the absolute error sum for only three
motion trials.
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Figure 16: Bridging fault of channel 3 (gyro Z) in a
setup of four sensor modalities. Shown are the four ab-
solute errors and the absolute error sum for only three
motion trials.
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Figure 17: Bridging fault of channel 3 (gyro Z) in a
setup of four sensor modalities. Shown are the four rel-
ative errors and the absolute error sum for only three
motion trials.
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Figure 18: Demonstration of compensation: signal “Ve-
locity, Left” is stuck at 0 starting from sample 245. e
absolute error sum is again high during the fault. e
relative error of the channel “Velocity, Left” is closed to
3 while the robot is moving. Compare with the follow-
ing figure.

ways. As can be seen in the plots including the optical
flow signal, a noisy sensor can lead to several short peaks
of the relative error. us, filtering the error values be-
fore their evaluation is an improvement needed for typ-
ical noisy setups. e second improvement is especially
easily possible if using a vector qantization method like
NG. Here, when a sensor fault is detected, the correct
sensor modalities can be used in recall, too. us, the
winning center vector could potentially follow the actual
current dynamics – as far as this is encoded in the other
sensor signals.

4 Discussion

While a fusioning of multiple sensor modalities could
also be carried out in a different way, e.g., within the
higher robot control layers, the proposed method has
certain advantages. First, if the sensor fault detection
and compensation is done separately from the behavior
control and plan execution system these components can
be used without any adaptations. ey do not have to
care about the described drop-out cases. Second, as ma-
chine learning methods are used here the definition of
the normal case can be chosen arbitrarily – depending
on the specific application. And third, switching be-
tween different models or combining multiple models
can be done online, e.g., depending on current plans or
behaviors.
Comparing the two prediction methods does not
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Figure 19: Demonstration of compensation: When a
sensor fault is detected, the sensor data given to robot
control is switched from measured to predicted values.

show a clear winner. Both,MLP andNGproduce com-
parable results and both are comparably simple in imple-
mentation and computational effort. For the applica-
tion shown in this paper, a vector quantization method
has two advantages. First, the method can be used in
different configurations in recall: Learned once, the
model can be used as a forward model as proposed by
von Holst et al. or Wolpert et al. and as an inverse
model fed with sensory input or one of the combina-
tions shown in Figure 1 [11, 12, 13]. Second, a vector
quantization method is in principle be able to adapt to
any kind of data distribution. us, for example ambi-
guities in the training data set could be covered, too.
e evaluation and fault models presented above can

be seen as first results showing the general applicability
of the proposed fault detection. e simple combination
of a fixed threshold and a single-sample test works for
test data shown here. However, an evaluation based on
multiple past error values, i.e., a filtering of the error, is
needed for setups with sensor signals with more noise.

5 Conclusions and Outlook

Presented was a method to detect single sensor faults by
predictions based on learned models. As learning meth-
ods a multi-layer perceptron (MLP) and a “Neural Gas
(NG)” vector quantization method was tested. e test
use case was a turning skid-steered robot with four dif-
ferent sensor modalities (velocities left and right wheels,
gyroscope Z-axis, and horizontal optical flow). With
the collected training and test data the model predic-
tions turned out to be accurate enough for the purpose
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of a sensor fault detection. Moreover, by the learned
models a compensation in case of a sensor fault is pos-
sible.
Besides some further tests with other motion con-

ditions and fault models, an integration in a robot be-
haviour control architecture is a crucial test. erefore,
especially the switching between real measurements and
predicted (expected) sensor values in an unadapted con-
trol architecture is the next test case.
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Abstract. Surface operations in distant bod-
ies like Mars present a lot of challenges. Among
them, lack of direct communications and a com-
plex environment are the main drivers that push
for more autonomy both on-ground and on-
board. is paper presents a timeline, hierarchical,
heuristically-based and domain-independent plan-
ner called QuijoteExpress oriented to solve highly
constrained temporal problems.

1 Introduction

Even though automated planning has been used since
long in practical problems like traffic control in cities,
package transportation or spacecraft operations, many
recent scenarios such as Fukushima, the on-goingDarpa
Robotic Challenge or the Curiosity rover are not using
planning techniques beyond path planning.
In Fukushima, robots were mainly tele-operated due

to the high complexity of the scenario, but limited com-
munication in some areas heavily shielded, lack of situa-
tion awareness or difficult synchronization between the
human operators (for some robots an operator guides
the robot-base and another the arm) were part of the
reasons for the poor performance displayed [12]. In the
DRC, automated planning is optional and most teams

*Corresponding author. E-mail: delfa@sim.tu-darmstadt.de.

have focused in control under human supervision, where
the operator performs the action in a virtual world and
the movements are sent then to the ”real” robot, with
the exception of walking, for which some teams imple-
mented autonomous systems. Finally, Curiosity plans
are generated in a highly manual process involving a
huge human team. As in DRC, the most remarkable
autonomous system is the Autonav.
In this paper, a new planner called QuijoteExpress is

described. e motivation is to provide a planner ready
to be used in real-world scenarios. More specifically, we
try to fulfil the following goals:

1. Performance: Improve the performance of the
planner is key to achieve a good scalability as the
complexity of the problem grows and to be able to
quickly react by means of re-planning to changing
conditions.

2. Handle uncertainty: Due to the lack of infor-
mation in partially-observable, stochastic and dy-
namic environments such as Mars or noise coming
from faulty sensors, sometimes problems cannot be
fully stated. A planner for such domains should be
able to generate valid plans in these conditions.

3. User friendly: e communication between the
user and the planner is critical in real systems.
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Users should be able to define problems in terms of
high level goals that hide the complexity and plan-
ners should provide plans easy to understand and
verify.

4. Domain-independent: Even though we focus our
research on planetary rovers, QuijoteExpress is also
suitable for any kind of highly constraint scenario
with temporal requirements. e approach is to
develop domain-independent search algorithms,
encoding the specific knowledge in both Hierar-
chical Task Network [8] (HTN) methods and ded-
icated heuristics whenever it is required. In this
way, knowledge is perfectly isolated and reusabil-
ity is improved.

QE incorporates two novelties oriented to achieve
these goals. First, Hierarchical Timeline Networks
(HTLN [6]) are intended to improve the planner per-
formance and the way users interact with the planner
(see next section). Second, it can generate partial plans
to handle uncertainty.
e rest of the paper is organized as follows. Sec-

tion 2: short overview of the concepts introduced in
HTLN. Section 3: describes the rover scenario used
during the tests. Section 4: description of the planner
QuijoteExpress and the concept of sufficient plan. Sec-
tion 5: initial results in comparison to AP2. Section 6:
conclusions and future work.

2 Background

QuijoteExpress is based on APSI*, and extension of
APSI [11] that combines temporal and HTN planning
in a new planning paradigm called HTLN [7]. e
main concepts of HTLN are briefly introduced in the
appendix at the end of the paper. Central to HTLN
and QuijoteExpress is the way in which complex goals¹
are represented and managed. Most HTN planners like
SIPE-2 [14] or O-Plan [13] replace in the problem the
complex task by the set of sub-tasks of the method se-
lected. In consequence, some information is lost as the
problem does not retain the hierarchical structure of the
domain. is information can be in fact useful for a
given resolver in charge of fixing flaws of the problem
or during backtracking as we will see later in this sec-
tion.

¹e conventional name in HTN nomenclature is compound.
Along the paper we will use complex instead, as we think it is more
representative

QE is based on the construction of hierarchical struc-
tures rather than goals replacement, adding new levels
of detail as complex tasks are refined into sub-tasks [6].
Given a problem represented as a decision network dn

(a hypergraph), it is composed by a set of decisions (the
nodes), each containing a value and a list of parameters,
and relations (the hyperedges) among them. e deci-
sions can be complex (dc) or primitive (dp). Primitive
decisions are always represented in HTLN as compo-
nent decisions (cd), that is a simple node in the prob-
lem graph or in other words constraints on timelines. A
cd, that is, a simple node. However, a complex goal dc

can be represented as a component decision cd in case
it is not decomposed, or as a decision network dn oth-
erwise. In the last case, dc retains the value and param-
eters of the original (not-decomposed) decision plus the
sub-network (dndec) which contains a list of sub-tasks
and relations among them. A planner can use a decom-
posed dc as an atomic decision ignoring the details, or
as a sub-problem. is approach provides several ad-
vantages:

• Better constraint propagation: As a cd, single
modifications on dc affect directly the whole sub-
network. In the particular case in which dc is self-
contained, that is, no sub-task dsub of dc is related
to any decision out of dc, then no constraint prop-
agation will be required in case a relation involving
dc is modified. For example, changing the position
of dc will also change the position of all its sub-
tasks, as they are ordered relatively to dc. Besides,
it also represent a powerful technique to handle un-
certainty. In case it is unknown how to achieve a
complex goal dc during planning time, dc is mod-
elled as a cd. During execution, once the required
information is available, a decomposition method
is chosen for dc and the plan is completed.

• Parallelism: If the problem has a dc which is an ar-
ticulation point of the hypergraph, that is, the hy-
pergraph is divided in two if this node is removed,
then dc sub-network (dndec(d

c)) can be planned
in parallel. Moreover, if the result is optimal for
each dndec, the overall solution will be also opti-
mal [6].

With respect to relations, HTLN supports temporal
relations such as drive before[l,u] communication

[1] and parameter relations such aspointingcamera =
positiontarget.
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Figure 1: Hierarchical rover model

3 Scenario

e rover is a type of robot equipped with a locomotion
system to move across hazardous terrain. Its hardware
is divided between payload and platform. e former
includes all the instrumentation dedicated to perform
science, while the remaining sub-systems in support of
these activities are considered the platform. ey can
serve different purposes both on Earth and space, such
as rescue missions, surveillance or planetary exploration.
e same problems that make planetary rover mis-

sions very challenging form a planning point of view
such as uncertain environments, highly constrained
plans or no real-time communications represent the
main arguments in favour of more autonomy. Given
the increasing complexity of future missions, the advan-
tages in terms of science return and costs are undeniable.
As an example, MER would have never been so suc-
cessful without the AUTONAV system [2]. While au-
tonomous navigation is already well understood, other
aspects like opportunistic science start to be addressed
by new automated systems like AEGIS [9].
Figure 1 presents the model used for our experi-

ments. It emphasizes two properties: a hierarchical
structure and complex inter-dependencies between dif-
ferent components of the robot.
e components are divided in two categories. ose

primitive are used to model real rover sub-systems such
as the antenna or the driller, while the complex are
used to model complex behaviours that involve differ-
ent primitive components. An extensive description of
each component and constraint is out of the scope of

Figure 2: Knowledge database for a Mars Rover

this paper. However, some components require a brief
description.
Within the primitive components, Camera, Mast,

Locomotion, Driller and Antenna represent the main
rover hardware. Locomotion and Driller are specially
relevant, as they impose a lot of constraints to the rest.
CommWindow models the communication windows
with a satellite, which are imposed as constraints to the
planner.
With respect to complex components, Master rep-

resents a set of the main activities the rover can ac-
complish. Even though in this example most of them
have a 1:1 mapping with primitive components, Driv-
ing and Idle are special. Idle requires all the compo-
nents to be in the Idle or equivalent initial state while
Driving is hierarchically decomposed in either Blind or
Autonav as showed in figure 2. Both require as initial
step to take a picture of the surroundings and analyse
the traversability of the terrain. In case the terrain is
easy, the rover blindly goes directly to the target. In case
the terrain is complex, a path with intermediate way-
points is calculated and, while driving, it is continuously
corrected with information gathered from the sensors.
ese decomposition recipes are stored as methods in
the Knowledge Database (kdb).

4 QuijoteExpress

QuijoteExpress (QE) is a timeline, hierarchical,
heuristically-based and domain-independent planner
which extends the AP2 [4] planner developed in the
frame of the ESA Goal Oriented Autonomous Con-
troller Study (GOAC [3]) and is backwards compatible
with AP2, thus allowing QE to run already existing
domains. QE is organised in two packages: Planners
and Heuristics. e planners are themselves divided in
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a strategic and a tactical planner, the last one composed
of four resolvers ρ, each dedicated to solve a specific
type of flaw ϕ. e heuristics are organised in four
groups: choose the next SolvingSpaceNode, choose
the next flaw in a given SolvingSpaceNode, choose
a resolver and choose a decomposition method for a
complex goal.
ree resolvers, Unfolder, Scheduler and Time-

lineCompleter are inherited from AP2 with some mod-
ifications. e unfolder is in charge of adding the sup-
porters of a given goal by applying the domain theory.
e scheduler is in charge of adding ordering constraints
in the form of temporal constraints while the timeline
completer is called to fill up the holes of the timelines,
that is, the parts where no decision has been yet as-
signed.
e rest of this section focuses on the description of

the two new planners: the strategic and decomposer.

4.1 QE-Strategic

is planner is in charge of guiding the search. It has
been designed as a Producer-Consumer, each running in
a separate thread to favour parallel computing thanks to
its flaw-oriented approach. e producer is in charge of
deciding the next SolvingSpaceNode to be solved, while
the consumer analyse the partial solutions provided by
the resolvers.
e algorithm 1 shows the cycle of the producer.

begin
while (¬exit_cond) do

if (pendingJobs(shared_info)) then
wait_to_finish()

else
node←
sel_next_solv_node(search_space)
ρ← sel_next_resolver(node)
create_thread(ρ,node,domain)

Algorithm 1: producer(search_space, domain,
exit_cond)

Given a search-space, the producer chooses the deep-
est node in the tree as it is expected to be the most
evolved and closer to the solution. However, in the
future it will be replaced by an A* algorithm with an
heuristic based on the number of pending flaws to be
resolved. Once the SolvingSpaceNode is selected, a re-
solver is chosen. Given the fact that each resolver tries
to solve all the flaws of its type in the node, the se-

Figure 3: Cycle of calls to the different resolvers

lection follows a cycle depicted in figure 3. First, the
Unfolder add new sub-goals to support the goals al-
ready existing in the problem and calls the scheduler
to order them. Once it can’t go any further, the de-
composer is called to decompose all complex-goals that
must be decomposed (a complex goal might not be re-
quired to be decomposed as explained in section 4.2).
When the decomposer finishes, the unfolder is called
back to add supporters for the new sub-goals. is pro-
cess iterates until the point where a partial solution is
found, in which case the TimelineCompleter is called,
or exit_cond becomes true, in which case the algo-
rithm exits. In case the TimelineCompleter adds new
sub-goals, then the unfolder is called back and the pro-
cess is repeated. e exit_cond of the main loops be-
comes true when there is no pending nodes (partial so-
lutions) in the search space and there is no pending jobs,
that means, no thread is still running.

begin
while (¬exit_cond) do

solution←wait_next_solution()
node← create_new_node(solution)
add_to_search_space(node)

Algorithm 2: consumer(search_space, domain,
exit_cond)

e consumer (algorithm 2) waits in a loop until any
solver produces a new solution. Equally to the producer,
the consumer exits the loop when there is no pending
solutions to be managed nor any pending job. Once a
job ends and a solver produces a solution, the consumer
analyse it. In case it is partial, a new node is created and
added to the search space. Otherwise, it is added to the
list of solutions.

To guarantee the consistency of the information, both
producer and consumer share a thread-safe data struc-
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ture containing information used by both of them, in-
cluding the search space, list of pending jobs and solu-
tions.

4.2 QE-Decomposer

QE-Decomposer is in charge of decomposing high level
goals into sub-goals.

begin
for (all goals to decompose) do

goal← goals

methods←
get_decompositions(goal)
dndec← select_candidate(methods)

solution← create_solution(dndec)
return solution

Algorithm 3: decomposer()

e decomposer (algorithm 3) receives as input a dn
with at least one complex node to be decomposed dc

dec.
Even though the resolver will have to decompose all
dc
dec ∈ dn, the order is important as the decomposition

of one node might restrict the possibilities of the next
ones. erefore, the next node dc to be decomposed is
heuristically selected based on the number of methods
in which it can be decomposed. en, one of the meth-
ods is selected, also heuristically. In this case, domain-
dependent heuristics are preferred over general ones be-
cause the different methods encode expert knowledge
that require domain-dependent information to choose
among them. Once the method is selected, the decom-
position network dndec is created and added to the list
of decompositions that represent the solution. When
the planner finishes, the solution containing all the de-
compositions is sent back and captured by the consumer
which will analyse it.

4.3 Sufficient planning

HTLN allows the planners to create partial solutions in
which not every complex node has to be decomposed.
is solution is called Sufficient Plan [7]. To support
this capability, the problem description language used in
APSI (PDL) had to be slightly modified. For each dc

of the problem, the user can specify an exclusion list that
indicates to the planner which decisions, in case they are
used as sub-tasks of dc, do not need to be decomposed.
As an example, the firstDriving goal g1 shown bellow
indicates that it should not be decomposed at all, while

g2 express that in case it contains either Autonav or
Blind, these sub-goals should not been decomposed.
- g1 < goal,Driving > Master.Drive

(?xi, ?yi, ?xf, ?yf, ?travers);
- g2 < goal,Auto,Blind > Master.Drive

(?xi, ?yi, ?xf, ?yf, ?travers);
Internally, each decision d of a problem dni contains

two variables. mustDecomposed is a boolean condi-
tion set to false in case the goal was in the list mentioned
before or true otherwise. decompositionLevel indi-
cates the present level of decomposition of a complex
goal, which is calculated with two different algorithms
depending on whether d is a component decision (algo-
rithm 4) or a decision network (algorithm 5).

begin
if (¬d ∈ Goals) then

decompositionLevel← TOTALLY

else if (isPrimitive(d)) then
decompositionLevel← TOTALLY

else if (mustDecomposed) then
decompositionLevel←
NOT_SUFFICIENTLY

else
decompositionLevel←
SUFFICIENTLY

Algorithm 4: recalculateDecomposition(d ∈
CD)

For a d ∈ CD, if the decision is primitive or a
fact (is not in the goals list), its decomposition level is
TOTALLY. If d ∈ CD must be decomposed, then its
level of decomposition is NOT_SUFFICIENTLY be-
cause a decomposed decision should be d ∈ DN. In
any other case, d is SUFFICIENTLY decomposed.

begin
min_elem← lowest decomposition level among all
d ∈ dni

if (mustDecomposed(dni)) then
minim_dn←NOT_SUFFICIENTLY

else
minim_dn← SUFFICIENTLY

decompositionLevel(dni)←
max(min_elem,min_dn)

Algorithm 5: recalculateDecomposition(d ∈
DN)

For a d ∈ DN, it is first calculated the minimum de-
composition level of all its sub-tasks and the minimum
possible value ford, which isNOT_SUFFICIENTLY in
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case it must be decomposed and SUFFICIENTLY oth-
erwise. e level of decomposition of d is the maximum
of these two values. In case the new value changes re-
spect the previous one, the new value is propagated up
to the parents of d, dnsup(d).

5 Initial results

We have implemented two different rover domains in a
hierarchical and flattened style in order to compare QE
and AP2. e only modification between the two mod-
els has been the translation of the decompositions as
synchronizations, which have similar semantics, and no
additional constraints have been required. Some prop-
erties of the model are shown in table 1.

Property RD-C RD-S
Number of timelines 9 7
Total number states 27 19

Number decompositions 4 2
Number synchronizations 14 6

Table 1: Rover domain properties

e first domain, calledRD-C (Rover Domain Com-
plex) fully represents the model presented in section 3.
e second one named RD-S (Rover Domain Simple)
has removed a level of decompositions, as Driving is
directly decomposed in the primitive tasks without the
Blind and Autonav intermediate layer. Moreover,
theNavigation andDrilling components have been
removed.
e tests have been run in an Intel Core i5 M540 at

2.53 GHz computer with 3 GB RAM.e OS is Win-
dows 7 Enterprise 32 bits. To understand the level of
impact of the different decomposition methods in the
performance an, both QE and AP2 were configured to
choose randomly the decomposition/synchronizations
to apply. Notice that for the rover domain, the decom-
position of a Driving goal as Autonav impose way
more constraints than Blind.
We have created 7 problems named Problem-1 to

Problem-7 with increasing level of complexity. Each
problem Problem-x contains a list of facts defining
the initial state for each component and x high-level
goals, i.e. goals from the Master component. Being
Driving the most complex goal, we have alternated be-
tween Blind and Autonav driving goals to cover all
the possibilities during testing.

A simplified instantiation of Problem-4 for the do-
main RD-C is shown bellow.

PROBLEM Rover-Problem (DOMAIN Rover_Domain){
f1 <fact> Locomotion.At(?x=0, ?y=0);
f2 <fact> Mast.PointingAt(?pan=0, ?tilt=0);
f3 <fact> Camera.CamIdle();
f4 <fact> Driller.DrillIdle();
f5 <fact> Planner.PlannerIdle();
f6 <fact> Antenna.CommIdle();
f7 <fact> Navigation.NavIdle();
f8 <fact> Master.Idle();

f9 <fact> CommWindow.Visible() AT [0,5];
f10 <fact> CommWindow.Visible() AT [40,80];

g1 <goal> Master.Drive(?x=1, ?y=1, ?trav=easy);
g2 <goal> Master.Pic(?x=1,?y=1,?pan=2,?tilt=2);
g3 <goal> Master.Drill(?x=1, ?y=1, ?depth=1);
g4 <goal> Master.Drive(?x=4, ?y=4, ?trav=hard);

g1 BEFORE [1,+INF] g2;
g2 BEFORE [1,+INF] g3;
g3 BEFORE [1,+INF] g4;

Most of the parameters are self-explanatory. In order
to simulate the inputs from sensors and the output from
AnalyseTerrain in charge of deciding which type of
navigation the rover should do, we added an extra pa-
rameter to driving that specifies by hand the type of
terrain. Few modifications were required for the sim-
pler domain RD-S. Drilling activities are replaced by
TakingPicture and facts f4 and f6were removed from
the initial state.

It is important to mention that QE has been used
without exploiting its multi-threading capability. e
results showed that both planners were using intensively
just one of the four cores of the processor, therefore we
consider that this capability can boost the planner per-
formance in the future.

For each run, we have registered the execution time
to the first solution found and the number of nodes and
edges in the solution network. e results comparing
QE and AP2 are shown in Figure 4.

In the first domain, RD-C, AP2 starts to have prob-
lems even with very simple problems due to the big
branching factor. While AP2 has to branch for all pos-
sible disjunctive synchronizations, QE goes straight to
the solution by using the decomposition methods.

In the second scenario, AP2 managed to solve up to
Problem-5. e number of edges increments notori-
ously faster than the number of nodes, crucial to under-
stand the degradation in AP2 performance as the prob-
lem complexity grows. Moreover, QE consistently gen-
erate less edges than AP2. It is also interesting to re-
mark that the peak in time doesn’t come with the sec-
ond Driving activity, which impose itself a number
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Figure 4: Comparison between QE and AP2.

of sub-tasks and sub-relations, but with the next ac-
tivity which is TakingPicture. Even though further
analysis should be accomplish, our first impression is
that after the second Driving, the planners (Unfolder
and Scheduler) need to do a lot of processing to insert
TakingPicture and unify some of its parameters. e
same effect can be seen in for QE in the first scenario.
Nonetheless, these represent preliminary results that

require more experiments to have a better understand-
ing of how both planners explore the search space and
generate the solutions.

6 Conclusions and future work

We have presented QuijoteExpress, a solver based in
APSI*, an extension of the APSI framework that ex-
ploits Hierarchical Timeline Networks for temporal
problems. Even though further experiments should be
conducted, the results provided from running 6 dif-
ferent problems for 2 different domains in both QE
and AP2 are even better than our original expectations,
showing an important improvement on performance.
We will conduct more experiments in the future to anal-
yse which are the stronger and weaker points for each
planner and evaluate the effect of sufficient planning and
parallel planning approaches.
ere is a number of lessons learnt extracted from the

tests with the rover domain.
- e capability of HTN planners to reduce the

branching factor and therefore the size of the search
space is crucial to understand the great benefit in terms
of performance.
- HTN represents an overhead during the mod-

elling process. e design and validation/verification
of the four models implemented (hierarchical and non-
hierarchical) was tedious and error prone. is fact
is particularly relevant in HTN, where the model can
present hidden constraints/dependencies between ele-
ments in different levels of abstractions. In conse-
quence, we consider that it will be crucial in the future to
develop new tools able to assist during the construction
of complex models.
- Debugging and understanding the output of the

planner is almost impossible for a non-expert. HTN
plays an important role in this two aspects. During the
the runs with the hierarchical model, we could identify
a fault condition just observing the high-level goals and
their relations. It would have taken much more time in
case we would have needed to go through all the primi-
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Figure 5: Hierarchical dn structure

tive components in a flat domain. In the same way, it is
easier for the user to understand the plan by examining
only the timelines related with complex components.
- Modern domain description languages are not ex-

pressive enough. In our case, even with the help of
a time-oriented language, we were highly constrained.
Extending expressiveness or moving towards the use of
standard programming languages, as it happens with
SMASH for ROS, will be required to construct realistic
models.
- It is important to provide tools that allow users

to represent knowledge. Domain-dependent knowl-
edge must be contained in dedicated structures to main-
tain the system reusable, in our case in the methods
and heuristics. Regarding method selection, we believe
that general heuristics such as method timespan, num-
ber of complex tasks, etc. are not appropriate because
the selection use to depend on the same specific knowl-
edge the method represents. For example, in the rover
domain, the selection between Blind and Autonav

should be done by an expert-system according to the in-
formation gathered by the rover sensors.
In the future, our intention is to further improve the

planner performance in two ways: implementing search
heuristics and enable parallel planning. Creating an ag-
ile, anytime planner is critical to use it in scenarios that
demand continuous re-planning such as Mars Rovers,
telescopes or rescue robots. Comparing QE with other
planners using similar techniques such as ASPEN [5] or
Europa [10] would be important to understand where
we are. So far we have just run simulations with virtual
models, but it is our intention to start soon doing tests
with real robots which should be of great relevance to
understand how to evolve the system.
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APPENDIX A –Nomenclature

Acronym Description

Ci Component i

cd Component Decision

rlt Relation

dn Decision Network

w = (N,E) Hypergraph used to represent a dn. N is the list
of nodes and E the list of hyperedges

dp Primitive task

dc Complex task

Dp Set of all primitive tasks

Dc Set of all complex tasks

Dall Set of all tasks

m Method, implemented in HTLN as a dn

dndec(d) Method selected to decompose a decisiond ∈Dc

dnsup(d) Parent decision of d. It will be either a dn or ∅ in
case d is the problem network

dnsub(d) Child decision of d. It will be ei-
ther dnsub(d) = ∅ if d ∈ Dp or
dnsub(d) = dn

ic Initial condition

ρ Procedure intended to fix a flawϕ in a given prob-
lem dni

d+,d− List of decisions returned by the resolver ρ to be
added/retracted to the problem dni

rlt+, rlt− List of relations returned by the resolver ρ to be
added/retracted to the problem dni

ρ(from,σ) Decomposition resolver that decomposes the deci-
sion from ∈ dni in the sub-network to using
the substitution σ

APPENDIX B –Hierarchical dn structure

Figure 5 illustrates the concepts presented before. dn’s
are represented as ellipses, cd’s as circles and rlt’s as
segments. e problem contains three compound goals
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(cp, dr, tp) which stand for calculate path, drive and
take picture respectively, ordered between them by be-
fore temporal constraints (represented as arrows). Drive
is the only dc already decomposed. erefore, it is
represented not as a cd but as a dn (dr ′) containing
three sub-tasks, where an stands for autonav and ap

approach. While ap is primitive, an is compound and
will require to be further decomposed adding another
nested dn into drive. dnsup(d) represents the dn one
layer up of d and dnsub(d) one layer bellow d. Being
dni the problem network, dnsup(dni) = ∅, that is, a
problem has no layer above and dnsub(d) = ∅ if d is in
the last layer.
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Abstract. epaper discusses software to enable:
1. onboard processing and interpretation of radar
data and 2. autonomous response to retask vehicle
and instrument based upon interpretation of this
data. We first discuss scenarios in which space-
based radar could benefit from this autonomous
interpretation and response capabilitiy. Next we
discuss the Uninhabited Aerial Vehicle Synthetic
Aperture Radar (UAVSAR) airborne testbed and
its use as a surrogate for a spaceborne testbed. We
then discuss a range of onboard processing prod-
ucts that have been investigated and produced on-
board. We then discuss the retasking model and
process for UAVSAR. We discuss a flight demon-
stration of the onboard data processing and retask-
ing that occured in January 2012. Finally we dis-
cuss related work and areas for future work.

1 Introduction

Space based radar has been found to have a wide range
of science and humanitarian applications [1, 17] includ-
ing but not limited to: vegetation and ecosystem stud-
ies [2, 5, 14], wildfires [13], flooding, soil moisture,
and hydrology [16, 21], solid earth (earthquakes, land-
slides, volcanoes) [3, 19, 22] and cryosphere (glaciers,
climate change). NASA and other space agencies have

*Corresponding author. E-mail: steve.chien@jpl.nasa.gov
Copyright 2013 California Institute of Technology. Government
sponsorship acknowledged.

flown a number of missions that provide this space-
based radar capability for these science and applica-
tions areas. ese missions include but are not lim-
ited to RADARSAT-1 and RADARSAT-2 (Canadian
Space Agency), TerraSAR-X and TanDEM-X (Ger-
man Space Agency), ALOS/PALAR ( Japanese Space
Agency), Shuttle Imaging Radar (National Aeronautics
and Space Administration), Envisat/ASAR (European
Space Agency). ese same agencies are also studying
possible future missions to provide this unique capabil-
ity for science and applications.
Synthetic aperture radars utilize the flight path of

the instrument to synthesize a large aperture to form
radar/backscatter images of the earth. Interferomet-
ric processing of radar images can utilize multiple in-
struments or multiple overflights to synthesize altimetry
and/or change data for a surface. Below we show a sam-
ple UAVSAR image acquired of a glacier in Greenland
from June 2009 (Figure 1) and a change detection in-
terferogram product showing land displacement in Baja
California from October 2009 to April 2010 (Figure 2).
One challenge of space-based imaging radars is that

radar data can be extremely large. Onboard processing
offers several advantages over traditional ground-based
processing. Onboard products can be used to de-
liver much smaller notifications (alerts) and or summary
products to ground personnel and assets using more
convenient data low capacity links. Onboard prod-
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Figure 1: Image of Greenland Glacier acquired by
UAVSAR in June 2009. Image courtesy JPL/NASA.

ucts can be used to retask the acquiring asset or other
assets to acquire followup imagery. Analysis of the
onboard products can be used to selectively not down-
link or delete the full aquired imagery, thereby relieving
storage and downlink resources.
In the remainder of this paper, we describe efforts to

develop and demonstrate the capability to develop radar
products onboard and retask assets based on interpreta-
tion of these products.

2 e Uninhabited Aerial Vehicle
Synthetic Aperture Radar (UAVSAR)

e UAVSAR is an airborne platform developed by
NASA to study earth science and emergency response
potential [11] using remote sensing radar. UAVSAR
is a Gulfstream-III jet with the radar mounted in a pod
below the fuselage (see Figure 3). While UAVSAR is
a piloted aircraft it is intended as a precursor testbed to
the deployment of the UAVSAR radar onto unpiloted
aerial vehicles as well as space vehicles.
Within the UAVASAR aircraft computers and in-

strument processing hardware are mounted to enable
onboard processing of the radar imagery. Onboard

general purpose computing hardware are also used
for onboard image/product analysis and retasking the
UAVSAR. e onboard processing hardware is shown
to the left of the aisle in the image in Figure 4 below.

Special purpose cards (shown below in Figure 5) in-
cluding field programmable gate array (FPGA) capabil-
ity are used to process the radar images in near real time.

3 Autonomous Response Scenario:
Space-Based Radar and Airborne Radar

Enabling onboard interpretation and response has many
applications for space-based and airborne radar. In each
case the first step is to form the radar image. Luckily,
for our onboard autonomy work, the UAVSAR project
has been addressing exactly this challenging task [15].
Onboard the UAVSAR, the raw radar data is streamed
to recorders and is simultaneously streamed to the On-
board Processor which forms the synthetic aperture radar
image. is radar image can be formed in a range of
polarizations (e.g, HH, HV, etc.). Once the radar im-
age is formed, the backscatter image data can be in-
terpreted using application-specific algorithms. Based
on the mission at hand, this interpretation can then be
used to direct future operations of the space or air ve-
hicle. For space-based radar, applications of onboard
autonomy abound. For example, detection of volcanic
activity by detection of ash emissions might trigger fol-
lowup imagery on a later orbital overflight. Or mapping
of the flooded area might be used to direct the same
or different radar to acquire higher resolution imagery
of the boundary of the flooded area. Or the same area
might be imaged on a subsequent overflight tomap out a
timeseries of the progression of the flood. Alternatively,
biomass analysis might be used to map out the progres-
sion of a forest fire. All of these scenarios involve the
same baseic operations pattern of:

- form radar image

- analyze radar image

- generate new target requests

- assimilate new target requests into operational plan
as appropriate based on prioritization.

ese scenarios are highlighted by the operations flow
in Figure 6.
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Figure 2: Interferogram showing displacement (change) from an earthquake in Baja California, Mexico. First
image acquired in October 2009. Second image acquired in April 2010. Black lines indicate interpreted faults and
red lines show where geologists in the field confirmed surface rupture. Image courtesy NASA JPL/United States
Geological Survey/California Geological Survey/Google.

4 Onboard processing of radar imagery

Once the SAR image has been formed [15] it can be
used as the basis of interpretation for many science and
application purposes [7, 8]. e multiple available po-
larizations contain significant information that can re-
veal surface smoothness properties, structure properties,
as well as water content/moisture properties of the sub-
stances being imaged. While interferometric analysis
can also provide tremendous amounts of data for many
targets, since our autonomy thus far has focused on indi-
vidual overflights (and UAVSAR cannot do single pass
interferometry) we have focused on SAR imaging capa-
bilities. e table below in Figure 7 shows a number
of onboard processing analysis products that have been
considered in this and other efforts.
In our specific autonomy demonstration, we used an

amplitude segmentation algorithm that is sensitive to
changes in surface roughness/smoothness features of the
surface being imaged. is algorithm is useful for de-
tecting differences in the substance being imaged (e.g.
liquid versus solid land) as well as covering layers (e.g.
oil on the surface of water). is algorithm consists of a
number of processing steps.

- Each base image is multilooked/subsampled at dif-
ferent resolutions into a stack of images. e re-

maining procedure’s results will vary with the in-
coming resolution due to pixel-to-pixel value vari-
ation and/or perceived sharpness of edges in the
image.

- Each subsampled image is then segmented using
a Felzenswalb/graph based segmentation routine,
which generates a minimum spanning forest over
the 4-neighborhood graph of pixel-magnitudes.
is step is nearly linear run-time on the image
size. is step produces regions/super-pixels of
similar radar response that can bemeasured in area-
of-coverage, geographic location, average inten-
sity, and other statistical quantities.

- e resulting regions/segmentations are checked
for ”interest” criteria, such as minimum size, and in
the case of our ”oil-slick” demonstration, an aver-
age backscatter intensity below a tunable threshold
(-28db).

- e stack of segmentation images are expanded to
the greatest common resolution and a composite
(pixel average) image is created as a highly com-
pressible image containing qualitative visual fea-
tures at various scales.
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Figure 3: e UAVSAR aircraft. Note the radar
mounted in the pod directly underneath the fuselage

Below in Figure 8 we show images of the Deep Hori-
zons oil spill in the Gulf of Mexico along with the cor-
responding products processed with a range of segmen-
tation scales.

5 Demonstration of onboard autonomy on
UAVSAR

In this section we describe the autonomy software on-
board the UAVSAR and its use in an onboard autonomy
demonstration in January 2012. In this demonstration
the UAVSAR successfully executed a number of steps.

- processed radar data into SAR imagery,

- autonomously analyzed the imagery,

- derived new observation goals from this analysis,

- developed a new flight plan to achieve the new ob-
servation goals, and

- when concurred by the radar operator and pilot
UAVSAR flew the new flight plan to achieve the
observation goal.

Figure 4: e interior of the UAVSAR aircraft. e
rack to the left of the aisle is the rack for the onboard
processing equipment.

5.1 UAVSARAutonomy System

e UAVSAR Autonomy System consists of a number
of modules which are described below.

- e OnBoard Processor (OBP) takes a stream of
the radar instrument raw image data and also data
indicating the position, orientation, and velocity of
the aircraft derived from GPS and inertial naviga-
tion unit (INU) data. It uses this information to
form the SAR image of the relevant area of ground
underneath the aircraft. e OBP can form im-
ages of various polarizations as needed by the sub-
sequent analysis (e.g. HH, HV).

- e Onboard Analysis (OA) module is responsi-
ble for interpreting the formed SAR image. In
our specific demonstration we utilized a surface
smoothness analysis algorithm. e Onboard
Analysis software takes the formed radar polar-
ization and/or backscatter image and produces the
analysis product.

- e Target Generator (TG) software uses the
analysis product to generate new observation goals
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Figure 5: Closeup of the onboard radar processing cards.

Figure 6: Autonomous interpretation and response sce-
nario for space-based radar

for the planners to achieve. In our demonstration,
the TG analyzes the imagery and selects smooth
surface targets for followup imagery. For each area
greater than a threshold size and smoothness, it
generates a Point of Interest (POI) which in effect
is an observation goal to image the area.

- e Flight Line Analyzer (FLA) takes the current
flight plan and new observation goals (POIs) and
first checks if all of the newly requested observation
goals are achieved by the existing flight plan. If not,
it selects a new flight line to propose for addition
to the flight plan that covers the highest priority
new observation goal. is new flight line is then
submitted to the Flight Planner below.

- e Flight Planner (FP) attempts to add the new
flight line to the current flight plan. It uses the
Solomon insertion heuristic that tries insertions of
the new flight line into the existing flight plan that
minimize the makespan (total duration) of the re-
sultant schedule.

- e CASPER Planner (CP) is a time, state, and
resource planner that has been applied to a range of
mission planning applications including onboard
spacecraft control [6], rover control [9], aerobot

Figure 7: A number of potential onboard radar products
and their applications.

control [10], and autonomous underwater vehi-
cle planning [20]. CASPER is used to model
UAVSAR operational constraints as well as dead-
lines. If the new flight plan passes these constraints
modelled in CASPER it is passed on to the Radar
Operatior Workstation.

- e Radar Operator Workstation (ROW) man-
ages the radar for the data acquisitions and also
serves as the interface to the autopilot. e ROW
receives the new CASPER-approved flight plan
from CASPER and at the ROW the human radar
operator can approve the flight plan for submission
to the UAVSAR autopilot.

- e UAVSAR Autopilot (UA) actually flies the
flight lines to the tolerances required by the
UAVSAR SAR instrument. e UA receives the
new flight plan from the ROW and allows the pi-
lots to view the new flight plan. e pilots then
review and accept or reject the new proposed flight
plan. If the new flight plan is accepted then the au-
topilot (and UAVSAR) will then fly the new flight
plan (including the new flight line for the new ob-
servation goal).

is operations flow is detailed below in a flowchart
in Figure 9.

5.2 Autonomy Demonstration

In January 2012, the UAVSAR autonomy system was
exercised in a flight demonstration. In this flight, an
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Figure 8: Oil Detection/Amplitude Segmentation
Analysis Product on Gulf Of Mexico Oil Spill data.
Upper Left: Context image showing location of oil spill
south of the Mississippi delat in the Gulf of Mexico.
Upper Right: Original browse image of HH polariza-
tion backscatter. Lower Left 60m segmented image
Lower right: 60m composite image.

initial set of points of interest (POI’s, e.g. areas to ob-
serve), flight plan of flight segments and CASPER plan
was loaded into the UAVSAR autonomy system. As the
UAVSAR flies the flight plan, it takes observations ac-
cording to the plan and the Onboard Processor forms
the radar images as shown in Figure 10.
As per the original plan, the Onboad Analysis Soft-

ware also generates the Amplitude Segmentation prod-
uct with the corresponding detections for each newly ac-
quired image. ese producs are shown in Figure 11.
Using these products, the Target Generator generates
a new observation goal for each detection. e Flight
Line Analyzer then checks each of these new obser-
vation goals against the planned flight lines remaining
in the current observation plan. Any goals that are not
covered by existing segments in the remaining plan are
flagged and the Flight Line Analyzer searches for flight
lines in the current catalogue to cover these observation
goals. For operational reasons all flyable flight linesmust
be pre-filed before flight, therefore preventing the flight
line analyzer from creating novel flight lines.. In this
case a flight line is found that covers the new observa-
tion goals. e Flight Planner (FP) then sequences the
additional flight segment into the remaining plan min-
imizing overall flight time. is proposed plan is then

Figure 9: e operations flow for onboard processing
and retasking the UAVSAR.

Figure 10: UAVSAR flies the original flight plan and
acquires data according to plan. eOnboard Processor
forms images as shown.

sent to CASPER which validates that the plan does not
violate UAVSAR operations state, resource, and flight
deadline constraints. CASPER also includes new pro-
cessing and analysis goals for the new data acquisitions.
eCASPERGraphical User Interface is shown in Fig-
ure 12 displaying the CASPER plan including the new
flight line.

Next, the CASPER validated plan is passed onwards
to the ROW for radar operator approval. Once this is
complete, it is passed on to the Autopilot where after
pilot review it is accepted and the new plan is flown by
theUAVSAR. is successful flight demonstration il-
lustrates how the UAVSAR can be operated in a highly
autonomous fashion to close the loop of data acqusition,
analysis, and retasking.

6 Discussion and Conclusions

6.1 RelatedWork

Considerable work has focused on Unpiloted Aerial Ve-
hicle path planning either for single or multiple vehi-
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Figure 11: UAVSAR Onboard Analysis Software gen-
erates analysis of image. Target Generator then pro-
duces observation goals for new detections.

Figure 12: CASPER validates that new flight plan does
not violate UAVSAR state, resource, and timing opera-
tional constraints and obeys UAVSAR flight deadlines.

cle configurations [18, 12, 4]. However this work has
generally started with inputs that are waypoint goals.
In contrast, this work has focused on integration of
complex instrument data interpretation into the over-
all onboard autonomy including timing, resource, and
path planning constraints (while not incorporatingmore
complex path planning constraints such as avoidance
zones, maneuvers, uncertain terrain, and other con-
straints).

6.2 Conclusions

In this paper we have described an overall approach to
mission autonomy designed for space and airborne radar
platforms. In this approach, onboard hardware and
software is used to enable onboard processing of radar

data into images and then to analysis products. ese
analysis products are used to drive generation of new ob-
servations goals, such as to enable tracking of dynamic
phenomena such as flooding, oils spills, wildfires, or lava
flows. Onboard flight planning, and state, resource, and
deadline mission planning are then used to replan cur-
rent mission and flight plans to accomodate these new
goals as priorities warrant. is overall closed loop con-
trol enables more rapid response to capture key science
and applications data for fast moving science and appli-
cations phenomena.

Acknowledgements

is work was perfomed by the Jet Propulsion Labo-
ratory, California Institute of Technology under a con-
tract with the National Aeronautics and Space Admin-
istration.

References

[1] NASA Earth Observing Missions Applications
Workshop, February 2010.

[2] K. Bergen, S. Goetz, R. Dubayah, G. Henebry,
C. Hunsaker, M. Imhoff, R. Nelson, G. Parker,
and V. Radeloff. Remote sensing of vegetation 3-
D structure for biodiversity and habitat: Review
and implications for lidar and radar spaceborne
missions. Journal of Geophysical Research: Biogeo-
sciences (2005–2012), 114(G2), 2009.

[3] J. Biggs, E. Robertson, and M. Mace. ISMER
Active Magmatic Processes in the East African
Rift: A Satellite Radar Perspective. In Remote
Sensing Advances for Earth System Science, pages
81–91. Springer, 2013.

[4] S. A. Bortoff. Path planning for UAVs. In Proceed-
ings of the American Control Conference., volume 1,
pages 364–368. IEEE, 2000.

[5] M. Burgin, D. Clewley, R. M. Lucas, and
M. Moghaddam. A generalized radar backscat-
tering model based on wave theory for multilayer
multispecies vegetation. IEEE Transactions on
Geoscience and Remote Sensing, 49(12):4832–4845,
2011.

[6] S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Ra-
bideau, R. Castano, A.Davis, D.Mandl, B. Trout,

DOI: 10.2420/AF09.2014.31 37



Acta Futura 9 (2014) / 31-39 Doubleday, J. et al.

S. Shulman, et al. Using autonomy flight soft-
ware to improve science return on Earth Observ-
ing One. Journal of Aerospace Computing, Informa-
tion, and Communication, 2(4):196–216, 2005.

[7] J. Doubleday, S. Chien, and Y. Lou. Low-
latency DESDYNI data products for disaster re-
sponse, resource management, and other applica-
tions. In Proc. 34th International Symposium onRe-
mote Sensing of Environment., Sydney, Australia,
April 2011.

[8] J. Doubleday, D. Mclaren, S. Chien, and Y. Lou.
Using Support Vector Machine Learning to au-
tomatically interpret MODIS, ALI, and L-band
SAR remotely sensed imagery for hydrology, land
cover, and cryosphere applications. In Proc. In-
ternational Joint Conference on Artificial Intelligence
Workshop on Artificial Intelligence in Space (IJCAI
2011), Barcelona, Spain, July 2011.

[9] T. Estlin, D. Gaines, C. Chouinard, R. Castano,
B. Bornstein, M. Judd, I. Nesnas, and R. Ander-
son. Increased Mars rover autonomy using AI
planning, scheduling and execution. In IEEE In-
ternational Conference on Robotics and Automation,
pages 4911–4918, Rome, Italy, 2007. IEEE.

[10] D. Gaines, C. Chouinard, S. Schaffer, T. Estlin,
and A. Elfes. Autonomous planning and execu-
tion for a future titan aerobot. Inird IEEE Inter-
national Conference on Space Mission Challenges for
Information Technology, pages 264–269, Pasadena,
CA, 2009. IEEE.

[11] S. Hensley, C. Jones, and Y. Lou. Prospects for
operational use of airborne polarimetric sar for dis-
aster response and management. In Proceedings
IEEE Geoscience and Remote Sensing Symposium,
Munich, Germany, July 2012.

[12] J. How, E. King, and Y. Kuwata. Flight demon-
strations of cooperative control for UAV teams. In
AIAA 3rd unmanned unlimited technical conference,
workshop and exhibit, 2004.

[13] D. P. Jorgensen, M. N. Hanshaw, K. M. Schmidt,
J. L. Laber, D. M. Staley, J. W. Kean, and P. J.
Restrepo. Value of a dual-polarized gap-filling
radar in support of southern California post-fire
debris-flow warnings. Journal of Hydrometeorology,
12(6):1581–1595, 2011.

[14] Y. Kim, T. Jackson, R. Bindlish, H. Lee, and
S. Hong. Radar vegetation index for estimat-
ing the vegetation water content of rice and soy-
bean. Geoscience and Remote Sensing Letters, IEEE,
9(4):564–568, 2012.

[15] Y. Lou, S. Chien, D. Clark, and J. Double-
day. Onboard Radar Processing Concepts for the
DESDynIMission. In Proceedings of the Earth Sci-
ences Technology Forum, College Park, MD, June
2011.

[16] D. Mason, G.-P. Schumann, J. Neal, J. Garcia-
Pintado, and P. Bates. Automatic near real-time
selection of flood water levels from high resolu-
tion synthetic aperture radar images for assimila-
tion into hydraulic models: a case study. Remote
Sensing of Environment, 124:705–716, 2012.

[17] NASA. Report of the 2009 DESDynI Applica-
tions Workshop, October 2008.

[18] D. Rathbun, S. Kragelund, A. Pongpunwattana,
and B. Capozzi. An evolution based path plan-
ning algorithm for autonomous motion of a UAV
through uncertain environments. In Proceedings
of the 21st Digital Avionics Systems Conference, vol-
ume 2, pages 8D2–1. IEEE, 2002.

[19] L. Scharff, F. Ziemen, M. Hort, A. Gerst, and
J. Johnson. A detailed view into the eruption
clouds of Santiaguito volcano, Guatemala, using
Doppler radar. Journal of Geophysical Research:
Solid Earth (1978–2012), 117(B4), 2012.

[20] D. R. ompson, S. Chien, Y. Chao, P. Li,
B. Cahill, J. Levin, O. Schofield, A. Balasuriya,
S. Petillo, M. Arrott, et al. Spatiotemporal path
planning in strong, dynamic, uncertain currents.
In IEEE International Conference on Robotics and
Automation (ICRA), pages 4778–4783, Anchor-
age, AK, 2010. IEEE.

[21] G. Villarini, J. A. Smith, M. Lynn Baeck,
P. Sturdevant-Rees, and W. F. Krajewski. Radar
analyses of extreme rainfall and flooding in urban
drainage basins. Journal of hydrology, 381(3):266–
286, 2010.

[22] G. Wadge, P. Cole, A. Stinton, J.-C. Ko-
morowski, R. Stewart, A. Toombs, and Y. Leg-
endre. Rapid topographic change measured by
high-resolution satellite radar at Soufriere Hills

38 DOI: 10.2420/AF09.2014.31



Onboard Autonomous Response for UAVSAR as a Demonstration Platform for Future Space-Based Radar
Missions

Volcano, Montserrat, 2008–2010. Journal of Vol-
canology andGeothermalResearch, 199(1):142–152,
2011.

DOI: 10.2420/AF09.2014.31 39



40



Acta Futura 9 (2014) 41-47
DOI: 10.2420/AF09.2014.41

Acta
Futura

Lunar Crater Identification from Machine Learning Perspective
C P C*¹, C O C ²  C H Y ¹

¹e Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
² Sun Yat-sen University, Guangzhou, China

Abstract. Automatic crater detection from or-
bital imagery and altitude data has wide applica-
tions in planetary science. Many missions, like the
Chinese Lunar Exploration Program (CLEP), also
known as the Chang’E program, provide valuable
imagery and altitude data from the Digital Eleva-
tion Model (DEM). Our goal is to recognize the
craters on theMoon and related information about
their landform using the DEM data and gray scale
images provided by the Chinese Chang’E-1 and
Chang’E-2 spacecraft. In this paper, we explore
four methods to search for craters with DEM data
and gray scale crater images, as follows: 1) SVM
with feature construction derived fromDEMdata;
2) A mathematical ratio, based on which we can
classify the geographical landform of the moon
surface; 3) Image processing techniques to detect
edge and corner of the crater structure with gray
scale images; and 4) Scale Invariant Feature Trans-
form (SIFT). e density problem of the DEM
data from Chang’E spacecraft is also discussed.
We expect our method can be applied to detect
craters on other celestial bodies such as Mercury,
asteroids, and other planetary moons using geo-
graphical information from future missions.

1 Introduction

Craters are typical geographical surface feature on the
Moon. Extensive studies of the Moon surface keep

*Corresponding author. E-mail: cpchung@stu.ust.hk

drawing attention with increasingly accurate informa-
tion from lunar space missions. Many papers have been
published in detecting the lunar crater with images, e.g.
Segmentation-based approach by Bue and Stepinski [1]
discussed the pros and cons of Hough Transform and
Edge-based methods. Morphological construction us-
ing ellipse can be found in paper from Kim el al. [7].
Also, feature extraction combined with Support Vec-
tor Machine (SVM) approach was discussed by Vino-
gradova et al. [12]. But the crater detection problem is
not completely solved. For example, image-based tech-
niques are limited by sun incidence angles which cre-
ate edge information. SVM approach is not easy be-
cause features of a crater from which SVM can learn is
hard to employ and subjective. In view of the difficul-
ties, less restrictive methods from the image and alti-
tude data provided by China’s Lunar Exploration Pro-
gram [13] [9] and assumption of the crater geographical
feature is needed to handle the problem for wider appli-
cations.

2 Motivation of the Problem

Consider a lunar landing mission scenario. Before a lu-
nar lander attempts to land on the Moon, it can take
many photos and transmit them back to control center
for analysis. Engineers in the control center can choose
a landing site from photos based on the landform and
location information. en the spacecraft will be in-
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Figure 1: Schematic of a Spacecraft Landing on the
Moon [11].

structed to seek for the proximity of the landing site and
then approach to the exact landing location by match-
ing images or using other image processing techniques.
is process is illustrated in figure 1

3 Methods

3.1 Support VectorMachine (SVM)

In machine learning, support vector machines [2] are
supervised learning models with associated learning al-
gorithms that analyse data and recognize patterns, used
for classification and regression analysis. If a hidden and
unknown model of data is existed, we can construct fea-
ture from the data to discover the model.
e features we try to construct are mean and stan-

dard deviation of altitude fromDigital ElevationModel
(DEM) data. First we choose a specified rectangular re-
gion within certain longitude and latitude. enwe par-
tition the data within the rectangular region into square
cell with given cell size. For each cell, we calculate the
mean and standard deviation of the altitude and then
attach these two variables into a feature vector. We will
also add one more entry as label. Since we already have
ground truth which area is crater and which is not, we
manually label it 1 if it belongs to a cell in a crater and 0
if it does not belongs to a cell which belongs to a crater.
en we repeat the same procedure for another rectan-
gular region. But this time we choose to leave the label
empty for a region that we in advance know what is its
shape from corresponding gray scale images. is com-
plete the data preparation.
Given the data in the format prepared, we can ap-

ply SVM to train the model with the first set of data
as training set and then test the accuracy of the model

Figure 2: SVM result summary

Figure 3: visualization with TRISURF of the corre-
sponding altitude data. Left image is from Einstein and
right image is from Tsiokovsky(with central peak)

trained with the second set of data which is training set.
In our experiment we use LIBSVM [5] with default pa-
rameters.

Here we present the result of two trials. First we train
the model with the crater Einstein and test this model
with crater Tsiolkovsky. e accuracy of the model is
77.4% (9363 feature vectors correctly classified out of
12093), as shown in Figure 2. en we switch the role
that we train the model with crater Tsiolkovsky and test
the model with crater Einstein. is time the accuracy
is 85.2% (8970 feature vectors correctly classified out of
10530), as shown in figure 2). Visualization of the alti-
tude data is shown in figure 3

3.2 e proposed number for estimating landform of
specified area

In order to estimate the landform of specified area, we
design a number (RVS number) as follows

RVS =
∑ E(hi)

H
, i ∈ I

Where RVS represents Relative Volume Scale, H is
the maximum relative height of the chosen area, which
is the difference between the actual maximum DEM
height and minimum DEM height;

E(hi)

is the average height of i-th cell of the chosen area. hi is
the relative altitude( difference between the actual DEM
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height and minimum DEM height), I is the index set
representing the partitions of the chosen area. So RVS
is a ratio between 0 and 1.
We illustrate the use of this number with a simple ex-

ample. Assume the DEM data is uniformly distributed
over the chosen area and also dense enough. en the
hi could be simply as the relative altitude of each ele-
ment in i . e number of elements in I is equal to the
number of DEM data entries in the chosen area. In our
experiment with DEM data, if an area is of bowl shape
or mountain peaks, the RVS will be around 0.55. If it
is an almost a flat surface with tiny holes and peaks, the
number will approach to 1. In case the chosen area is
around the central peak of a large crater, the number
should approach to 0. Brief derivation of this number
comes from the idea of estimating the volume of a ter-
rain.
In practice, uniformly distributed DEM data is al-

most unlikely, but E(hi) in the RVS approach still re-
serve the possibility to handle this situation. If the num-
ber of DEM entries within a partition with given area
is no less than a lower bound, we can use triangle mesh,
which is constructed by randomly distributed data point
as triangle vertex ,instead of square cell as basis within
the chosen partition, to fully utilize all the DEM data
to give us the RVS.
Preliminary results of our own method are shown in

the first and the second row. e first row in figure 4
is about two flat surfaces on the Moon and the RVS
of them are 0.814 and 0.824, respectively. e sec-
ond row in figure 4 is craters named Tsikovsky(left) and
Mendeleev(right) and the RVS for them are 0.377 and
0.557, respectively, as shown in figure 4.

3.3 Edge and Corner detection

With the help of RVS, we can eliminate a lot of im-
ages that are not likely to have craters. After we attain
a chosen area with satisfactory RVS value, we can label
the shadow around the crater with edge detection tech-
niques.Sobel operator is one simple choice. In case we
have many tiny components of noise. reshold can be
set to eliminate part of them with finely tuned thresh-
old parameter. In ideal cases, we can confirm the crater
location with images with different sun angles.
To detect the edge, we apply sobel operator [6] and

canny edge detection [5]. e result are presented in
figure 5, 6 and 7.

Figure 4: Visualization of the landform. Images in
the first row are flat A (left) and flat B (right).Images
from second row are Tsiolkovsky (left) and Mendeleev
(right).

Figure 5: Comparison between raw image (left) and the
result from Sobel operator (right)

Sobel operator

Technically, Sobel operator is a discrete differentiation
operator, computing an approximation of the gradient
of the image intensity function. Below we apply the op-
erator to the crater images as shown in figure 5.

Canny edge detection

e Canny edge detector is an edge detection operator
that uses a multi-stage algorithm to detect a wide range
of edges in images. e result is shown in figure 6.
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Figure 6: Comparison between the result from canny
edge detection

Shi-Tomasi corner detector

Shi-Tomasi [10] corner detector and ellipse fitting [4]
are also applied in figure 7

Ellipse fitting

One of the most commonly used models to fit craters
is the ellipse which, being the perspective projection of
the circle, is of great use to find the craters, as shown in
figure 8 and figure 9.

3.4 SIFT

Scale-invariant feature transform (or SIFT)[8] is an al-
gorithm to detect and describe local features in images.
In our experiment we apply two versions of SIFT al-

gorithm. One is without RANdom SAmple Consensus
(RANSAC [3]) to eliminate the mismatched key point
descriptor. e other is to use SIFT with RANSAC to
eliminate the mismatched key point descriptors.

SIFT key point descriptors:

Here we compare the result as shown in figure 10

Figure 7: Result from raw image in Fig 7 with Shi-
Tomasi corner detector.

Figure 8: Comparison between the raw images (left) and
the result of ellipse fitting (right)

Crater matching

We also try to use the key point descriptor to match two
craters from the same location but under changes in im-
age scale, noise and illumination. e results are shown
in figure 13 and 14

4 Comparisons and Implication

In our experiment, image of different resolution have
been tested. For corner, edge detection and ellipse al-
gorithm, high resolution (7 meters per pixel) gray scale
images from Chang’E-1 is too blur for naked eyes and
too smooth to be detected. While low resolution image
is too sharp that noises are included. ose noises are
formed by tiny craters in low resolution images. ey
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Figure 9: Comparison between the raw images (left) and
the of result ellipse fitting with chosen thresholding pa-
rameter (right)

Figure 10: Comparison between SIFT key point de-
scriptor: raw image (left), image applied with SIFT
without RANSAC (middle) and the one with SIFT
with RANSAC (right)

Figure 11: Comparison between SIFT key point de-
scriptor: image applied with SIFT without RANSAC
(left) and the one with SIFT with RANSAC (right)

Figure 12: Comparison between SIFT key point de-
scriptor: image applied with SIFT without RANSAC
(left) and the one with SIFT with RANSAC (right)

Figure 13: Matching two images for the same crater with
different sun incidence angle using SIFT with RANSAC

Figure 14: Matching two images for the same crater with
different sun incidence angle using SIFT with RANSAC
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Figure 15: the distribution of the Chang’E DEM data
across different location

can easily lower the performance of the edge, corner and
ellipse detection algorithm since they are mostly gra-
dient based approach. So preprocessing of images is
needed. is explain why SIFT method are relatively
effective in matching. But SIFT method can also cre-
ate undesired key point descriptors. With the help of
RANSAC to eliminate the undesired key point, SIFT
seems to be the better approach with high probability
to match objects. In the spacecraft landing navigation
problems, for example, SIFT provides as basis a good
starting point to further improve the performance. As
all other image-based approach, the choice of image
to be applied is also significant. To achieve any spe-
cific goal, craters or landform that satisfy certain condi-
tion which can be easier recognized by image technique
should also be carefully chosen.
For those non-image based approach, density of the

DEM data and feature construction from DEM data
are the difficult parts. e features we use in our exper-
iment are mean and standard deviation of the altitude.
We have surprisingly high accuracy for several chosen
craters. If we can choose better feature and discover the
hidden pattern of landform, SVM based approach can
also be further improved. Figure 15 is the distribution
of the DEM data across different location.
From rough estimate for each 30 square km sub cell,

the highest data point count is around 330. So roughly
every 75 meters, there is one point surveyed by the
Chang’E-1 in the DEM data set. To fully utilize the
DEM data with given precision, RVS with triangle ver-
tex mesh should be considered. So far the result is
promising since landform of different shape have differ-
ent range of RVS number. With higher density DEM
data, we think this method have wider application since
so far the only limitation is the density of DEM data.
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Abstract. Compared with the classical chemi-
cal thrusters, the ion thruster has high specific im-
pulse and is employed to delivery the satellite plat-
form within a wide range. A systematic design on
a communication satellite equipped with powerful
ion thruster is presented in this paper, which is re-
quired to transfer from the geosynchronous trans-
fer orbit (abbr. GTO) to the geosynchronous or-
bit (abbr. GEO). A high-level bottoms-up ap-
proach originating from the value-centric design
methodologies (abbr. VCDM) is used to derive the
optimal weight and power of the satellite, within
some constraints from orbital transfers. A maneu-
ver strategy based upon the feedback of the latitude
amplitude is achieved to parameterize the on/off
time of the ion thruster. Furthermore, the GPU
accelerated genetic algorithm is constructed to op-
timize all the variables from the closed-loop ma-
neuver controller and systematic design on weight
and power. e numerical results show that the
ion thruster can reduce the propellant and guide
the satellite to its targeting orbit.

Keywords: ion thruster; orbit transfer; GPU accel-
erated genetic algorithm; value-centric design

1 Introduction

e solar-energy ion propulsion system will be applied
in future space missions, and its specific impulse is much

*Corresponding author. E-mail: xuming@buaa.edu.cn

higher than the classical chemical systems. Recently,
the electric propulsion system (abbr. EPS) can achieve
3-5 kW in power, which has been proposed for some in-
terplanetary missions to raise orbital altitude, like ESA’s
Cornerstone-class and Solar Orbiter Flexi-class mis-
sions. Moreover, the interest in guiding a communi-
cation satellite from GTO to GEO is growing by the
next-generation EPS, which is expected to be 10-15kW
in power [1]. SMART-1 developed by ESA as well, was
propelled by a Hall thruster using xenon propellant and
cost 82kg Xenon in the end of its mission. e fuel ef-
ficiency is 10 times higher than the tradition chemical
fuels.
e value-centric design methodology is used by the

U.S. Defense Advanced Research Projects Agency on
the concept of separation module technology devel-
opment and demonstration projects. F6 project con-
cept is built around the mission tasks, payload, energy,
communication, navigation, and other functional units
decomposed into multiple modules, rather than me-
chanically splitting spacecraft subsystems. During the
project, the researchers proposed value-centered space-
craft design methods firstly. By the methods, the space-
craft valuation emphasizes on an input-output ratio and
pays attention to get the greatest value with the lowest
cost. During the valuation, the concepts of the system’s
flexibility, fast response, robustness are redefined to cope
with risks such as the value of factors and to consider the
value of the rich connotation [2].
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VCDM bases on life period, technical risk, uncer-
tainty factors to obtain the highest input-output ratio, in
order to achieve the minimum cost and obtain the max-
imum value goal. e high-level bottoms-up approach
derives the optimal cost and performance of a satellite by
designing the optimal weight and power. For instance,
the process of calculating total mass based on individ-
ual subsystem mass, where inter-dependencies between
subsystems requires an iterative process to converge on
a total mass. One of the contributors to the total mass
is the propulsion subsystem. emass of the propulsion
system is partly dependent on the size of the propellant
tank, which in turn is dependent on the amount of re-
quired fuel, or the mass of the spacecraft [9]. By this
method, we can design a satellite to complete the com-
plex mission.
Due to the low-thrust, the orbit transfer takes a long

time from the parking orbit to the target orbit transfer.
e researches are focusing on how to design the control
strategy to make the use of the fuel efficiently. Recently,
the strategy of the low-thrust transfer orbit has been de-
signed by the open-loop control methods for optimal
control and path planning. e low-thrust propulsion
is continuous, which is different from the traditional
chemical propulsion, so the impulse control cannot be
used to design the strategy. e finite thrust model is
applied in the problem, in which Hill model and Gauss
model are adopted. And Hill model is suitable for the
short distance or time maneuver problem. In the Gauss
model, there is the singular problem rarely used to cal-
culate. To solve this problem, Walker had given a set of
modified equinoctial orbit elements, which are suitable
for perturbation analysis of all kinds of orbit. e Leg-
endre pseudo-spectral method had been used to design
the orbital transfer with finite thrust [8].
A famous platform is developed by Chinese Academy

of Space Technology for small satellites named as
CAST968. According to orbit and power require-
ments, the main parameters of the CAST968 platform
are listed as following [10]: the weight about platform
ranges from 200 to 300kg, the platform size is fixed as
1.2m × 1.1m × 0.5m, the weight of load bears from
100 to 250kg, and the attitude control adopts three-axis
stabilized mode.
In this paper, the electric propulsion system is

equipped onto this platform to improve a new one for
the GTO transfer mission, named as CAST968-Ion.
Firstly, an automatic control strategy is designed to re-
duce the pressure of artificial monitoring during the
flight operation. Secondly, all the subsystems are de-
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Figure 1: rust force decomposed in the orbital coor-
dinate system.

fined in the constraints of mass and power based on the
small satellite platform CAST968. irdly, calculate
the mass and power of the subsystems optimized to re-
duce the fuel during the mission.

2 Control Strategies

In this chapter, we design a control strategy to find the
optimal transfers that minimize transfer time and mass
consumed by the spacecraft. is is the key point of
low-thrust propulsion, because the chemical rockets are
more inefficient and there is an upper limit on the mass
of payload that can be delivered to high orbit (although
the transfer time is smaller). erefore the time and
mass are two parameters to be taken into account. Com-
pared with a range of transfers with Hohmann mode,
the low-thrust propulsion to higher orbit is employing a
perturbation method in this paper, i.e., Gauss method.
Due to the low orbit transfer mission, we adopt two-
body model that neglects the gravities of solar, moon,
the earth oblateness and others.

e thrust can be decomposed with three vectors in
F0 frame (i.e., the orbital coordinate system). e Ion-
thrust vector fr is allocated along the radial (positive
outwards) direction, the ion-thrust vector fu is along
with track (tangential) direction of the satellite motion,
and the ion-thrust vector fH is normal to the orbital
plane in direction to the positive angular momentum
(cross track) direction, as shown in Fig.1.

is article uses the no-singular vernal equinox ele-
ments to model the satellite dynamics of low-thrust [5,
3]. e attitude angle will be applied to feedback the
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Figure 2: fu is expected in the shaded area.

thruster in on/off state. In the F0 frame, the perturba-
tion equations are listed as follows:

da
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=
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di

dt
=

r cos (ω+ θ)√
µP

fH (4)

where P is the semilatus rectum. From the equation (1),
we can derive

∫2π
0 e sin θfr = 0.

erefore the vector fr has no contribution to the
semi major axis, but the vector fH does. From the equa-
tion (2), we can find the vector fu makes more efficient
contribution to the eccentricity two times than the vec-
tor fr. It is concluded from the above that fr along the
radial direction isn’t used to the orbit transfer strategy.
From the equation (3), we can find that the vector fu
can change the orbit inclination and does the great in-
fluence on inclination at the latitude argument of 0 or
180 degree. Based on the platform, there is only one
thruster equipped on the satellite, so fu and fH should
work in different time.
To sum up, the closed-loop control strategy is pre-

sented as follows (as shown in Fig 2 and Fig 3):

f =


0, u /∈

[
β, 3600 − β

]
and [−α,+α]

fh, u ∈
[
β, 3600 − β

]
fu, u ∈ [−α,+α]

α ⩽ β (5)

Similar to the attitude control system, the closed-loop

 

β

Figure 3: fH is expected in the shaded area.

control strategy can effectively decrease the errors and
then improve the control ability.

3 eHeuristic Design for the subsystems
andeir Masses and Powers

e total mass of satellite bases on individual subsystems
dependent on each other, which require an iterative al-
gorithm to converge on a total mass. e spacecraft
power is dependent on the individual powers and the
spacecraft mass. Once power requirements are increas-
ing from the altitude determination and control system
(abbr. ADCS), it will lead to increase the solar array
and battery size, then to increase the electrical power
system(abbr, EPS) mass, and then to increase the to-
tal mass, in turn to increase ADCS power requirement.
e power iteration stops when the total mass loop con-
verges. e iterative algorithm is illustrated as follows:

Step1: give the mass of the payload, telemetry tracking
and command system (abbr. TTC) and command
and data housekeeping system (abbr. CDH) re-
spectively, mpayload, mTTC and mCDH, ; then
the initial total mass can be assigned equal to above
the three parts mass but the initial power is equal
to the power of payload, as:

mSC = mpayload +mTTC +mCDH (6)
Prequire = Ppayload (7)

Step2: according to the CAST968 platform, the power
of TTC and CDH is listed as follows:

PTTC = 2.29 × 10−2mSC (8)
PCDH = 2.14 × 10−2mSC (9)

Step3: the mass and power of structure and mechanism
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subsystem can be calculated as follows:

mstructure = 0.25 ×mSC (10)
Pstructure = 0 (11)

Step4: the mass and power of thermal control system
can be calculated as follows:

mthermal = 0.1 ×mstructure (12)
Pthermal = 0 (13)

Step5: the mass and power of ADCS is refined from
the control accuracy. For example, when the accu-
racy is less 0.1 degree, we can have:

mADCS = 20 + 0.02 ×mSC (14)
PADCS = 20W (15)

Step6: the propulsion system is determined by the ion
engine and fuel. e fuel consumption of orbit
transfer cannot be achieved in advance from the
delta-V, but from the numerical simulation (Is is
the specific impulse and η is the parameter of en-
gine).

mthruster = 96kg (16)
Fthruster = 500mN (17)
mpropellent = f (Fthruster,mSC) (18)

Ppro =
1
2
× Fthruster × Is × η (19)

Step7: electrical power system is made up of five parts,
which are listed as following:

Ppro =
1
2
× Fthruster × Is × η (20)

marray = PBOL/60,mbattery = Cr/40,
mPCU = 0.02 × PBOL (21)
mreg = 0.025 × PBOL,

mwiring = 0.04 ×mtotal (22)

Step8: summate all the subsystem mass and power
above as the initial parameter for the next iteration.

Step9: go to Step (3) until the relative error in the suc-
cessive iterations is less than 1%.

The end

N

Y

Figure 4: e iteration algorithm for the spacecraft
mass.

4 GPU accelerated genetic algorithm

Genetic algorithm (abbr. GA) is a kind of random
search technology which simulates the natural selection,
species evolvement and population genetics, and also
suits to provide a solution to problems such as combi-
nation and optimization [6]. Although GA is rather
effective in solving many practical problems in science,
engineering, and business domains, it needs a long time
to find optimal solutions for huge problems, as several
fitness evaluations must be performed. en many im-
proved genetic algorithmmodels are given to solve com-
plicated problem. Wong proposed to implement an evo-
lutionary computing on consumer-level graphics cards
and achieved better speed-up [4]. But in his method,
massive data was transferred from GPU to CPU. e
reading back of GPU is currently slowed down by the
hardware restrictions. Li proposed a fine-grained par-
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EPS Power

The end
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Figure 5: e iteration algorithm for the spacecraft
power.

allel genetic algorithm (abbr. FGPGA) which is a
model based on GPU-acceleration, which maps parallel
GA algorithm to texture-rendering on consumer-level
graphics cards [7]. In his method, he presents a new
method to implement FGPGA on GPU, which is used
to avoid massive data transfer. But, he implement bi-
nary encoding scheme of GA and all steps of FGPGA
are executed on GPU. Although the above methods
have many advantages, for some people, they maybe not
understand the hardware of GPU, or they want to use
the GPU as simple as possible.
We know that the well-designed CUDA code may

be around 20% faster than Jacket and poor CUDA code
may perform at only 5% of what well designed code de-
livers, also the CUDA code costs too much energy of
designers. So in this paper, MATLAB and JACKET
are running on a GPU compute cluster and the GPU is
NVIDIA Tesla C2050.
e workflow of parallel GA on GPU is listed as fol-

lows:

Step1: read parameters: crossover rate P1, mutation
rate P2, individual encoding length L.

 Variable: bounds

Generate ini!al 

popula!on on the GPU

Evaluate each individual variable cost 

func!on simultaneous processing

Stoping criteria

The end

selec!on

reproduc!on

crossover

muta!on

No

Gen+1

Figure 6: e process of GA on GPU.

Step2: Generate initial population on the GPU and
calculate cost fitness function f (x) of each individ-
ual.

Step3: search for the fitness individual and the optimal
fitness value.

Step4: if the condition is satisfied then output the result
and stop the criteria, or else jump to the step 5.

Step5: selection operation: the selection operator is
used to ensure that the best fit solutions are cho-
sen to pass on their genes. In this paper, the better
fit individuals are chosen to for further genetic op-
erations.

Step6: Crossover operation: this operation insures that
the new and unique gene is created.

Step7: mutation operation: When it does many gen-
erations, the population may be lose genetic diver-
sity and stagnate at a local minimum. Mutations
can help to prevent it. e mutation probability
should be small, typically less than 0.05. Once
the mutation probability is set too high the genetic
algorithm will start to resemble a simple random
search. If the user doesn’t wish to make use of the
mutation operator a probability of 0 can be entered
as well.

Step8: Jump to step3 to continue the computation.
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Figure 7: Histories of semi-major axis, eccentricity and inclination.

Table 1: e parameters of GTO and GEO

GTO GEO
Argument of perigee 180
Inclination 24 0
eccentricity 0.731216 0
semi-major axis 24473.653 42166

Table 2: e parameters of Ion-thruster

parameters Ion-thruster
e power input power P/W 2500
propellant xenon
impulse Isp/(m · s−1) 20000
pushing force F/mN 500

5 e simulation calculation and analysis

For the transfer mission, we design the CAST968-Ion
based on the platform CAST968. We use an ion engine
to replace the original thruster, and the parameters are
shown in figure 7. e CAST968-Ion Satellite by LM-
3A launch to the orbit of GTO, whose parameters are

Table 3: e power and the mass of CAST968-Ion

Power (W) Mass (kg)
Pthermal 0 mthermal 23.75
PTTC 21.755 mTTC 87
PCDH 20.33 mCDH

PEPS 347.5 mEPS 39
PADCS 0 mADCS 39
Ppro 2450 mpro 272.5
Ppayload 896 mpayload 175
Pstructure 0 mstruture 327.5
P0 4490
msc 873.75

shown in tab1. e parameters of GTO andGEO orbit
are shown in table 2.

5.1 Calculate the power and mass

rough the above calculation, we can get the quality
and power parameters of each subsystem and total sys-
tem:
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Table 4: Comparison of GPU and CPU

Time(s) α (degree) β (degree) J M G
CPU 115828 13.4 47.42 0.006 80 100
GPU 795 13.4 47.34 0.006 80 100
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Figure 8: 3-D trajectory of transfer orbit.

5.2 Search the optimal parameter of orbit transfer

From the chapter II, we know that the parameter ofα/β
is key point of control strategy, which are relative to the
mission consumption of fuel and time. We hope that
the final inclination and eccentricity are minimums. So
we define the fit function as follows:

J = f(ex, ey, i)

= min
α,β

√
e2
x + e2

y + i2


α ∈

[
0, 1800

)
β ∈

(
0, 1800

]
α ⩽ β

(23)

We define that the parameter of GA as follows:
Population size of GA: M = 80, population algebra

of GA: G = 100, crossover probability of GA: Pc =
0.6, mutation probability of GA: Pm = 0.01.

First, we operate the simulation on CPU. Second, we
change the code according to JACKET rules and oper-
ate on GPU and CPU.

5.3 e optimal results

From the GTO to GEO, the mission consumption of
63-day flight and the finial inclination equal to 0.0661
degree and eccentricity equal to 0.0087.e parameter
changing process of the semi-major axis and eccentricity
are shown in figure 7 and the trajectory of transfer orbit
are shown in figure 8.

5.4 e control strategy for global feature analysis

Genetic algorithm can get the optimal solution of con-
trol strategy, but it is unable to present the robustness
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Figure 9: Global features of closed loop control strategy.

of the optimal parameters. e latitude argument is
derived from the onboard recursion algorithm, which
works as variables to feedback control. As the error in
recursive algorithm, it is necessary to implement the er-
ror distribution of global features.
With the ergodic investigation on the final target√
i2 + e2

x + e2
y by the different thresholds of α and β,

the global features of the closed-loop control strategy is
shown in Fig. 9:
e best parameter pair of (α, β) are indicated by the

blue point in Fig.9, i.e., (50, 14.9). Due to the error in
latitude argument (20 is set in this paper), the maximum
deviations in inclination and eccentricity are 0.15◦ and
0.0017 respectively, which are bounded by the blue circle
in Fig.9.

6 Conclusions

is paper presented a new genetic algorithm based on
GPU. e improved GA is used for the aerospace mis-
sion design such as transferring to geosynchronous or-

bit and is successful in optimizing in only a few min-
utes. Firstly, an automatic control strategy is designed
to reduce the pressure of artificial monitoring during the
flight operation. Secondly, all the subsystems are de-
fined in the constraints of mass and power based on the
small satellite platform CAST968. irdly, calculate
the mass and power of the subsystems optimized to re-
duce the fuel during the mission. e numerical results
show that the ion thruster can reduce the propellant and
guide the satellite to its targeting orbit.

Acknowledgments

e research is supported by the National Natural Sci-
ence Foundation of China (11172020), the National
High Technology Research and Development Pro-
gram of China (863 Program: 2012AA120601), Tal-
ent Foundation supported by the Fundamental Research
Funds for the Central Universities, Aerospace Sci-
ence and Technology Innovation Foundation of China
Aerospace Science Corporation, and Innovation Fund
of China Academy of Space Technology.

References

[1] L. Biagioni, A. Passaro, and M. Andrenucci.
Particle Simulation of Tailored Vacuum Pump-
ing Configurations for Electric Propulsion Test-
ing. In B. Schürmann, editor, Fourth Interna-
tional Symposium Environmental Testing for Space
Programmes, volume 467 of ESA Special Publica-
tion, page 249, 2001.

[2] DARPA. F6 pivot pleiades innovative vcdm
optimization tool. [2009-09-21] http://www.
darpa.mil/WorkArea/DownloadAsset.
aspx?id=2652.

[3] P. Enright and B. Conway. Optimal finite thrust
spacecraft trajectories using collocation and non-
linear programming. Journal of Guidance, Control,
and Dynamics, 14(5):981–985, 1991.

[4] K. Fok, T. Wong, and M. Wong. Evolutionary
computing on consumer-level graphics hardware.
IEEE Intelligent Systems, 22(2):69–78, 2005.

[5] Y. Gao and C. Kluever. Low-thrust interplan-
etary orbit transfers using hybrid trajectory opti-
mization method with multiple shooting. In Col-
lection of Technical Papers-AIAA/AAS Astrodynam-

56 DOI: 10.2420/AF09.2014.49



GPU Accelerated Genetic Algorithm for Low-thrust GEO Transfer Maneuvers

ics Specialist Conference, volume 2, pages 726–747,
2004.

[6] D. E. Goldberg et al. Genetic algorithms in search,
optimization, and machine learning, volume 412.
Addison-wesley Reading Menlo Park, 1989.

[7] J.-M. Li, X.-J. Wang, R.-S. He, and Z.-X. Chi.
An efficient fine-grained parallel genetic algo-
rithm based on GPU-accelerated. In Network
and parallel computingworkshops, 2007. NPCwork-
shops. IFIP international conference on, pages 855–
862. IEEE, 2007.

[8] L. Tu, J. Yuan, and J. Luo. Optimal design of orbit
transfer with finite thrust based on legendre pseu-
dospectral method. Journal Astronautics, 29, July
2008.

[9] W. Voshell and D. Burms. SVMTool Algo-
rithm Description Document. Technical report,
Northrop Grumman Corporation, January 2009.

[10] Y. Zhu. Standardization of satellite platforms.
ChinaAcademic Journal Electronic PublishingHouse,
page S1, 2000.

DOI: 10.2420/AF09.2014.49 57



58



Acta Futura 9 (2014) 59-72
DOI: 10.2420/AF09.2014.59

Acta
Futura

How Ants Can Manage Your Satellites
C I*¹, P P¹, N P², A D²  A B³

¹ Surrey Space Centre, University of Surrey, Guildford, GU2 7XH, United Kingdom
²ESOC, European Space Operation Centre, Robert-Bosch-Strasse 5, 64293 Darmstadt, Germany
³ Surrey Satellite Technology Ltd., Surrey Research Park, Guildford, GU2 7YE, United Kingdom

Abstract. In the last decade, the interest
for space missions involving multiple spacecraft is
rapidly growing. A number of areas in the space
field are going to benefit from this new trend such
as the Earth Observation (EO) field. e Global
Monitoring for Environment and Security or the
Disaster Monitoring Constellation are first exam-
ples of this increasing demand. e trend of multi-
ple platforms is opening new challenges to the au-
tomated Mission Planning & Scheduling (MPS)
systems as the current Operations concepts de-
signed for individual spacecraft are not necessar-
ily transplantable. e future generation of MPSs
aims at gaining maximum value from the constel-
lation of satellites by increasing the efficiency of
onboard resources and coordinating the different
spacecraft to provide a greater level of responsive-
ness and adaptability. Our research aims at design-
ing an innovative ground-based automated plan-
ning & scheduling system for multiple platforms.
e mission used as target for our design is the
Disaster Monitoring Constellation. e novelty
of this project is in designing an MPS as a self-
organizing multi agent architecture, inspired by
Ant Colony Optimization algorithms, offering a
system adaptable to the problem changes and able
to synchronize the satellites’ plans in order to avoid
duplications among the tasks planned. In this pa-
per, we describe our system and how it can be ap-

*Corresponding author. E-mail: claudio.iacopino@gmail.com

plied to the planning problem of an EO constella-
tion. Moreover, we present the results of a quan-
titate test phase aiming at comparing our solution
against a standard optimization algorithm such as a
genetic algorithm. is comparison is able to show
the benefits of our system in terms of adaptability
and coordination.

1 Introduction

e Earth Observation (EO) constellations are offer-
ing new challenges to the applications of Automated
Mission Planning & Scheduling (MPS) systems as
they present critical requirements such as coordination
among the spacecraft, efficiency at constellation level
and responsiveness in case of disaster management. e
solutions developed for single platforms are not neces-
sarily transplantable in this distributed context. A num-
ber of studies have recently shown interest for the dis-
aster management, focusing on sensorweb [5] or just on
Earth Observation constellations [20, 9, 21, 25]. Most
of them faced the problem with classic techniques such
as greedy [25, 20], backtracking [9] or simple heuristics.
In these cases either they did not achieve efficient so-
lutions either they considered small problems (reduced
number of spacecraft). Moreover, a big limitation of
these works is not considering the dynamics of the prob-
lem itself. is scenario needs to be faced as a dynamic
problem, continuously shaped by the user requests, and
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where a number of heterogeneous missions need to co-
operate among them.
e EO scenario presented above motivates the in-

vestigation of the multi agent paradigms in the context
of distributed platforms, to model the coordination and
control aspects of such missions. e DAFA study [19]
is one of the first attempts in this direction, developing
a system based on negotiation paradigm and delibera-
tive agents. e main limitation of this approach is in
the lack of scalability and adaptability. Given the dy-
namics and the complexity of the scenario considered,
our work looks at reactive approaches as they are highly
suited with problems with uncertainty and they natu-
rally lead to self-organizing systems. ese types of sys-
tems are able to coordinate the actions of their compo-
nents in a distributed manner, without central authority.
Self-organization is therefore a highly desirable system’s
property if scalability is one of the requirements.
One of the most popular optimization techniques

based on self-organization is Ant Colony Optimiza-
tion (ACO) [7]. e inspiring idea of ACO is that
the ants looking for food deposit pheromones along the
path. ese pheromones influence the following ants
to get on the same path. However only the shortest
path will end having the strongest pheromone distribu-
tion because is the one that requires the minimum trav-
elling time. is is a self-organizing problem-solving
strategy. e best path is expected to emerge with the
strongest pheromone distribution. anks to their engi-
neering benefits, ACO algorithms have been applied to
a wide spectrum of problems: travelling salesman prob-
lem (TSP), assignment, subset such as the Knapsack
problem and scheduling, the closest to the space mis-
sion planning problems [17, 13, 10, 4].
Another interesting aspect of the ACO self-

organizing technique is its extension into the coordi-
nation mechanism of multi agent systems applied to
industrial applications, called Synthetic Ecosystems [2].
Several works [12, 24, 6] have showed self-organizing
manufacturing system based on artificial ants. A similar
idea has been used in the on-board coordination system
for cluster of satellites developed by Tripp and Palmer
[23].
In this paper, we present the results of our inves-

tigations, aiming at designing a ground-based auto-
mated planning & scheduling system for multiple plat-
forms based on self-organizing multi agent architec-
tures. Such a solution is able to avoid conflicts between
the satellites’ plans while computing efficient solutions
using the ACO communication system. is work is

the result of a 3-years project that has seen the develop-
ment of a novel theoretical model describing the self-
organizing properties of an artificial ant colony [14].
anks to this model, a novel ant colony optimization
algorithm has been designed to maximize the efficiency
of each spacecraft [15]. It offers a high-level of adapt-
ability and responsiveness, allowing the system to find
good solutions, thanks to the collaboration of all the
agents interacting and modifying the decision graphs
which form the planning problem. Moreover, the deci-
sion graphs of each spacecraft are interconnected, allow-
ing the synchronization among the satellites. is ap-
proach combines the optimization capabilities of ACO
algorithms, together with the coordination properties of
the Synthetic Ecosystem solutions.

e rest of the paper is organized as follows. Section
2 is going to describe the mission used as target of our
design, the Disaster Monitoring Constellation operated
by Surrey Satellite Technology Ltd. Section 3 presents
the system developed. is section describes how we
represent the constellation planning problem and how
we use this representation to form the environment of a
multi agent architecture inspired by ant colonies. Sec-
tion 4 shows a quantitate analysis of how our system re-
sponds to dynamic problems and to multiple platform
problems. A standard genetic algorithm is used to offer
a performance comparison. Finally, Section 5 discusses
the main benefits and drawbacks of our approach.

2 Case study

e mission considered is the Disaster Monitor Con-
stellation (DMC). is platform is the first Earth Ob-
servation constellation of low cost small satellites; it pro-
vides daily images for a wide range of applications, com-
mercial or of public interest including disaster monitor-
ing. e DMC satellites are designed and built by a UK
company, Surrey Satellite Technology Ltd, SSTL. e
constellation is currently composed of 6 satellites, flying
at about 700 km of altitude, (Beijing-1, NigeriaSat-1,
UK-DMC-2, Deimos-1, Nigeriasat-NX, Nigeriasat-2)
owned by different entities. DMC works within the
International Charter “Space and Major Disasters” to
provide free satellite imagery for humanitarian use, in
the event of major international disasters. e national
civil protection authorities of Algeria, China, Nigeria,
Turkey and UK are direct authorized users of the Char-
ter. is constellation faces a number of requests, quite
varied in terms of typology and customers. is load ex-
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ceeds the capabilities of the whole system and it keeps
changing in time as new asynchronous targets are re-
quested. is problem is defined as an imaging cam-
paign planning & scheduling problem. In the following
the terms plan and solution are going to be used without
distinctions.
e costumers require to image specific targets within

certain time windows. Depending on the costumers and
on its legal agreements with the service provider, one
or more satellites can be considered to image these tar-
gets. Given a planning horizon, we can calculate a set
of imaging opportunities for each satellite. Finally, we
have a set of imaging opportunities for each target but
only one acquisition is usually required. More than one
acquisition of the same target is considered a duplica-
tion, and it reduces the overall constellation’s perfor-
mance. Because of the limited memory on-board, time
constraints between imaging opportunities and limited
number of ground station passes, it is required to deter-
mine a subset of such imaging opportunities which sat-
isfy all the constraints and maximize the performance
metrics defined. Given this context, the requirements
for the MPS go along three different dimensions:

• Efficiency, it needs to produce solutions that max-
imize the performance. is includes minimizing
the duplications among the plans of each space-
craft.

• Adaptability, it needs to respond and adjust the so-
lution when changes occur (new user requests, dis-
aster management).

• Scalability, it needs to be scalable to the number of
user requests and spacecraft considered.

e challenge is to build a system that satisfies all
these requirements at the same time. ey are often in
contrast; a system very adaptable is often not very effi-
cient and vice versa. Moreover, in order to avoid dupli-
cations among the tasks planned, a coordination mech-
anism needs to be part of the planning process. e co-
ordination mechanism is closely related to the system’s
scalability because the complexity of this mechanism in-
creases as we increase the number of spacecraft or the
planning horizon considered. ese duplications have
an impact on the efficiency of the overall constellation
because they represent resources that could be better ex-
ploited. It is important to note that two acquisitions
of the same targets are not always seen as a duplica-
tion. Given a set of imaging opportunity, the opera-
tors need to define which among them are considered

shared tasks, i.e. duplications if planned at the same
time. e operators have a higher knowledge of the sys-
tem’s requirements, such as the revisit time requested by
the customers. High priority requests, such as for dis-
aster management, usually need many images in a very
short time frame.
Given this context, the MPS needs to focus on the

customers’ requests. e level of uncertainty is quite low
and the communication link is not a critical resource.
e system is therefore foreseen to run centrally on the
ground segment, abstracting from on-board processing
and communication aspects among the satellites. Tradi-
tionally, the plan is generated only for a specific uplink
opportunity and when all the inputs are available. For
this problem, we want a setup offering a higher flexi-
bility for the operators and a higher responsiveness to
asynchronous events. We need therefore a system run-
ning continuously offering an updated plan at any time.
e operators are then called to evaluate a number of
equivalent plans during a specific time frame.
e following section introduces the system devel-

oped aiming at matching the requirements presented
above.

3 Proposed approach

e case study presented above is a clear problem of
planning and scheduling (P&S). Automated P&S sys-
tems applied to spacecraft operations generally involves
generating autonomously sequences of spacecraft com-
mands from a set of higher-level science and engineer-
ing goals. e sequences, called plans or schedules, have
to comply with the system and the resources’ constraints
while optimizing the goals expressed as objective func-
tion. A common way to represent a P&S problem is
the timeline representation where each resource is asso-
ciated with a timeline. Such a timeline represents the
operational schedule for that specific resource. e ac-
tivities associated to each resource are represented as al-
located slots in the relative timelines. Depending on the
problem constraints, an activity might be linked with
other activities of different timelines.
eMPSwe aim to build is a multi agent architecture

where ant-like agents are in charge to find solutions to
the P&S problem considered. ough the timeline rep-
resentation is quite intuitive and easy to read, we need
to transform the P&S problem in a graph-like environ-
ment, which the ant-like agents can explore. Broadly
speaking, we aim at implementing an MPS that be-
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haves as an ant colony, continuously exploring the en-
vironment, i.e. the P&S problem, and adapting to its
changes.
In this section, we first examine the problem repre-

sentation, how to translate the planning problem in a
graph-like environment. We then focus on the logic of
the ant colony algorithm that allows a single spacecraft
to optimize its plan and to adapt to the environment’s
changes. Lastly, we present how this paradigm can be
extended to offer a self-organizing coordination system
for EO constellations.

3.1 Problem representation

Considering a single spacecraft, the problem domain
can be modelled as a binary reusable resource, the space-
craft camera, strictly dependent on a depletable re-
source, the spacecraft on board storage memory. In the
timeline representation, a single spacecraft can be mod-
elled with just one timeline. An imaging opportunity is
an activity that consumes memory while locking on the
camera; we call these activities tasks. e ground station
passes allow downloading data; they can be modelled as
activities that produce memory. All these activities are
on the camera timeline and are subjected to memory
availability constraints and temporal constraints. e
tasks are characterized by the memory needed and the
quality which indicates the importance of the specific
task; this last parameter is the results of a number of fac-
tors such as customer priority, weather forecast, rolling
angle and so on. e ground station pass is indicated
only with the memory that can be downloaded. at
being defined, the problem can be seen as an assign-
ment problem with resources and temporal constraints.
It can be formulated as the following:

max Q(X̄) (1)

subject to 
∑n

i=1 rixi ⩽ a∑m
j=1 xj = 1

(2)

where X̄ is a vector of xi ∈ {0, 1}, i = 1 . . .n, xi is an
assignment variable that indicates if the task i has been
performed. Equation (1) is a generic objective func-
tion that needs to be maximized, taking in account the
tasks selected and their relative qualities. is function
represents the quality of a plan. Equations (2) express
thememory constrains and the possible duplications de-
fined by the operators respectively.

t
: Task

: GS pass: Task NOT Selected

: Task Selected

Figure 1: Problem represented by a binary chain.

A common way to translate an assignment problem
into a graph is to use a binary representation called bi-
nary chain[11, 16, 26, 8]. Given binary variables, the
two possible states are represented as distinct edges. e
solution to problem therefore is the path connecting
these edges. In the following, the terms path and so-
lution are going to be used without distinctions. Fig-
ure. 1 shows the binary representation of the problem
where the squares represent the task and the triangle the
ground station passes. is binary chain can be seen as
a discrete version of a timeline. Each path of the bi-
nary chain is a possible timeline solution. is repre-
sentation is also convenient in the context of dynamic
problems. It offers the possibility to express problem’s
events as minor changes in the graph. A change in the
characteristics of one imaging opportunity affects only
the parameters of the associated node. e adding or
removal of one imaging opportunity affects the graph
only locally.

It is important to note that we are not describing the
pre-processing phase necessary to go from the mission
specific details of each spacecraft, such as the instrument
operations or the spacecraft maneuvering model, to the
set of imaging opportunities. Such a phase is out of
the scope of this paper because we are considering agile
satellites with negligible slewing and setup time.

3.2 Ant Colony Optimization Paradigm

e algorithm developed is inspired by the ACO tech-
nique; its core workflow can be summarized in the fol-
lowing main steps:

Construction Phase: In this phase the ants construct
the path. One ant at a time navigates the environment,
i.e. the binary chain. At each time-step, the ant moves
from the node where is located to the neighbour one. A
transition rule is used to define the probability that the
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ant chooses to move through the edge ij:

Pij =
ταi0

ταi0 + ταi1
τ : pheromone variable (3)

where τi0 and τi1 are variable associated to the edges
connected to the node i, two edges in the binary chain.
ese variables represent the amount of pheromones
lying on these edges. α represents the pheromone
amplification parameter.

Update Phase: Once the ant reaches the end of the
graph, a global pheromone update procedure takes place
where the ant deposits on all the edges of its path a
pheromone amount ∆τ. is amount is derived by the
value of the objective function f(X̄) on the path per-
formed by the ant:

τij(t+ 1) =

 (1 − ρ)τij(t) + ∆τ, ant path

(1 − ρ)τij(t), other edges
(4)

e pheromone on all the edges evaporates at the rate
ρ ∈ (0, 1).
e key element of the ACO metaheuristic is the

combination of the construction phase with the update
phase where the last increases the probability of some
edges to be selected for further deposit. anks to per-
turbations and to this autocatalytic pheromone process,
the colony can converge in the long-term to a specific
path. is is regarded as a global solution.

3.3 Algorithm Implementation

is section introduces a new algorithm developed for
the type of dynamic problems presented in this paper.
It is important to clarify that we are interested in a sys-
tem that continuously adapts its current global solution
without knowledge on when a change occurs. e al-
gorithm workflow is summarized in Algorithm 6: e
function TransitionRule() is eq. (3). path repre-
sents the current solution under construction. After
each move, the procedure feasibilityCheck() is in
charge of verifying that the current solution complies
with the problem constraints otherwise it activates a re-
pairing procedure to solve the conflicting constraints.
Each ant deposits a pheromone amount, phDep, on the
edges forming the current path. is quantity is func-
tion of the ObjectiveFuntion().
e key element of the algorithm is the cycle Explo-

ration/Exploitation. e function updatePhAmp()

1: PheromoneInitialization();
2: PhAmpInit(), start Exploration Phase;
3: for all ants do
4: for all nodes do
5: path+=TransitionRule(); Construction Phase
6: feasibilityCheck(path);
7: end for
8: phDep=ObjectiveFuntion(path);
9: updateEnv(phDep); Update Phase
10: if convergence then
11: savePath();
12: restartPhAmpCycle(); restart Exploration phase;
13: else
14: updatePhAmp();
15: end if
16: end for

Algorithm 6: Algorithm Workflow

modifies the value of α, the pheromone amplification
parameter, during the execution. is is a controller pa-
rameter and it is responsible to affect the system’s dy-
namics. e current implementation modifies this pa-
rameter in order to reduce progressively the ants’ explo-
ration while increasing their exploitation. An extended
mathematical analysis of the effects of α on the system’s
dynamics can be found in [14]. After a certain number
of ants have navigated and deposited, the pheromone
trail reaches levels allowing almost the entire colony to
repeat always the same path. is is regarded as a global
solution. Once there, the pheromone amplification cy-
cle is reset to the exploration phase. e system is there-
fore continuously alternating exploration and exploita-
tion phase improving its capabilities of adapting to new
changes. It is clear that the system is going to move
between equivalent solutions even if no changes occur.
is is a desirable characteristic when there is uncer-
tainty in the definition of the objective function.
With this algorithm, we envisage a different oper-

ational workflow where the ground segment operators
are going to update the problem any time new infor-
mation is available, from the users, from the spacecraft
or from the real environment (weather forecast). e
ground segment operators are then called to select the
final schedule out of the solutions set produced by our
system.

3.4 Coordination mechanism

e previous subsection was able to show the mech-
anisms behind the high-level of adaptability and effi-
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ciency of our system. However a further step is neces-
sary to handle the coordination of multiple spacecraft.
e goal is to avoid duplications of the images acquired
among the satellites and at the same time to optimize
the performance of each spacecraft. Taking inspira-
tion by the synthetic ecosystems seen in Section 1, each
spacecraft is associated to an ant colony in charge of
navigating a graph representing the planning problem
of that spacecraft. ese graphs are modelled as binary
chains as explained above. e tasks shared among the
satellites, representing possible duplications, are mod-
elled as intersections among the satellites’ binary chains.
Figure 2 explains this representation.
To achieve coordination on the shared tasks, we ex-

ploit the pheromone fields generated by the ant colonies.
We introduce a coupling similar to the one seen in sec-
tion 3.3 between the construction and the deposit pro-
cedure. In this case, for each shared task, we add a link
between the ants’ deposit procedure of one colony and
the ants’ decisional process of the colonies sharing that
task. Basically, when the ant of one spacecraft decides
to perform a shared task, concurrently with the ants of
the others spacecraft, it deposits pheromones on its path
and also on the edges of the others binary chains in-
tersecting that task. Specifically, the ant deposits only
on the edges that inhibit the others colonies by choos-
ing that task. is simple mechanism guarantees the
coordination among the colonies, i.e., among the satel-
lites, in a highly scalable manner. is approach does
not have single point of failures; a common limitation
of the hierarchical coordination systems. Moreover, this
mechanism conserves the same dynamics of the system
based on one single chain. is allows the reusing of the
same algorithm explained above. We have been able to
demonstrate mathematically the validity of this mecha-
nism however this is outside the scope of this paper.
e following section presents a performance analy-

sis used to demonstrate empirically the validity of our
approach.

4 Experimental Results

A wide number of tests have been performed to eval-
uate quantitatively the system’s properties. In this sec-
tion, we analyse two scenarios, the first aims at show-
ing the adaptability property of our system when facing
dynamic problems. e second scenario regards con-
stellation platforms, in order to show the system’s coor-
dination capability. In both the scenarios, we compare

our system against a P&S system based on genetic algo-
rithm. For sake of clarity, in the following sections, we
refer to our system as the ant colony system, AC system,
while we refer to the one based on genetic algorithm as
the GA system.

4.1 P&S System based on Genetic Algorithm

In this paper we want to offer a comparison between our
software and some more traditional system. Our main
motivation is to show the properties of the AC system
and its benefits therefore we propose a comparison with
a system that is designed only for optimization of static
problem for single spacecraft.

A wide number of techniques are available for opti-
mization problems. We decided to use a standard Ge-
netic Algorithm (GA) [18]. is technique has been
used as a comparison to ant colony algorithms applied to
binary chains [8]. Moreover a number of recent works
applied it to problems of P&S for space [3, 22, 27, 1].
e GA algorithm is based on the concept of evolving a
set of random generated solutions, identified as a popu-
lation of individuals. Every step of the evolution process
is called generation. During each generation a new pop-
ulation is created from the mating process among the
best individuals of the previous population. e GA is
a population-based algorithm as well as the ant colony
algorithms. is simplifies some aspects of the compar-
ison. However, it is important to clarify a point. In the
GA each individual is a possible solution and generally
only the best of a certain generation is considered as a
system solution. In the AC system each ant is a possible
solution but only the solutions where the entire colony
converge to are considered system solutions. To make a
fair comparison the following two rules are applied:

TotAnts = Gen · PopSize (5)
where TotAnts is the number of ants used in one run by
the AC system. Gen is the number of generations of the
GAwhile PopSize is number of individuals in the pop-
ulation of the GA. Equation (5) regulates the runtime
of both the systems. It takes care of providing the same
amount of evaluations of the objective function. As said
above, for each ant we evaluate the objective function.
e same happens for an individual in each generation.

PopSize = ATP ⇒ Gen. =
TotAnts

ATP
(6)

where ATP is the period of a pheromone amplification
cycle, seen in section 3.3. Equation (6), fixes theGApa-
rameters linking the number of generations directly with
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Figure 2: Problem representation in case of multiple spacecraft with shared tasks.

the total number of ants. ismeans linking the number
of generations to the runtime itself. is is the most in-
tuitive approach and it works fine with the dynamic test
scenario where we have a variable runtime. e popu-
lation size is fixed to the ATP. is parameter indicates
the time of the cycle exploration/exploitation of the AC
system. anks to this rule, after each test, we can com-
pare groups of solutions of similar size because the GA
generations are equal to the number of time the AC sys-
tem converges. Table 1 shows the settings of the other
parameters characterizing the GA. ese values are the
best tuning we found for the GA and are in agreements
with the literature [8].

4.2 Dynamic Scenario

e scenario considered here regards dynamic problems
for single spacecraft. is scenario is useful to under-
stand how the systems’ solutions adapt to a changing
problem.
Table 2 shows the experimental setup. e top part of

the table describes the algorithm setup while the lower

Table 1: GA parameters settings

Crossover Type: one-point
Crossover Prob.: 0.9
Mutation Prob.: 0.005
Selection Method: Binary Tournament

part of the table concerns the test dimensions. Each
test case is formed by 50 problems of size 20 tasks and,
for statistical reasons, we run the system against each
of them 50 times. e problems are automatically gen-
erated keeping the resource constraints constant. e
size 20 tasks is a compromise between real problems and
problems that can be solved using complete algorithms
to obtain the theoretical optimum. In general, the graph
chain’s length depends on the number of user requests
and on the planning horizon considered. In this case,
these numbers represent a typical planning horizon of
one day. At this stage, the computational power re-
quired is negligible as each run takes few seconds in a
desktop pc.
In the context of dynamic problems, we are interested

in observing how the systems respond to such changes.
New events, i.e. changes in the problem are translated
to changes in the environment, i.e. in the graph. We
consider two typologies of events, which define different
type of changes:

• Weather updates, the weather information is a key
factor for the image requests. Update weather in-
formation need to be taken in account to realize
an efficient plan. On the graph, this information
affects the tasks’ quality, which translates in the
amount of pheromone deposited on the relative
path.

• Disastermanagement, new images at high priority
can be requested at any time. In this case, the im-
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ages are translated to new tasks, which need to be
inserted in the graph. It is important to note that
the impact on the graph structure is minimal.

ese changes are not random but are chosen in order
to change the theoretical optimum.
Our evaluation aims at analysing the systems along

the following test dimensions:

• Change Frequency, it indicates how fast the prob-
lem changes. It is given by the number of changes
performed on the problem during the run, keeping
constant the run time.

• Change Severity, it indicates the impact of a
change on the problem. It is given by the num-
ber of simultaneous changes. For each event, n
changes are applied at the same time.

e setup of the experiment sees the systems running
for a specific time frame. e time is measured in logical
time-steps that are equal to the number of evaluations
of the objective function. is means that for the AC
system the time-steps are equal to the number of ants
while for the GA system the time-steps determine the
number of generations by using eq. 6. As explained in
Section 3, independent of any change, the AC system
continuously searches for new solution and updates the
current plan. Given a specific time window, in which
the problem can be considered static, the AC systemwill
provide a set of solutions; one set every time the problem
changes. Similarly, for the “GA system”, we can con-
sider a set of solutions for each time window where the
system is static. is set is formed by the best individual
of each generation. at being defined, to compare the
two systems we are going to compare these sets of solu-
tions. We have defined a number of metrics to properly
characterize these sets, however, for sake of brevity, the
following charts regard only the quality of the set’s best
solution. We found this the most meaningful metric

Table 2: Setup for the Dynamic Scenario

Problem size: 20 tasks
Problem set: 50 problems
Runs per problem: 50
Run Time: 5000 time-steps
Change Frequency: [0-9] ch./run
Change Severity: [1-5] simult. ch.
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Figure 3: Quality of the set’s best solution varying the
change frequency and the change severity. e GA sys-
tem never resets its population during the run.

because normally we are interested on the best solutions
that the system can give us in a specific time window.

Figure 3 shows the trend of the quality as the change
frequency increases (x-axis). e y-axis expresses the
quality in percentage respect the theoretical optimum.
In this figure, we plot four different trends: two related
to the AC system and two related to the GA system.
ese trends show how the systems perform when fac-
ing problems with different change severities, 1 simul-
taneous change or 5 simultaneous changes. is is equal
to a problem variation of 5% for each change and to a
variation of 25% respectively. Table 3 presents the same
data in numerical format. “AC Sev.1” is the AC system
facing problems with change severy 1 while “GA Sev.1”
is the GA system facing problemes with change severity
1.

Starting with the AC system, first of all we observe
performance never below the 10% from the theoreti-
cal optimum. Moreover, we observe a small decrease
in performance, about 4%, as the change frequency in-
creases. is result is expected because the system has
less time to explore and find better solutions. Worth
noting is that the AC system seems to be very robust
with regards to the increasing severity of the problems.
Regarding theGA system, in this experiment every time
a problem change occurs we use the last GA population
as initial conditions for the next generation. Looking at
the performance, figure 3 shows slightly better perfor-
mance of the GA system respect the AC system for low
levels of change frequency. is means that the GA sys-
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Table 3: Quality of the set’s best solution varying the
change frequency and the change severity. e GA sys-
tem never resets its population during the run.

Ch. Freq. AC Sev.1 GA Sev.1 AC Sev.5 GA Sev.5
0 97.42 99.34 97.41 99.40
1 96.30 98.90 96.25 97.88
2 95.77 97.27 95.31 93.25
3 95.01 95.65 95.03 89.17
4 94.72 94.43 94.59 86.60
5 94.53 92.44 94.12 82.86
6 94.11 89.22 93.68 77.98
7 93.61 87.94 93.09 73.39.
8 93.21 84.99 92.51 70.66
9 93.01 82.64 92.47 69.10

tem when facing static problems is able to give solutions
in average 2% better than the AC system. However, as
soon as the change frequency increases the drop in per-
formance of the GA system is quite remarkable. In case
of low change severity the GA system shows a decrease
of 15% while in case of high change severity we can see
a drop of 28%. is behaviour can be justified consider-
ing the level of diversity in the GA population. e GA
system does not have the capability to maintain constant
the population diversity during the evolution. It is able
to converge quickly to good solutions but as soon as the
problem changes the GA system is not able to explore
efficiently the solution space. is is even more evident
for high change severity.
Figure 4 is the results of a similar experiment where

we change only the GA system’s workflow. In this
case every time a problem change occurs we reset the
GA population to random initial conditions. Compar-
ing these results with the previous experiment, we can
observe a similar behaviour of the GA system for low
change frequency. However in case of high change fre-
quency, the GA system presents a decrease in perfor-
mance of only 8%. is improvement confirms the pre-
vious argument. Resetting the population to random
initial conditions allows the system to start every time
a new exploration and it makes the system robust with
regards to variations of the change severity. Table 4
presents the same data in numerical format.
ese results show that the GA system is not de-
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Figure 4: Quality of the set’s best solution varying the
change frequency and the change severity. e GA sys-
tem resets its population after every problem change oc-
curs.

signed to solve efficiently dynamic problems because it
is not able to adapt when the problem changes. For the
GA system, as well as for any standard optimization al-
gorithm, it is better to decompose the dynamic problem
as a series of static problems and to solve them sepa-
rately. As said in the previous sections, the purpose of
the comparison between theGA system and theAC sys-
tem is not to demonstrate which one is better but to put
in evidence the characteristics of the AC system. With
this test, we can conclude that the AC system shows do
handle efficiently dynamic problems. Moreover, further
tests, not described in this paper, show that the AC sys-
tem offers always similar solutions. It is important that
the current solution does not change completely at every
problem change. is desirable property is given by the
exploration technique performed by the AC system; the
exploration always starts from the previous solution and
considers first its neighbours.

4.3 Constellation Scenario

e scenario considered here regards static problems for
multiple spacecraft, such as constellations. is sce-
nario is useful to understand how the systems cope with
high-complex problems, where coordination between
the satellites is needed to provide efficient solutions. As
explained in the previous sections, given a set of user
requests, a pre-processing phase mission/problem spe-
cific defines which image opportunities need to be rep-
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Table 4: Quality of the set’s best solution varying the
change frequency and the change severity. e GA sys-
tem resets its population after every problem change oc-
curs.

Ch. Freq. AC Sev.1 GA Sev.1 AC Sev.5 GA Sev.5
0 97.42 99.35 97.41 99.45
1 96.30 99.12 96.25 99.08
2 95.77 97.65 95.31 97.51
3 95.01 96.09 95.03 95.97
4 94.72 95.10 94.59 94.85
5 94.53 93.64 94.12 93.56
6 94.11 91.99 93.68 92.06
7 93.61 90.80 93.09 91.07
8 93.21 89.74 92.51 90.26
9 93.01 89.58 92.47 90.05

resented as shared tasks among the satellites. At this
stage, we are not interested in operational details and
orbital models of the spacecraft because there are sit-
uations when duplications are even wanted. is phase
therefore is subjected to the operators’ needs. In the rest
of the section, we are considering a test case where the
operators already defined the shared tasks.
Table 5 shows the experimental setup. Each test case

is formed by 50 static problems of 35 tasks and for each
problem we perform 50 runs, for statistical reasons. e
problems are automatically generated using random task
distributions and resource availability. e lower part
of Table 5 shows the test dimensions of our analysis.
From one side we are interested in how the performance
changes increasing the number of spacecraft in the con-
stellation. From the other side wewant to see the impact
of the level of shared tasks. is is an indicator of the
problem difficulty for the coordination system.
As part of the test case, we need to define the perfor-

mance metrics relevant to the entire constellation:

• ConstellationQuality, it is given by the sum of the
mean of the solution quality of each spacecraft car-
ing of possible duplications between them.

• Memory Utilization, the mean of the onboard
storage memory utilization of each spacecraft. is
is an important metric because in case of dupli-
cations a certain amount of data becomes useless

causing a decrease of efficiency. We are interested
therefore in maximizing it as well.

Table 6 shows the evolution of the constellation qual-
ity varying the number of spacecraft in the constel-
lation [2-10] and the number of shared tasks [50%-
100%]. “AC Sh50%” refers to the AC system facing
problems with a number of shared tasks of 50% while
“GA Sh50%” is the GA system facing problemes with a
number of shared tasks of 50% . It is clear that the con-
stellation quality grows with the spacecraft number be-
cause more tasks are performed. However this positive
trend decreases as the amount of shared tasks increases.
is happens because the satellites are required to share
more. For high level of shared task, such as 100%, the
constellation can saturate the problem, not having free
tasks to perform. is can be easily observed in Figure
5 that shows only the case of 100% of shared tasks. De-
pending on the characteristics of the problem therefore,
increasing the number of spacecraft might not always
provide a benefit.

e GA system shows lower performance respect the
AC system. eGA system does not coordinate the so-
lutions among the spacecraft because it solves the plan-
ning of each spacecraft as a separate problem. For this
test, we cannot use the theoretical optimum as perfor-
mance reference because the problems are exponentially
bigger than in the previous scenario and very difficult to
solve in a reasonable time. anks to this test we can
understand the benefits of having a coordination mech-
anism such as the one implemented for the AC system.
It is important to note that during the entire test the AC
system has never proposed any duplicated task. More-
over, the computational power required and thememory
used for the computation grow linearly with the num-
ber of spacecraft considered, confirming the scalability
property of the self-organizing mechanism.

Analogous results can be observed analysing the sys-
tem’s efficiency expressed in terms of onboard storage

Table 5: Setup for the Constellation Scenario

Problem size: 35 tasks
Problem set: 50 problems
Runs per problem: 50
Run Time: 10000 time-steps
Shared Tasks: [50%-100%]
Spacecraft Number: [2-10]
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Table 6: Constellation quality varying the number of spacecraft in the constellation [2-10] and the shared task
percentage[50%-100%]

N. SC AC Sh50% GA Sh50% AC Sh70% GA Sh70% AC Sh90% GA Sh90% AC Sh100% GA Sh100%
2 50.2 45.6 47.5 41.0 44.8 35.4 42.8 33.3
3 74.2 61.5 65.2 52.4 56.8 41.2 52.6 35.7
4 93.1 76.6 84.0 60.1 69.1 46.1 57.4 37.2
5 117.6 91.1 101.8 71.1 78.1 51.8 59.6 38.3
6 135.2 108.0 116.3 82.8 86.8 55.1 60.7 39.2
7 159.3 122.4 133.4 91.3 95.9 57.1 61.3 39.9
8 178.3 136.0 150.3 99.4 102.2 59.8 61.8 40.5
9 201.1 153.2 168.1 107.2 108.3 62.1 62.2 41.0
10 218.5 170.3 179.9 118.0 114.6 64.4 62.4 41.5
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Figure 5: Constellation quality varying the num-
ber of spacecraft in the constellation [1-10], shared
tasks=100%.

memory utilization. Table 7 shows the evolution of the
onboard storage memory utilization varying the num-
ber of spacecraft and the number of shared tasks. We
can observe that the system presents always high-level
of memory utilization except when we consider more
than 90% of shared tasks. is can be easily observed
in Figure 6 that shows only the case of 100% of shared
tasks. As explained above, as soon as the satellites do
not have more free tasks to perform, their memory uti-
lization decreases drastically. e GA system shows a
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Figure 6: Onboard storage memory utilization varying
the number of spacecraft in the constellation [1-10],
shared tasks=100%.

trend in agreement with the lower constellation quality
presented in Table 6.

e analysis presented in this section clearly shows
the benefits of the AC system respect the GA system
that focuses only on the best solution for a single satel-
lite, not taking advantage of the collaboration among
the spacecraft.
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Table 7: Onboard storage memory utilization varying the number of spacecraft in the constellation [2-10] and the
shared task percentage[50%-100%]

N. SC AC Sh50% GA Sh50% AC Sh70% GA Sh70% AC Sh90% GA Sh90% AC Sh100% GA Sh100%
2 95.4 78.8 94.7 71.6 94.3 63.3 93.9 60.1
3 94.9 70.5 93.1 59.9 89.2 51.8 88.3 44.4
4 94.4 66.6 92.3 52.8 86.4 42.2 79.2 35.6
5 94.2 64.4 90.9 49.9 80.1 38.1 69.7 29.9
6 94.1 62.9 89.8 48.7 76.8 34.4 61.1 25.9
7 93.9 61.1 89.4 46.1 72.1 31.2 53.9 22.8
8 93.7 60.6 89.0 44.6 69.7 28.1 48.1 20.4
9 93.3 59.5 87.9 43.1 65.4 26.7 43.4 18.5
10 92.7 58.6 87.2 42.0 63.9 25.3 39.5 17.0

5 Conclusions

Distributed missions present new challenges for auto-
mated systems. ey need to be highly responsive,
adaptable to face dynamic environments and scalable in
terms of number of spacecraft and image requests con-
sidered. Today a number of new advanced technolo-
gies are available for meeting these requirements such
as self-organizing multi agent architectures and natural-
inspired collective algorithms. In this paper, we pre-
sented a system based on these technologies to face dis-
tributed missions’ scenarios. In this paragraph, we want
to summarize the main benefits and limitations of our
approach. e main benefits are:

• Efficiency, the system developed exploits the op-
timization capabilities of the ant colony paradigm,
a technique able to achieve high performance in a
number of contexts, in particular in assignment and
scheduling problems.

• Adaptability, self-organizing multi agent architec-
tures are by definition more flexible and adapt-
able then monolithic systems. e system devel-
oped is highly adaptable thanks to the integration
of the problem dynamics in the solution construc-
tion phase of the ant colony paradigm.

• Scalability, classic multi agent architectures suf-
fer of scalability due to the strong responsibility
schema. e self-organizing coordination system
implemented satisfy this requirement.

Despite these benefits, a number of limitations need
to be taken in account:

• Problem modelling, the planning & scheduling
problem need to be translated to a graph-like struc-
ture. is formalism cannot represent all the types
of constraints but the agents’ logic can incorpo-
rate most of them. A pre-processing phase mis-
sion/problem specific is necessary for this transla-
tion.

• Black box, all the soft-computing techniques such as
neural networks, genetic algorithms and ant colony
algorithms offer solutions without providing the
relative reasoning chain. is could be a critical is-
sue for the human operators. However, increasing
the autonomy in the ground segment, the operators
need to move to a supervision level and our system
represents a powerful tool for this task.

• Cost & Operational feasibility, we are proposing
a different operational workflow. As explained in
Section 3, our system generates continuously plans
of equivalent quality which the operators are called
to evaluate. Such a system offers more flexibility
but it requires a different manpower management.

• Stochastic nature, a further challenge is the mind-
set shift. e issue is to shift from deterministic to
stochastic systems. is is a mandatory step if we
want to buildmore complex and adaptable systems.
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Abstract. is paper describes the design prin-
ciples of 2 (Knowledge to Ease), a new Knowl-
edge Engineering Environment () based on
modeling patterns currently under development at
the European Space Agency (ESA). is environ-
ment aims at assisting the operational engineers in
designing, maintaining, and updating the models
during the whole life cycle of current and future
AI Planning and Scheduling systems. e work is
motivated by the distance between primitives usu-
ally available for modeling domains and problems
in AI planning systems and the real needs of the fi-
nal users of these technologies, the operational en-
gineers. Despite the efforts devoted to the adop-
tion of expressivemodeling languages, this distance
is still quite big, leading to the need of modeling
experts to assist continuously the user during the
whole life-cycle of the application. Our goal is
to introduce a  to bridge the gap between the
planning languages currently used by AI technolo-
gies, based on constraints, resources and timed au-
tomata, and the current practice in the operational
context, based on procedures, imperative primi-
tives, and temporal synchronizations among pro-
cesses.

Keywords: Timeline-Based P&S, Knowledge En-
gineering for P&S, Languages for P&S.
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1 Introduction

Space has been often a fertile field for the introduction
of novel AI based planning and scheduling technologies.
In fact, the AI model-based approach allows reusing of
software modules across different missions because of
the great flexibility introduced by the symbolic repre-
sentation of goals, constraints, logic, parameters to be
optimized and so on. e great advantage of model-
based, domain independent planning technologies is the
possibility of using a software not designed to achieve
(possibly parameterized) goals in a given domain but for
manipulating symbolic entities. ismakes the software
deployment and test substantially independent from the
specific mission. As a drawback, when proper symbolic
constructs are not available for modeling, a great effort
and amount of time are in general necessary to under-
stand domains and problems, to capture all the charac-
teristics, and to eventually create the model. Another
issue is the performance of domain independent plan-
ners. Infact the performances of P&S systems, at a large
extent, depend on how problems and domains are for-
mulated. ese systems often show poor performances
iwhen compared with ad-hoc, domain specific applica-
tions. e mix of modeling difficulties and performance
issues constitutes a not trivial barrier for the practical
adoption of AI model-based P&S technologies, seri-
ously harming the great advantage that, in theory, the
approach could bring.
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To cope with modeling issues, the cognitive distance
between the modeling primitives of the AI system and
the objects to be modeled has to be as small as pos-
sible. For this reason the timeline based paradigm has
proved to be particularly suitable for space applications,
being very close to the way problems and constraints are
naturally represented in space applications. In timeline
based planning the analogy with problems commonly
handled in space applications is more obvious than for
other AI planning paradigms (like PDDL [14] for in-
stance). However, the distance between primitives usu-
ally available for modeling and the real needs of poten-
tial users of these technologies is still quite big, leading
to the need of modeling experts to assist the user during
the whole life-cycle of the application.
is paper presents the initial results of a research ac-

tivity currently ongoing at ESA-ESOC.e approach
is based on modeling patterns derived from languages
for defining procedures. Instead of modeling the prob-
lem in terms of generic timed automata, temporal syn-
chronizations and constraints among timelines, the user
composes themodel bymeans of a set of pre-defined au-
tomata (the patterns) and connect them with a reduced
set of temporal and logical primitives. e patterns al-
low modeling concepts like tasks, procedures, impera-
tive rules, cycles, conditional branches and resource al-
locations. e output of the process is a specification
in timeline-based planning language that can be used to
feed a domain independent timeline planner.

2 Languages for AI planning in space

e principles behind AI planning and scheduling in
space applications inherit from control theory. In fact
a common background among all the AI planning and
scheduling systems currently in use in the major space
agencies is an underlying assumption that the world is
modeled as a set of entities whose properties can vary
in time (such as one or more physical subsystems) ac-
cording with some internal logic or as a consequence of
external inputs. e intrinsic property of these entities,
represented by means of timelines, is that they evolve
over time concurrently, and that their behaviors can be
affected by external inputs. e analogy with control
theory can be extended to conceive the problem solv-
ing with timelines as a problem of controlling compo-
nents with external inputs in order to achieve a desired
behavior. Hence different types of problem (e.g., plan-
ning, scheduling, execution or more specific tasks) can

be modeled by identifying a set of inputs and relations
among them that, once applied to the componentsmod-
eling a domain with a given initial set of possible tempo-
ral evolutions, will lead to a set of final behaviors which
satisfy the requested properties (for instance, feasible se-
quences of states, or feasible resource consumption, as
well as more complex properties¹).

e analogy with problems commonly handled in
space applications is obvious. In fact there are al-
ready software and platforms in use at NASA and ESA
(E[13], A[12], A[16], G[9]) based
on timelines. Unfortunately these systems do not use a
standardized language to model problems and domains,
with a consequent objective difficulty in spreading and
re-using information, models and software solutions.
Nevertheless these platforms provide a set of similar ser-
vices to implement planning and scheduling algorithms
as well as complete end-to-end applications [11].

Moreover, the languages currently in use for defin-
ing planning and scheduling problems (not only for
space applications) are based on different assumptions.
Some languages are based on the notion of action and
state, like the Planning Domain Definition Language
(PDDL [14]), others are based on the notion of time
intervals and values, like the E’s New Domain
Definition Language (NDDL[5]) or the A’s Domain
Definition Language (DDL[19]), some are based on
the notion of activities decomposition and resource us-
age, like the A Modeling Language (AML[24]).

ese languages are actually in use, i.e., there are
solvers able to find plan/schedules for domains and
problems represented in these languages. is is due
to the fact that these languages have been either de-
ployed together with (or on purpose for) the related
software platforms (as in the case of NDDL/E,
AML/A and DDL/A) or they have been de-
signed targeting a specific community of experts to en-
tail planners comparison and compatibility (as in the
case of PDDL ). No or little attention has been de-
voted to the usability or suitability of these languages out
of the specific community/environment for which they
have been originally designed. In other words, these
languages have been designed having in mind the plan-
ner and the planner experts more than the modeler and
the domain experts, resulting in the need of an expert of
the language (and often an expert of the planner to be

¹A detailed description of the timeline based approach, state of the
art of the technologies in use and basic concepts like timeline, state
variable and resource is out of the scope of this paper. More informa-
tion can be found for example in [22, 15, 19] among the others.
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used as well) to practically use them.
Recently the interest in the usability of AI planning

and scheduling tools is growing up and the research in
the areas lying between planning & scheduling technol-
ogy on the one side, and practical applications and prob-
lems on the other is gaining more and more interest. In
particular the focus is on the area covering the acquisi-
tion, formalization, design, validation and maintenance
of domain models, and the selection and optimization
of appropriate machineries to work on them.
Recent works aimed at putting together themost use-

ful features (for applicative domains) of the different
proposals, with the ambitious goal of defining languages
able to represent all the different aspects of domain and
problems. e Action Notation Modeling Language
(ANML[4]) is an example of such an effort. ANML
derives features from PDDL , NDDL and AML to
represent actions, conditions and effects, rich tempo-
ral constraints, activities, resource usages and HTN de-
compositions. is is certainly a prominent direction to
bridge the gap between the problem and the technol-
ogy, but does not solve the core problem yet: the need
of an expert of the language to model the problem.
On the other side, an alternative solution could be to

use the languages designed for domain experts and op-
erators (see for instance the Spacecraft Command Lan-
guage [8], the Procedure Representation Language
[20] and the Procedure Language for Users in Test
and Operations, [1]). is approach simplifies
the problem from the user’s perspective, and in fact thre
are both translations of procedural languages into plan-
ning languages (see for instance [7]) as well as attempts
of direct using procedural languages in mission planning
systems (see [6] for instance). e main problem, at
the current stage of deployment of AI solvers, is that it
is very difficult to use directly languages not based on
strong theoretical assumptions like (temporal) logic or
constraint satisfaction problems. In fact the use of these
languages for AI planning poses problems with the un-
derlying semantic of the procedures[23].
A possible different approach is to investigate how to

translate typical modeling primitives used in the opera-
tional context into fragments of domains represented in
languages used for timeline based planning. e advan-
tage is to make available these primitives without giv-
ing away all the advantages of the languages close to
the planning technology. In other words, we are not
proposing a translation of a language into another one,
but a conceptual mapping of some primitives not usually
available in languages for planning and scheduling into

P(?x)

΀ϭ͕ь΁

Q(?y)

΀ϯ͕͍Ǉ΁
R(?z)

΀ϭ͕ϯ΁

Sequence

Constraint

Value
Duration

?x > ?z

@?x > 0

@t<2

Guards

Figure 1: State Variable

fragments of domains specified in a language for plan-
ning and scheduling. is of course does not solve the
modeling problem per se, in fact there is no direct trans-
lation of a language into another one, but it can pro-
vide modeling primitives which are semantically closer
to user’s knowledge.
In the following section we first focus on timeline-

based planning briefly discussing the modeling primi-
tives they provide, then we introduce the concepts be-
hind the 2 knowledge engineering environment un-
der deployment.

3 Modeling P&S Problems with Timelines

State-of-the-art timeline-based planning languages are
based on a few modeling primitives: state variables, re-
sources, temporal/value synchronizations among differ-
ent timelines and hierarchical decomposition primitives.
State variables represent components that can take

sequences of symbolic states subject to various (possi-
bly temporal) transition constraints. is primitive per-
mits the definition of timed automata as the one repre-
sented in Figure 1; here the automaton represents the
constraints that specify the logical and temporal allowed
transitions of a timeline. A timeline for a state variable
is valid if it represents a timed word accepted by the au-
tomaton.
e automaton models: (1) the values that the time-

line can take, possibly as function of numeric or enu-
merated parameters; (2) transition constraints on these
values, possibly with additional constraints that restrict
the transition to a subset of the possible values that the
parameters can take (in the example in Figure 1 the tran-
sition from P(?x) to R(?z) imposes that ?x>?z); (3)
temporal constraints that state the minimal and maxi-
mal temporal duration of a value and (4) guards that re-
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strict the applicability of a transition, either based on the
value of a parameter (in the example the transition from
P(?x) to Q(?y) is allowed only if ?x>0) or on the
relative timing of the transition (in the example the tran-
sition from R(?z) to P(?x) is allowed only if R(?z)
has been maintained for less than 2 time units).
e timed automaton (i.e., state variable) is a very

powerful modeling primitive, widely studied both at
theoretical level (see [3] for instance) and for which ex-
ist implemented algorithms to find valid timelines. In
fact all the planning architectures mentioned above are
able to calculate valid timelines for timed automata, with
some restrictions on the type of values and constraints
specified for the parameters, and under certain assump-
tions on the number of states and structure of the tran-
sitions.
A resource is any physical or virtual entity of lim-

ited availability, such that its timeline (or profile) rep-
resents its availability over time, a decision represents a
quantitative use/production of the resource over a time
interval. A reusable resource (as in [10]) abstracts any
real subsystem with a limited capacity cmax, an activ-
ity uses a quantity of resource during the limited in-
terval. For example, an electric generator has a max-
imal available power Pmax (its capacity). An activity
uses power during an interval of time and as soon as the
activity ends, the amount of resource can be reused by
other activities. A set of activities are feasible when for
each time t the aggregate demand p(t) (or profile) is
below or equal to the resource capacity cmax. A con-
sumable resource (as in [21]) abstracts any subsystem
with a minimum capacity cmin and a maximum capac-
ity cmax, consumptions and productions consume and re-
store a quantity of the resource in specific time instants.
For example, a battery has a minimum amount of charge
that has to be guaranteed (can be more than 0 for op-
erational or security reasons) and a maximum capacity.
Operations can either consume (e.g., by using payloads)
or recharge (e.g., by using solar arrays) the battery. A
set of productions and consumptions are feasible when
for each time t the aggregate use u(t) (or profile) is in
between the resource minimum and maximum capac-
ity (i.e., cmin ⩽ u(t) ⩽ cmax). All the architectures
mentioned above have the capability of representing and
solving scheduling problem with resources. is is a
crucial capability for modeling and solving planning and
scheduling problems in space, since the need of repre-
senting and reasoning efficiently on time and resources
is a must in this field.
In timeline-based modeling the physical and tech-

nical constraints that influence the interaction of the
sub-systems (modeled either as state variables or re-
sources) are represented by means of temporal and log-
ical synchronizations among the values taken by the
automata and/or resource allocations on the timelines.
Languages for timeline-based planning have constructs
(as the synchronization in DDL or the compatibility in
NDDL, see [22, 19] for formal definitions) to repre-
sent the interaction among the different timelines that
model the domain. Conceptually these constructs de-
fine valid schema of values allowed on timelines and
link the values of the timelines with resource allocations.
Despite the syntactic differences, they allow the defi-
nition of Allen’s[2] like quantitative temporal relations
among time points and time intervals as well as con-
straints on the parameters of the related values. As an
example to clarify the concept, let us present a synchro-
nization in a robotic domain.

Let’s consider a rover equipped with a stereo camera,
an on-board memory and a communication facility. e
rover is able to autonomously navigate the environment,
to take pictures (storing them in the on-board mem-
ory) and to send files to a remote orbiter. In order to
model the rover domain, the following subsystems are
considered: a mobility system, a camera , a com-
munication system  and a memory ². In the
model, we also assume the rover able to move between
two points in space. Hence the mobility system can be
modeled as a state variable which can assume the fol-
lowing values: (?x, ?y) when the rover is standing in
⟨x,y⟩ and T(?x, ?y) when the rover is moving to-
ward ⟨x,y⟩. A transition T(?x, ?y) → (?x, ?y)
denotes a successful move to ⟨x,y⟩ and a transition
(?x, ?y)→ T(?x ′, ?y ′) denotes the rover starting
to move from a point ⟨x,y⟩ to a point ⟨x ′,y ′⟩.

e rover camera can take pictures (in the current po-
sition of the rover) and store each picture on an on-board
memory with a given file id. Hence the camera can be
modeled as a state variable which can take the following
values: I(), when the camera is not taking pic-
tures and P(?file_id) when the unit is taking a
picture that will be stored in a file with id = ?file_id.

e communication system can dump a file with a
given id. Hence it can be modeled as a state variable
which can take the following values: I(), the
idle status, and (?file_id) when the unit is dump-
ing a picture stored in a file with id = ?file_id. We

²is is just an excerpt of a real domain. See [17] for an extensive
description of the domain and the model.
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assume a timeline  modeling the availability of a vis-
ibility window between the rover and the orbiter.
ememory has a fix amount of cells available to store

pictures. A cell is occupied when a picture is stored and
freed when a picture is transmitted to the orbiter. Hence
it can be modeled as a consumable resource with unary
consumption and production events.
A goal P(?x, ?y, ?file_id) can be

achieved by the rover by: (a) taking a picture with id =
?file_id, with the rover in ⟨?x, ?y⟩ and (b) dumping
the picture. e sub-goal (a) of taking a picture in a
given position can be achieved by synchronizing the
value .P(?file_id) of the camera timeline
with the value .(?x, ?y) of the mobility system
timeline. e sub-goal (b) of dumping a picture with
a given id can be achieved by synchronizing the value
.(?file_id) of the communication timeline
with a value .() of the visibility window
timeline. e memory management is modeled by
synchronizing a memory consumption at the start of
the task of taking a picture and a memory production
at the end of the dumping task.

is mix of causal and temporal relationships among
the operations can be stated with the following synchro-
nizations in DDL³:

 MT {
 P(?x, ?y, ?file_id) {

 .P(?file_id);
 .(?file_id);

 .(?x, ?y);
  [,+INF] [,+INF] ;
  [,+INF] [,+INF] ;

  [, +INF] ;
  [, +INF] [, +INF] ; }}

  {
 (?file_id) {

 .();
  [, +INF] [, +INF] ; }}

  {
 (?file_id) {
 .();
 - ; }}

  {
.P(?file_id) {
 .();
 - ; }}

HTN is one of the most used planning techniques in
real world applications, in part because it allows to ef-
fectively encode knowledge into domain-independent

³We use here the APSI platform modeling language as a reference
because this is the syntax we are more familiar with. is choice is
only for convenience, since we are using standard primitives available
in any language for timeline based P&S.

planners. It is based on the differentiation between
primitive tasks that can be directly executed and com-
pound tasks, which must be decomposed in primitive
tasks. e organization of tasks in hierarchies helps to
simplify the modeling, which is one of the major prob-
lems that engineers need to face to deploy automated
tools and at the same time allows for more understand-
able plans for the human expert. Some of the lan-
guages currently in use provide primitives for decompos-
ing tasks into sub-tasks. Such a primitive differ concep-
tually from the synchronization because the reference
activity is not justified by the sub-goals but is actually
meant to be substituted by the sub-goals.
e modeling primitives introduced so far, although

simple and intuitive, proved to be not so straightfor-
ward for users without a specific knowledge in advanced
planning. In fact it is not obvious how to express cer-
tain constraints or imperative primitives very common
in operational contexts. More in general even though
there are common structures in practical problems that
can be modeled with timed automata, resources, syn-
chronizations and decompositions, it is not obvious for
not experts how to do it. And the resulting models are
difficult to be specified and managed if constructs at the
proper level of abstraction are not made available.
Last but not least, even for experts, it is difficult to

manage domains when the number of states, synchro-
nizations and decomposition grows up, often leading to
a situation where even experts have problem in under-
standing the logic of the domains if they have to be up-
dated or fixed after the initial design. is is a typical
problem in programming, and modeling for AI systems
can be considered conceptually similar to programming.
For this reason, the assumption is that techniques widely
used in traditional programming can be adapted and ap-
plied to the design and maintenance of models in AI
planning.

4 Pattern-BasedModeling

A well established methodology for simplifying the
problem of writing and maintaining code is the use of
patterns. In software engineering, a design pattern is “a
general reusable solution to a commonly occurring prob-
lem within a given context in software design. A design
pattern is not a finished design that can be transformed
directly into source or machine code. It is a description
or template for how to solve a problem that can be used
in many different situations” (from Wikipedia).
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e same principle can be applied to the problem of
designing and maintaining models of AI planning and
scheduling technologies. Instead of modeling the prob-
lem in terms of generic timed automata, temporal syn-
chronizations and constraints among timelines, the user
composes themodel bymeans of a set of pre-defined au-
tomata (the patterns) and connect them with a reduced
set of temporal and logical primitives. e 2 environ-
ment allowsmodeling concepts like processes, tasks, im-
perative constructs, cycles, conditional branches, con-
currency and resource usages. e output of the process
is a specification in timeline-based planning language
that can be used to feed a domain independent timeline
planner.
From the point of view of the methodological ap-

proach, to use patterns with AI models, we need to: (a)
identify “common occurring problems” in P&S and Ex-
ecution, (b) design and test (with the planner) model-
ing patterns for these problems, (c) classify an instance
of a real problem to be modeled as one of the “common
occurring problems” identified at point a) and (d) in-
stantiate the pattern into a fragment of the real model
specified in the target language.
Let’s think for instance to processes that cyclically

need to interrupt the sequence of states they’re going
trough to get a specific status before re-starting the se-
quence (like processes that cyclically need to shut down
an instrument to avoid overheating for instance). Con-
ceptually such a process can be defined as: (1) a set of
operational states i cyclically taken by the process and
the growth of temperature ∆i after the execution of a
task i; (2) the condition on the temperature to detect
the need for interrupting the sequence, like for instance
the maximum temperature tmax allowed for operating
the instrument and (3) the special status  that restore
the safety conditions when the sequence is interrupted.
From the modeling point of view these processes when
modeled with a state variable need to have a transition
from any operational status to the shut down status (to
entail the interruption of the activities from any opera-
tional status) and a transition from the shut down status
to all of the operational states (to entail the re-start of
the operation after the shut down). In addition to that,
proper constraints need to be added to the transitions to
entail the correct logic of interrupt and re-start.
Such an automaton is difficult to be specified man-

ually in the model because of the combinatorial explo-
sion of the number of the transitions and constraints to
be added in order to enforce the correct logic, and be-
cause there are elements that requires careful modeling.

S0(?t0)

S1(?t1)

Sn(?tn)

?t1 = ?t0 + ∆0

?tn = ?t(n-1) + ∆(n-1)

t 0
=

 t
n

+
 ∆ n

@?t0 + ∆0 < tmax

@?tn + ∆n < tmax

R(?v)
?v = s1

@?t0 + ∆0 ≥ tmax

@?t1 + ∆1 ≥ tmax

@?t1 + ∆1 < tmax

@?v = sn

?t0 = 0

@?v = sn-1

?tn = 0

Figure 2: Interrupt Pattern

In this case for instance, since the process interrupted
has to re-start from different states depending on when
it has been interrupted, it is necessary to add a purely
syntactical parameter to the idle status to keep track of
the break point (see Figure 2).

is is a good candidate for a pattern: it is general
enough because it is parametric with respect to the states
and the conditions that interrupt the sequence; it is sig-
nificant because this is a common behavior of a wide
range of processes; can be translated automatically into
a timed automata and specified with the planner lan-
guage and, last but not least, it adds semantic value to
the model allowing the modeler to immediately iden-
tify the logic behind all the states and constraints of the
automata.

One more example of pattern could be related to the
need of synchronizing a process with contingent values
known at execution time, to obtain for instance the exe-
cution of specific tasks to recover from a error conditions
driven by the actual status of the platform. In this case
we assume that the plan will be executed, and during the
execution the values of the telemetry of the platform that
is executing the process are made available to the execu-
tor. We want to model a process that is able to react to
some values of the telemetry, i.e., a process that by de-
fault executes a specific task, and can execute some other
tasks in response to contingent situations. is scenario
is more complex than the one presented above, because
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the planner does not have, at planning time, all the in-
formation needed to choose the right set of tasks to be
executed. For this reason, a nominal plan has to be cal-
culated for this scenario, but the model has to be robust
enough to enforce the proper reaction (by re-planning)
if, at execution time, the value of the telemetry is differ-
ent from the one supposed at planning time.
Hence we need to model at least two different sce-

narios: a “nominal” one, i.e. what is the configuration
⟨TD,D⟩ of task TD and telemetry value D expected
in default conditions and (2) one (or more) not nomi-
nal scenarios i →Ti, i.e., what are the telemetry values
that require a reaction and what task has to be executed
to react. ere is a number of requirements for the plans
that can be generated from the model to guarantee the
correctness of the behavior that can be obtained execut-
ing these plans. First of all a nominal plan has to fail if
the telemetry configuration changes during the execu-
tion of the nominal task TD into a status that require to
execute a different task (this is to enforce the reaction, if
the envelope for the nominal plan accidentally contains
configurations of the telemetry that needs a reaction,
the platform might not react when needed). Secondly,
a plan to react to a given configuration of the teleme-
try must fail with any other configuration (included the
nominal one), to ensure the right reaction of the plat-
form and to avoid an “over-reaction” (i.e. a reaction in
nominal conditions). Finally, any plan for the not nom-
inal conditions has to interrupt the nominal task and
restore the status after its execution (to handle multiple
reactions).
To translate this pattern into timelines, we need to

add to themodel also synchronizations among the time-
line TLP of the automata that models the process and
the timeline TLT that models the telemetry. To TLP

we associate an automata with at least one status TD.
To react to a generic value i we conceptually add to the
automata the paths TD →I→Ti →R→TD, where the
states I (for Interrupt) and R (for Restore) aim a model-
ing the procedures to interrupt the current activities and
to restore the default status of the platform(see Figure
3, top).
Besides that, we synchronize the values of TD and Ti

with the values of the timeline TLT that triggers the
reactions. In order to guarantee at the modeling level
that nominal plan must fail if the telemetry configura-
tion changes during the execution into a status that re-
quire a reaction, we force the nominal task TD to occur
during the value D of TLT . In order to ensure that a
plan for a reaction Ti will fail with any other configu-

Figure 3: React Pattern

ration of telemetry than i, Ti will be synchronized to
occur during i. Finally, to guarantee that the platform
will be able to perform TD after Ti, R will be synchro-
nized to restore the value D at its end (see Figure 3,
bottom)⁴.
is is also a good candidate for a pattern. is is a

typical behavior of systems that can get into not nomi-
nal states that require reactions. e pattern can be de-
scribed with a reduced set of information, basically the
pair ⟨TD,D⟩ that model the nominal conditions and
the list of reactions i →Ti. Having that, the automata
and the synchronizations of the model can be derived
automatically.

5 e 2 Knowledge Engineering
Environment

e2  under deployment is based on the notion of
process and task. A domain is made of a set of processes,
supposed in execution concurrently (for each process
there is one timeline in the model). Each process can
be decomposed into sub-processes and tasks (which in
turn can be again decomposed into sub-tasks) by apply-
ing decomposition patterns. At each process correspond a
timed automaton. For each task there is a status in the

⁴An application of this pattern in a real robotic domain can be
found in [18].
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Figure 4: Use case: P&S Expert

automaton plus some other states that depends on the
decomposition pattern applied to generate the automa-
ton.
In addition to that there are symbolic and numeric

variables. Variables can be of two types: controllable
and uncontrollable. Controllable variables are associated
to one or more processes. e actual value of control-
lable variables is given by the tasks of the processes to
which the variables are associated. Uncontrollable vari-
ables model the telemetry of the physical system being
modeled as well as any other exogenous event pertinent
to the model. e values of uncontrollable variables can
be either unknown at planning time (like the telemetry
for instance) or provided with the specific instance of a
problem (like orbital events for instance).
e structure of the automaton associated to a process

can be designed by decomposing it into tasks applying
decomposition patterns or structural patterns. ese pat-
terns can be applied recursively to the tasks to further
decompose them into sub-tasks or to the whole pro-
cess to decompose it into concurrent processes. Pro-
cesses can be synchronized by applying synchronization
patterns. Resource usages are modeled by applying re-
source allocation patterns to the tasks of one or more pro-
cesses.
Decomposition patterns allow the definition of se-

quences of tasks, alternative tasks, if-then-else branches,
for and while loops. Regarding the decomposition of
a process into concurrent sub-processes, the patterns
allow the definition of fork/join structures. At the
branching points, conditions on both controllable and
uncontrollable variables can be specified. In the first
case, branches are translated directly into constraints on
the timed automata that represents the process (an ex-
ample of this type of branching is the variable t in the
automaton in Figure 2, which is controllable because its

DDL 

Repository

K2E KEE

APSI

Planner, Scheduler & Executor

DDL Plans

Existing

Patterns & Models
New Models

Specs

Domains & 

Procedures

Design and Test

DDL Models

Models &Patterns

Repository

Figure 5: Use case: Domain Expert

value depends on the planned tasks), in the second case
synchronizations are added to the model to enforce the
right logic (an example is the value of the telemetry vari-
able in the pattern in Figure 3).

Structural patterns allow the definition of entire
blocks (like the twos described in Section 4). Combined
with decomposition patters, structural patterns can be
used to enforce a structure to the whole process or to
the sub-tasks of a process. e structural pattern can be
designed and tested directly into the environment, mak-
ing available an evolving repository of patterns that can
be used to compose increasingly complex domains.

Resource allocation patterns allows the definition of
set of tasks that concurrently requires amounts of a given
resource or sets of tasks that produce or consume a given
resource. e translation of these patterns is done by
synchronizing in the model the tasks with activities to
be allocated on the resource (the first case) or produc-
tion/consumption events for consumable resources (the
second case).
e 2 environment uses the services provided by the
ESA’s A framework to compile fragments of DDL
into A domains. e PS solvers and the execution
platform of the A framework can be used to test the
patterns and the domains.

Possible 2’s use-cases depend on user’s class. When
the user is a planning and scheduling expert, 2uses the
environment to design and test patterns (see Figure 4).
A new pattern can be designed in the environment by
analyzing the code of existing patterns and DDL speci-
fications in the repository and building the new pattern
either as a composition of existing ones or by direct ma-
nipulation of the DDL code (see Figure 4). is is the
only type of user that directly manipulate the DDL lan-
guage (if needed). emodeling expert uses the planner
to test the code associated to the pattern. e output of
the process is a new pattern in the repository as well as
a fragment of DDL for that pattern.
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When the user is a domain and procedure expert,
2uses the environment to design models by compos-
ing patterns and/or analyzing/updating existing models
in the repository (see Figure 5). e planner and ex-
ecutor in this case is used to test the domain model on
testing problems. e output of the process is a DDL
specification of the domain that can be used with any
A based application.

6 Conclusions

is paper presents the initial design of 2, an ESA
Knowledge Engineering Environment to deal with the
acquisition, design and maintenance of domain models
for current and future AI application for mission plan-
ning. e aim of 2 is to simplify modeling for the
users, without loosing or harming the modeling power
or the properties of the modeling language directly used
by the planner.

e concept of 2 is to make the domain expert in-
dependent from the actual language used by the under-
lying AI technology. For this purpose, the environment
is based on patterns that the modeler composes to de-
fine the domain. e output of the process is a machine
generated specification in timeline-based planning lan-
guage that can be used to feed the domain indepen-
dent timeline planner. e set of proposed patterns is
still initial, nevertheless is already possible to manage a
subset of interesting features of real domains in mission
planning. Moreover, 2 is designed also as a support
for PS experts for designing new patterns.

An environment to generate automatically domains
inevitably induces an increased level of complexity in
the problems managed by the AI technology. As a side
effect, such a tool induces the need for increasingly ef-
ficient solvers, resulting not only in a new technology
(hopefully) useful in operational contexts, but also as a
leverage to foster research in domain independent plan-
ning and scheduling. In our case, since one of the main
advantages of the pattern-based design is the strong se-
mantical connotation of domain fragments, the possi-
bility of using the additional information (induced by
the structure of the patterns) to speed the search of the
domain independent planner is also currently being in-
vestigated.
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Abstract. Future missions to primitive bodies
will have limited time to explore these unknown
bodies. Because of long round trip light times,
if a mission commands the spacecraft at a de-
tailed, time-sequenced level, there will be no op-
portunity to dynamically change the mission to re-
spond to science opportunities. In order to address
this issue, we are developing flight software to en-
able onboard science target detection and onboard
response technologies to enable closed loop au-
tonomous response for primitive bodies missions.
ese response methods must be able to predict
the future opportunities to view the newly detected
target using predicted spacecraft trajectory, target
position and rotation, and future illumination con-
ditions. ese types of geometric reasoning for
observation planning have traditionally been per-
formed on the ground by highly skilled operations
personnel. We describe the software under devel-
opment and its application to future primitive bod-
ies missions.

1 Introduction

Primitive bodies offer a unique view into the early solar
system. Many of these objects (e.g. asteroids, comets)

*Corresponding author. E-mail: steve.chien@jpl.nasa.gov
Copyright 2013 California Institute of Technology. Government
sponsorship acknowledged.

are unevolved since the early solar system and there-
fore present a unique view of the early solar system.
Current space missions are exploring primitive bodies -
most notably Dawn which is exploring Vesta and Ceres
and Rosetta which is visiting the comet Churyumov-
Gerasimenko. Additionally, future missions are under
study to further explore these unknown primitive bod-
ies.
Many primitive body missions have limited durations

at a target. Because primitive bodies have a lesser grav-
itational field and there are a large number of asteroid
primitve bodies (in the asteroid belt) it is possible to visit
multiple bodies in a single mission. erefore missions
with multiple flybys and orbits are quite feasible. Dur-
ing a flyby the approach velocity is likely to be quite high
so that the entire encounter might be of short duration
(hours) - not enough time for the ground to be in the
loop to modify the plan based on observed science.
We have adapted and extended a science event de-

tection and procedural response capability to enable on-
board autonomous mission response for primitive body
exploration. is procedural response capability uses
a resource-aware reasoning system [9] developed as
an extension to the Virtual Machine Language (VML)
flight executive [5] flying on numerous spacecraft. Fu-
ture plans include adapting the CASPER model-based
onboard planning system [1, 2] as well as compari-
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Figure 1: An Agile Science Spacecraft investigating
high albedo areas on an asteroid.

son and evaluation of the two approaches. Our current
VMLadaptation runs in a software simulation of an em-
bedded platform.
is prototype interfaces with onboard science detec-

tion software to enable rapid detection of science phe-
nomena, and with navigation and geometric reasoning
libraries to enable accurate planning and re-planning of
followup observations. In the implemented scenario,
the executive has a default observation plan of mapping
the asteroid as it part of a pre-planned flyby. How-
ever early imagery is processed onboard to detect tar-
gets of interest, such as an outgassing event, an area of
compositional interest, or detection of a satellite. Pre-
developed science priorities indicate that such an even
is higher priority than the pre-defined observation cam-
paign, spawning new science goals. e onboard navi-
gation/geometry software calculates potential new slews
to support possible followup imaging activities to en-
hance science. e resource-aware VML accepts these
new observation requests, and incorporates them as pos-
sible within the science priorities and operations con-
straints. e new plan is then executed and the space-
craft is able to acquire the preferred science imagery.
is scenario is depicted in the graphic shown in Fig-
ure 1 in which a spacecraft investigates high albedo areas
on an asteroid.
e software prototype is currently running with ad

hoc interfaces (e.g. file) and a software simulation. As
part of our continuing effort this software will be de-
ployed to a hardware embedded platform to further ma-
ture it and ready it for future mission use. Future efforts
also include expanding the range of operations scenar-
ios.

Autonomous science provides the spacecraft with the
capability to:

- detect science phenomena onboard, and

- respond by altering the original mission plan to
take key observations to increase science.

Many operational scenarios exist where this onboard
capability could enhance science. For example, onboard
software could enable detection of an outgassing event at
an asteroid or comet using an imaging instrument. Ad-
ditional onboard software might then respond by com-
manding the spacecraft to acquire additional imagery,
thereby exploiting a brief science opportunity otherwise
missed.

In the remainder of this paper we first describe
some of the unique challenges for primitive body mis-
sions. We then describe the ways in which agile science
tehnologies can address these challenges through adap-
tive, onboard autonomy. Next we describe the overall
concept of operations of agile science. We then pro-
vide examples of onboard science event detectors un-
der study. We then describe the onboard procedural
response component of the onboard autonomy system.
Finally we discuss status, related work, future work, and
conclusions.

2 Primitive Bodies Exploration -
Challenges and Opportunities

Exploring primitive bodies present a number of chal-
lenges. First, the science features and events being de-
tected include varied and subtle signatures:

- Plumes and outgassing events can be quite faint
and may present in orientations that challenge de-
tection (e.g. a plume erupting towards the space-
craft).

- e relative position of the Sun (illumination) with
respect to the target and observer may not be ideal
(e.g lighting behind the target).

- e morphology of the target may also present il-
lumination challenges. If the target body has a very
irregular shape, the exact illumination and observer
viewing geometry may not be easily predictable.

- e target body may have unkown geology, mak-
ing estimation of reflectance and other parameters
more challenging.
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Figure 2: Table highlighting (top) unknowns for primitive bodies missions and (bottom) applications of agile
science technologies to these primitive bodies missions. Table from [12] reproduced with author permission.

In addition, primitive bodies exploration often
present challenging timescales. Target bodies in the as-
teroid belt imply round trip light times to the Earth of
approximately 1 hour. Given flyby durations of approx-
imately 1 hour ground analysis and response to down-
linked science data by a ground team is not possible.
Exploring primitive bodies is challenged by many un-

knowns.

- e gravity field of the target body is typcially now
known except with very poor estimation. is poor
gravity model will add uncertainty to any projected
trajectory.

- Gas fields (e.g. for a comet) and outgassing events
for comets and asteroids are unpredictable and can
change the science environment as well as trajec-
tory (due to changes in drag) with little or no warn-
ing.

- Unkown satellites. It may not be known if there are
satellites prior to arrival. Satellites are both science
targets and spacecraft safety hazards.

Finally, there are a limited number of close-up
datasets for primitive bodes. is is particularly impor-
tant in the context of the diversity of primitive body ob-
jects.
Agile science tchniques are applicable across a wide

range of primitive body missions/concept either flying
or under study. Figure 2 (top) shows the many un-
knowns that primitive bodies missions encounter. Fig-
ure 2 (bottom) shows the many relevant agile science
technologies for each of the target primitive bodies mis-
sions.

3 Agile Science Scenario: Flyby

Our driving scenario for onboard autonomy aka ”Ag-
ile Science” is a primitive body flyby scenario. Consider
the 2010 Rosetta Orbiter flyby of the Lutetia asteroid.
e timeline of the flyby is shown in Figure 3. With
a relatie velocity of approximately 15 km per second,
the flyby lasts less than an hour, far too short to involve
the ground in the loop to command the spacecraft with
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Figure 3: Timeline of the Rosetta spacecraft flyby of the
asteroid Lutetia in 2010.

round trip light times being around an hour.
Traditionally, flybys wold be painstakingly planned

by the ground using best estimated locations of ex-
pected targets of highest science interest. ese ground
planned observation sequences would be time-based se-
quences and would be executed open loop. Specifically,
early acquisitions of science data would not be able to
inform later observations.
In the Agile Science paradigm, the spacecraft and

flight software enable onboard analysis of acquired sci-
ence data to inform the subsequent actions of the space-
craft. Specifically, the Agile Science paradigm of exe-
cution would be as follows.

- Acquire science data

- Analyze science data

- Generate new data acquisition/target requests with
priorities as pre-specified by the science team

- Assimilate new target requests into operational
plan as appropriate based on prioritization.

is paradigm is highlighted by the operations sce-
nario shown in Figure 4 which provides further detail
on the autonomous target detection, prioritization and
response.

4 Automated Target Identification

An important aspect of the Agile Science methodology
is the ability to analyze data autonomously onboard the
spacecraft to detect high priority science targets. While
the general concept of Agile Science applies to a wide
range of instruments initially we have focused on imag-
ing instruments because they are central to most space

missions. For primitive bodies exploration there are a
wide range of science phenomena that can be discovered
upon arrival at the target that warrant followup obser-
vations. A number of these we discuss below.

- Satellite search

- Outgassing/plume detection

- Volatiles search, materials search

Figure 5 shows two promising onboard processing
analysis products. At left is shown aHighAlbedo detec-
tion in imagery of theHartley asteroid as acquired by the
Deep Impact spacecraft. In this algorithm bright areas
on the target body are extracted as these are areas of high
science interest because of possible presence of volatile
substances. At right is shown a morphology-based de-
tection of a plume in imagery of Enceladus acquired by
the Cassini spacecraft. In this algorithm the body of
the target (e moon Enceladus) is fitted to an ellipse
and the algorithm is searching for an area of brightness
outside of the estimated target body (ellipse). Such an
area if found may be a plume which is of high scientific
interest.

e onboard detection algorithms produce images
with a (possibly empty) set of detections. Next, based
on pre-specified science priorities defined by the science
team, targets are determined from these detections. For
example, a target may be generated only if a plume ap-
pears in N consecutive frames of imagery. Or a bright
albedo algorithm may only produce a target if the area
of bright albedo exceeds a given threshold of brightness
and exceeds an area (size) threshold. e output of the
target detection algorithm is a set of prioritized targets
in the acquired imagery.

5 Geometric Computation

e target identification produces a set of targets (with
associated priorities) in the imagery (e.g. specified in
the image space, e.g. line, sample). is image space
coordinate must be transformed into a target space co-
ordinate (e.g. lat/lon, altitude on target body). Next
calculations based on the spacecraft trajectory must be
combined to determine legal viewing times (in effect
accounting for solar position, rotation of target body,
etc.). is will produce a set of possible re-imaging op-
portunities. Each of these can be considered a tuple
of (opportunity-type-ID, priority, start time, end-time)
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(a) Initial images acquired on approach. (b) Approach images processed onboard to determine
followup targets.

(c) Remaining flyby replanned in light of new detected
targets.

(d) Followup images acquired if science priorities war-
rant.

Figure 4: Agile Science Flyby Scenario

which implies a required spacecraft pointing (via the op-
portunity type and associated observation and target lo-
cation. ese observation opportunities are then passed
onto the onboard response system as new requested sci-
ence goals with appropriate prioritization. An impor-
tant point is that this geometric reasoning involving the
relative positioning and trajectories of the target body,
spacecraft, sun, and other bodies is typically done in
a time and knowledge intensive ground-based observa-
tion planning process. One of the unique aspects of this
work is to migrate this functionality onboard the space-
craft.
For many of these geometric calculations the SPICE

library [7] is the common standard used for spacecraft
operations. In our implementation we have used a com-
bination of libraries from SPICE as well as some custom
code. One element of future work will be to ensure that
these calculations can fit within limited flight software
computing resources.

Once the timing of the re -observation opportunities
has been computed they can be passed to the procedu-
ral response system which can then attempt to (schedule
followup observations as warranted by the science prior-
ities.

6 Procedural Onboard Response

For the current Agile Science software prototype we uti-
lize a procedural response system. Specifically we have
implemented our response system on top of the Vir-
tual Machine Language (VML) flight executive [5].
VML is flying aboard numerous missions including
Mars Odyssey, MRO, Genesis, Pheonix, Grail, Spitzer,
Juno, Dawn, and others. VML enables layered, modu-
lar autonomous response organized byVirtualMachines
(VM’s). We utilize a goal and resource manager [9] lay-
ered on top of base VML that enables efficient reasoning
about prioritized goals and resource conflicts. Central
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Figure 5: Example target detection and identification as shown by [11]. Left: High Albedo Target detection on
Deep Impact/Hartley data Right: Morphology-based plume detection using Cassini/Enceladus data.

Figure 6: e process of determining when a target can be re-observed requires mapping the image space target
into the target frame of reference coordinate system and then acounting for spacecraft position and pointing, target
position and rotation an dother relevant features (such as the position of the sun).
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Figure 7: Dynamic goal selection in response to a newly generated high priority observation goal.

to the goal and resource manager is the concept of a
flexible goal set. In our goal manager, goals represent
a fixed set of activities to accomplish some purpose. For
example, the set of activities required to take an image
of the comet may represent a single goal even though
many subparts are required to point the spacecraft, pre-
pare the camera, acquire the image, write the image data
to mass memory, repoint the spacecraft, and shutdown
the camera. e goal manager also understands state
and resource needs of the goals and uses this informa-
tion to detect and track interactions (conflicts) between
goals. At the core of the goal manager is an efficient
computational algorithm to select the highest priority
goals that do not conflict for inclusion into the current
baseline plan at any point in time.

Figure 7 illustrates the operation of flexible goals sets.
At first, the plan includes Observation 1, processing
the data from observation 1, then taking observation 2.
However, processing the data from observation 1, re-
sults in the creation of a new goal observation 3. Ob-
servation 2 and Observation 3 conflict, as they occur at
the same time and require different pointings. e goal
manager therefore inserts Observation 3 into the base-
line plan and removes Observation 2 from the baseline
plan. e baseline plan is then executed. A key assump-

tion of the goal selection algorithm is that goals do not
have temporal flexibility (i.e. their start and end times
are fixed). is assumption is key to the computational
tractability of the goal selection algorithm. e goal se-
lection algorithm is an incremental algorithm. It must
be run to re-select goals whenever goals are added or re-
moved from the goal set. A goal is changed by removing
it and adding the updated version. Goals are maintained
in sorted sets. Shared resource and state interactions
are maintained. When adding or removing a goal, only
goals of equal or lower-priority to the added/removed
goals need to be re-selected. Re-selection is worst-case
O(N2lgN) and average case Θ(NlgN). e worst case
is when each goal has a constraint on every available
resource (i.e. maximum interaction) and all goals are
selected (i.e. no conflicts). In the average (typical)
case each goal has a constant number of interactions via
state/resource. e goal selection algorithm is described
in greater detail in [9].

DOI: 10.2420/AF09.2014.83 89



Acta Futura 9 (2014) / 83-91 Chien, S. et al.

7 Discussion and Conclusions

7.1 RelatedWork

Considerable prior work has investigated spacecraft au-
tonomy using procedural methods.

- e Autonomous Sciencecraft (ASE) [1] utilized
a planner (CASPER) in concert with the Space-
craft Command Language (SCL) executive and
has been used for primary operations of Earth Ob-
serving One 2004 to the present (2013).

- V AMOS [13] is an onboard executive in devel-
opment by DLR that validates branching plans on
the ground and then selects execution branches on-
board for operational flexibility.

- GOAC [3] is a goal-oriented architecture devel-
oped by ESA for future onboard use.

- e Remote Agent [6] utilized the batch planner
RAX-PS and the procedural executive ESL [4] to
control the Deep Space One mission for 48 hours
in 1999.

- T-Rex [10] – is a planning and execution archi-
tecture that has been deployed for control of au-
tonomous underwater vehicles.

- SCL [8] in addition to ASE has been used on the
Tacsat-2 mission to offer onboard procedural rule-
based automation.

7.2 Conclusions

Onboard autonomy can enable dynamic science for
primitive body missions. Many science events can be
detected via instrument processing techniques that are
amenable to onboard computation.
We have demonstrated a capability to perform:

- Target Detection

- Target extraction and geometric computation re-
quired for re-observation opportunity analysis

- Modification of the existing observation plan to in-
corporate the new observation if warranted by sci-
ence priorities

- Execution of the new plan

is capability is currently implemened in a software
testbed and is beingmatured for future NASAmissions.
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Abstract. Humans have an innate ability to
extract important information from data sets or
images, but also to solve particular problems on
which computers may struggle. Serious gaming,
and the related crowdsourcing term, are new
computational paradigms attempting to process
enormous amounts of scientific data exploiting
these innate humans capabilities. In this paper
we present Space Hopper, a “serious gam-
ing”experiment aimed at improving interplanetary
spacecraft trajectories design techniques and, at
the same time, at proving that part of an inter-
planetary trajectory design can be crowdsourced.
Space Hopper exploits and collects data on the
users’ problem-solving skills and spatio-temporal
reasoning to help formulate a “human-inspired”
tree search algorithm allowing efficient traversal of
vast trees.

Keywords: crowdsourcing, serious gaming, trajectory
design, tree search algorithms, self-adaptive differential
evolution

1 Introduction

e design of spacecrafts interplanetary trajectories has
been the exclusive domain of mission analysis experts.

*Corresponding author. E-mail: dario.izzo@esa.int

However, recent advances in the field of trajectory op-
timization, coupled to the growth of computational
power, makes it possible to automatize a good deal of the
necessary design steps and thus decrease the knowledge
necessary produce good designs. Sophisticated modern
search strategies (e.g. based on evolutionary computa-
tions) can explore vast solution spaces and locate good
interplanetary trajectories able to compete with human-
competitive results [10] taking the domain expert al-
most completely out of the loop.
With the serious game Space Hopper, we want to

experiment with a radically new approach to interplane-
tary trajectory design which neither solely relies on com-
putational power nor on human expert knowledge. In-
stead, we make use of the human spatio-temporal rea-
soning, intuition, curiosity and general problem-solving
skills, as recorded during a game session, to improve the
search of available trajectory options. By providing an
appealing and easy user interface, humans with little or
no knowledge about orbital mechanics, mission analysis
or space engineering are able to design real trajectories
enabling specific scientific goals to be pursued. In this
first game prototype, the exploration of the Jovian sys-
tem is considered.
From this perspective, Space Hopper can be seen as

a serious game in which players from all over the world
compete to find the best-possible flyable interplanetary
trajectories. Unlike several previous scientific crowd-
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sourcing games looking for explicit solutions to their
specific problem, Space Hopper also extracts informa-
tion about the individual actions of all players on their
way to discovering their final solutions. By applying
machine learning techniques to this sequential data we
aim to model the human decision making progress for
this particular task. Out of this model, we want to in-
fer a human-inspired general search strategy that can
be transferred to other complex interplanetary trajec-
tory problems in order to improve already known fully-
automated search algorithms.
e structure of this paper is as follows: in Section 2

we give a short survey about related work with respect
to serious gaming and crowdsourcing applied to science.
Section 3 deals with the domain of interplanetary tra-
jectory optimization and introduces the problem to be
solved by the non-expert human players. Section 4 will
give details about the user interface, the gaming expe-
rience and the underlying technologies used to develop
Space Hopper. In Section 5 we describe the underly-
ing data model and outline how we intend to use the
collected information. We conclude with discussing fu-
ture work and how crowdsourcing experiments can help
advance the field of space exploration in Section 6.

2 RelatedWork

Using games for other purposes than mere entertain-
ment is widely known under the broad term serious gam-
ing [24, 15], first introduced by Clark Abt [1] in 1970.
While these games may still be entertaining, they tradi-
tionally attempt to educate, inform or train the player.
e objective of a serious game is usually linked to a
real world scenario like military defense [22], health
care [18, 12], emergency management [13], urban plan-
ning [14], education [29] or others.
Luis von Ahn introduced the term games with a pur-

pose [26] in conjunction with the term human compu-
tation in order to describe a certain type of game that
makes use of human brains as a computational unit
in order to solve expensive large-scale problems. is
merges serious gaming with the concept of Crowdsourc-
ing [30, 3], a modern principle of labour sharing, where
the workload is distributed among a vast number of hu-
mans, creating a swarm or crowd.
One popular example for Crowdsourcing is the Re-

captcha project [28] which took scans from books and
magazines where optical character recognition (OCR)
failed and used them for the generation of captchas. A

captcha is a security mechanism for websites to prevent
bots from accessing content dedicated only for humans.
By deciphering two words (one with a known answer
and one from the scanned book) millions of humans
helped digitalizing the archives of the New York Times
basically for free by passing captchas. Another exam-
ple is Crowdfunding ¹, where investments for projects
are gathered in tiny amounts but by a large number of
people.

James Surowiecki [23] argues about the wisdom of
crowds in his same-titled book, by giving examples un-
der which conditions a guess based on aggregated in-
formation from a large number of not necessarily well-
informed people might surpass sophisticated guesses
from experts, ranging from stock markets to finding
sunken submarines. is intriguing effect is of high in-
terest if applied to scientific problems and can be used
among the other benefits of Crowdsourcing in Scientific
discovery games [19, 7].

One of the biggest success stories in this field is
Foldit, a game created by the Center for Game Science
at University of Washington in collaboration with the
Department of Biochemistry [6]. It allows the player
to manipulate long protein strains in 3 dimensions (see
Figure 1) to discover the folded spatial structure given
a specific sequence of amino acids. While this prob-
lem is computationally expensive, the game makes use
of the inherent reasoning, learning and pattern recogni-
tion skills of humans, allowing for a way faster compu-
tation. Amajor achievement of the players of Foldit was
helping to fully model the Mason-Pfizer monkey virus
enzyme, a virus which causes AIDS among monkeys.
Bioengineers have been trying to decipher the structure
of this virus for 15 years whereas the online player com-
munity required just 10 days to fully model it in 3D [11].

ere are several other scientific discovery games to
mention. In the citizen science project Galaxy Zoo Su-
pernovae [21] players were shown the wield-field images
to search for stars in order to classify super nova can-
didates. More projects involve humans to classify bat
calls, galaxy types, cancer cells, discovering exoplanets,
cyclones and many more ². In the online game Eye-
Wire ³, the players help to trace the spatial structure of
neural connections throughout the retina of mice.

Most of the time, scientific discovery games exploit

¹See Kickstarter (http://www.kickstarter.com and In-
diegogo (http://www.indiegogo.com) for two popular plat-
forms.

²See https://www.zooniverse.org
³See https://www.eyewire.org
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Figure 1: A screenshot of Foldit gameplay

the advanced image processing capabilities of humans,
which are still by far superior than nowadays algorithms.
Peekaboom [27] uses these abilities to let its players de-
tect specific objects and relevant regions in pictures. By
providing human annotations, there is hope that games
with a purpose are able to create ontologies to help weav-
ing the semantic web [20].

3 Background

Space Hopper is based on the problem proposed by
NASA’s Jet Propulsion Laboratory ( JPL) as part of
the sixth edition of the Global Trajectory Optimisation
Competition (GTOC6). e participating team were
tasked to globally map Jupiter’s Galilean moons [17]
(Io, Europa, Ganymede and Callisto) using the multi-
ple gravity assist technique within a four-year window.
e surface of each moon is divided into 32 areas (faces)
where each face is either a pentagon or a hexagon. is
division approximates the moons as truncated icosahe-
drons (classic soccer balls). Each face is assigned a score
from 1 to 3 depending on the scientific interest of the
area on a given moon (see Figure 2). Faces on Europa
are worth double points due to higher scientific interest
of this particular moon. Points are scored by succes-
sively mapping faces of each of the four moons. A face
Fi is visited if the closest approach vector rp of a flyby
around a chosen moon is passing through that partic-
ular face. For a face to be visited, it has to be fully or
partially within the ”visitable band” an area on the sur-
face of the given moon where the flyby parameters are
within the allowable bounds (see Figure 3). A face Fi is
visitable if at least one of its vertices lies within the band
or its vertices lie on both sides of the band (yet none in-
side it). Points for visiting face Fi are scored only for

the first flyby over that face, no points are added to the
overall trajectory score for subsequent flybys over face
Fi. e maximum cumulative score for a full tour of the
Galilean moons is 324.

Figure 2: A model of a Galilean moon with face values
represented through colours

At starting epoch t0 the spacecraft mass is M0 =
2000kg, half of which is the propellant, therefore the
mass of the spacecraft cannot fall below 1000kg. With
each flyby the overall spacecraft mass is reduced based
on the thrust used during the Deep Space Manoeuvre
(DSM) with a maximum continuous thrust of τmax

= 0.1N. Furthermore, there also exists a mass penalty
for close approaches to Jupiter to account for addi-
tional shielding from Jupiter’s strong magnetic field.
e penalty is applied if, at any time during the mission,
the spacecraft range to Jupiter goes below 2RJ.
GTOC6 was won by a joint team of University of

Rome and Turin Polytechnic with best score of 311
points. e team attempted to fully map one moon be-
fore moving onto the next one. However, after the com-
petition a new solution scoring 316 points was found by
Advanced Concepts Team (ACT) of European Space
Agency. e trajectory is fundamentally different from
the winning solution of GTOC6 as it exploits a “moon-
hopping” technique allowing rapid transfers between
moons rather than fully mapping onemoon beforemov-
ing to the next one. e found trajectory was evolved us-
ing PaGMO/PyGMO⁴ and is up to date the best known
valid solution for the GTOC6 problem [10].

⁴See http://github.com/esa/pagmo
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Figure 3: e visitable band shown on an example planet

3.1 Orbital mechanics

e problem was defined with great detail and accu-
racy thus it required an appropriate representation of
the Jupiter system and spacecraft dynamics. SpaceHop-
per uses state-of-the-art methods based on PyKEP, an
open-source keplarian calculations toolbox developed by
the ACT. e error margin for the calculations is at
maximum 10−9. e parameters of the Galilean moons
as well as Jupiter were defined in JPL’s problem state-
ment (e.g. Keplerian orbit elements, gravitational pa-
rameter, radius, etc.). e time epochs are encoded in
Modified Julian Date format (number of days elapsed
since 17 November 1858). e moon ephemerides
(cartesian position and velocity) are calculated accord-
ing to values provided by JPL without any perturbations
in the orbits of the satellites. e overall accuracy and
realistic approach to the problem makes it feasible for a
pre-phase A study.

3.2 Trajectory encoding and parameter optimisation

e Grand Tour starts at a point on a sphere of ra-
dius Rs=1000RJ with Jupiter at the centre. e first leg
(called incipit) is unique as it does not include a DSM
in the transfer to the first visited moon. e param-
eters of the first leg are encoded into a 4-dimensional
array (called a chromosome in evolutionary computing)
x0 = [t0,u, v, T0]. t0 is the epoch of the spacecraft
launch date. u and v are used to calculate the coordi-
nates of spacecraft at epoch t0 on the aforementioned
sphere around Jupiter:

r0 = RS(cos θ cosϕî+ sin θ cosϕĵ+ sinϕk̂)

where θ = 2πu,ϕ = cos− 1(2v − 1) − π/2, u and v

were chosen over directly optimising the values of θ and
ϕ to ensure a uniform distribution of sampled points on
the sphere. T0 is the duration of the spacecraft’s jour-
ney to the first visited moon (in days) with its lower and
upper bounds set at 180 and 220 days respectively.

Each subsequent leg of the tour is an interplanetary
trajectory between two moons of Jupiter with a single
Deep Space Manoeuvre. ese legs are also encoded as
a 4-dimensional chromosome xn = [βn, rpn,ηn, τn]
where βn is the flyby angle at the periapsis, rpn is the
periapsis of the flyby, ηn is the timing of the DSM (ra-
tio of days elapsed before the DSM to total leg duration
τn). e bounds for β and rp are calculated for each
face of the currently visitedmoon based on the incoming
velocity of the spacecraft but have to be inside [−2π, 2π]
and [(Rm+50000/Rm), (Rm+2000000/Rm)] respec-
tively where Rm is the radius of the currently visited
moon. η values have to be between 0 and 1 exclusive.

For each leg its chromosome is optimised using a self-
adaptive Differential Evolution algorithm (jDE) [4] to
ensure the best results. jDE allows us to skip parameter
tuning before solving each leg problem and still guar-
antee high performance of the optimisation. e flyby
parameters for each leg of the trajectory are evolved 200
times over 60 generations with 12 individuals. At each
step of the optimisation, an individual is evaluated using
an objective function which calculates each legs change
in velocity ∆V during the Deep Space Manoeuvre. e
evolution attempts to minimise∆V for each leg in order
to make the trajectories as close to ballistic as possible.

e objective function of the first leg is computed
as a Lambert Problem between r0 and r1 with transfer
time T0 where r0 is the position of the spacecraft on the
1000RJ sphere (calculated using the u and v variables)
at time t0. r1 is the position of the first visited moonm0
at time t0 + T0. Each consecutive leg has an objective
function defined as MGA-1DSM [9].

4 Game Design

is section describes the current design status and some
future planned developments for Space Hopper. We
present the details of the different technologies used to
create the experiment. Furthermore, the gameplay and
interface is explained in order to better understand the
application. Lastly, we present the search tree that is
used to represent the underlying problem and discuss
its content and significance.
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Figure 4: A screenshot of the Space Hopper experiment
during play.

4.1 Development and design

Space Hopper was designed with adaptability and com-
patibility in mind. e chosen technologies and meth-
ods comply with the established and emerging standards
of interactive web development.
HTML5 was chosen as to maximise the number of

possible players/contributors as it is the current stan-
dard for dynamic websites and online games. Further-
more, it is currently being introduced on mobile devices
allowing further expansion of the user base and devel-
opment in a new direction through the use of touch-
screens. HTML5 allows for a more engaging design
through combined use with various other programming
languages and technologies. An example of this is using
inline CSS for secondary style definition of the web-
page.
JavaScript is the most crucial element of interactive

web pages and applications as it supports (among oth-
ers) the object-oriented programming style. Such capa-
bilities allow definition and manipulation of composite
objects in Space Hopper as well as carrying out various
complex astrodynamic calculations thousands of times
a second. Furthermore, the differential evolution al-
gorithm is also defined in JavaScript which is currently
emerging as a programming language for scientific pur-
poses and has proved to have high performance [2].
However, SpaceHopper seamlessly incorporated the al-
gorithm without sacrificing the fluidity or the experi-
ence of the experiment. is is mostly due to the im-
plementation of equations being based on the aforemen-
tioned open-source keplerian toolbox, PyKEP.
Space Hopper graphics are also supported by

JavaScript through the use ofree.js [5], a compact, yet

powerful open-source 3D graphics library. It allows cre-
ating various visual objects such as trajectory and orbit
curves, spheres and even truncated icosahedrons (moon
models). Moreover, ree.js manages the crucial scene
objects of the HTML canvas including camera settings,
movement in three-dimensional space and object tex-
turing.
MySQL is used to store data submitted by the players

who choose to do so. e database contains the details
of the players choices and the values of crucial variables
at each step of trajectory design including backtracks.
Each row in the database is a full interplanetary trajec-
tory. PHP is used to transfer the gathered data to and
from the MySQL database.

4.2 User interface and Game-flow

Space Hopper can start in two different ways, with or
without the incipit phase. is choice affects the dif-
ficulty of the later gameplay. Although the two start-
ing points of the game vary only by two legs of the tra-
jectory, designing the rest of the tour is very different.
Designing the full tour (including the incipit phase) is a
much greater challenge because the first trajectory legs
are quite eccentric and have a very large semi-major axis.
e players have to adjust various variables such as leg
duration and the perijove of the leg trajectories in or-
der lower semi-major axis and achieve short-duration
transfers between moons with ∆V ≈ 0. At the very
beginning the player has to choose two moons to fly
by, afterwards the incipit trajectory optimisation takes
place. On the other hand, the second type of gameplay
(post-incipit phase) sets up the initial conditions so that
it is very easy for the players to achieve ∆V ≈ 0 trajec-
tories without having to spend extensive time adjusting
the flyby variables.
Following the initial phase of Space Hopper, the

game continues with the spacecraft at a particular moon
(either the second of the moons chosen during the in-
cipit phase or Ganymede for the non-incipit level. e
player has to select one of the faces on the surface of
the currently visited moon. Depending on the velocity
of the spacecraft and the moon ephemerides, for each
flyby, on average 12 out of 32 of these faces are vis-
itable. e player has to choose very carefully as each
decision has a major impact on the following legs of
the trajectory, even though the immediate gain from the
face value might not be the highest.
After selecting the face to fly by, the player is pre-

sented again with the full view of the Jovian system
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so that he can select the next moon to visit. Again,
the automated leg optimisation follows. is optimi-
sation depends on the previously selected face and the
general user-adjustable parameters of the trajectory leg.
e user can adjust the duration of the following leg (in
days), the perijove of the flyby and the bounds for the
face to ensure scoring of the chosen face (there is ap-
proximately 90% chance of scoring the selected face due
to the non-rectangular shape of the faces).
e process of face and moon selecting is then re-

peated until either all of the faces are visited, the mission
time has expired or the spacecraft mass has fallen below
1000kg.
When the game has finished, a prompt appears show-

ing the details of the designed trajectory (total score, cu-
mulative ∆V , remaining mass, etc.). e user can then
submit the score to be saved in the ACT database and
analysed later.

4.3 Search tree

e entire problem has been formulated as a tree-search.
While usually tree traversal algorithms are very efficient,
the search space grows exponentially in this case and
thus becomes very quickly too vast to be fully explored
in order to find an optimal solution. In Space Hopper,
the average number of the visitable faces, at any point
in the search, is 15 for each of the 4 moons. ere-
fore, the search tree has an average branching factor of
60 which means that at the nth step the search tree is
of size 60n. Although there exist many efficient tree-
search algorithms [31, 25, 16, 8], this problem is still
too difficult for any of them to return a good solution in
a reasonable time period due to sheer number of possi-
ble choices and necessary calculations at each step of the
search to determine the overall fitness of the trajectory.
In the tree, each of the nodes is a full interplanetary tra-
jectory between two moons which contains crucial in-
formation about the position of the spacecraft, m (i.e.
which moon of Jupiter it is visiting), at epoch t, its ve-
locity (vin) and the accumulative velocity change (∆V)
as well as a list of all the previously visited moon faces
(f).
Humans are an integral part of Space Hopper’s tree

search. At each step, users provide crucial informa-
tion bymaking informed decisions about which face and
moon to visit and by manipulating the flyby parameters.
Space Hopper’s approach to tree-search differs even

more from the classical methods as each step can be re-
optimised multiple times to achieve lower ∆V as the

evolutionary algorithm responsible for finding the best
flyby parameters can often return a non-optimal solu-
tion. Re-optimisation can also mean the players adjust-
ing the flyby bounds to improve the optimisation of the
trajectory through jDE.

5 DataMining

In order to analyse the human players’ reasoning, data
needs to be collected. All of the decisions made by users
are recorded to ensure maximum feasibility when for-
mulating heuristics for the novel tree-search algorithm.
e submitted solutions are the full Jupiter Grand Tour
trajectories which, as mentioned before, are formulated
as a search tree where each node contains details about
the state of the spacecraft at that time (currently visited
moon, velocity) and global values of the tour (epoch,
previously visited faces and the cumulative change in ve-
locity of the spacecraft).

We attempt to formulate a set of heuristics for a
new ”human-inspired” algorithm based on the players’
understanding of the system and their decisions. We
therefore need to track the players’ gameplay and un-
derstand how their choices affect general outcomes in
terms of score, ∆V , time, spacecraft mass, etc. As a re-
sult, backtracks in the search are also recorded. us
the search tree also contains branches (parts of the tour)
which were considered and explored but ultimately dis-
carded.

5.1 FutureWork

e second part of the project is the most important one
as it will require very sophisticated machine learning al-
gorithms for recognising patterns in the collected data
submitted by the best online players. e resulting data
should provide us with very interesting mix of Breadth-
first (BFS) and Depth-first (DFS) search algorithms
which comes naturally to humans and can prove bene-
ficial to the advancement of efficient and powerful tree-
search algorithms for trajectory design. Also, learning
from re-optimisations of legs and user backtracks in the
search should give us better techniques for assessing the
feasibility of fitness scores for different types of trajec-
tories.

e resulting ”human-inspired” tree-search algo-
rithm will then be compared and contrasted with var-
ious well-established and efficient algorithms (such as
Breadth-first, Depth-first, Best-first, A* or Lazy-race).
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is should give us an indication of how the human abil-
ities fare against the best of decades of Artificial Intelli-
gence research.

6 Conclusion

is paper introduced Space Hopper, a novel online,
crowdsourcing experiment which attempts to improve
automated trajectory design methods by analysing how
humans try to tackle the complex Jupiter Grand Tour
problem. e problem is currently too computation-
ally expensive even for the state-of-the-art algorithms
but humans have a set of certain problem-solving skills
which could prove helpful in advancing search algo-
rithms for vast search trees with a high branching fac-
tor. Space Hopper is released online and features a
3D game-like look & feel to maximise the user base.
Current trajectory design methods have reached a level
where non-experts can design complex yet feasible tra-
jectories.
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