Uji mikrostruktur prototipe implan gigi titanium pasca perlakuan modifikasi permukaan Alternate Soaking Process dengan konsentrasi CaCl2 dan Na2HPO4 yang berbeda

Microstructural examination of titanium dental implant prototype after alternate soaking process surface modification treatment with different concentrations of CaCl2 and Na2HPO4

Nina Djustiana, Muhammad Asrun Adi Saputra Syam, Yanwar Faza, Arief Cahyanto

Abstract


Pendahuluan: Beberapa metode telah dikembangkan dalam meningkatkan proses osseointegrasi implan titanium diantaranya yaitu alternate soaking process. Metode ini terbukti menciptakan kekasaran porositas dan senyawa CaP pada implan melalui perendaman di dalam larutan CaCl2 dan Na2HPO4. Tujuan penelitian mengetahui gambaran mikrostruktur dari prototipe implan gigi titanium yang dimodifikasi permukaan dengan metode alternate soaking process dengan konsentrasi CaCl2 dan Na2HPO4 yang berbeda. Metode: Jenis penelitian ini adalah deskriptif eksploratif. Sampel penelitian, berupa prototipe implan titanium (20 x 15 x 0,5 mm), dibagi menjadi 4 kategori berdasarkan perlakuan yaitu sampel yang tidak diberikan pre-treatment dan modifikasi permukaan sebagai kontrol (L0) dan sampel yang diberikan pre-treatment dan modifikasi permukaan dengan metode alternate soaking process dengan konsentrasi larutan CaCl2 dan Na2HPO4 yang berbeda (67 mmol/L dan 40 mmol/L (L1), 200 mmol/L dan 120 mmol/L (L2), 600 mmol/L dan  360 mmol/L (L3)). Hasil: Hasil uji mikrostruktur mempelihatkan sampel L0 tidak berporus, sedangkan sampel L1, L2 dan L3 terlihat berporus dengan ukuran porus masing-masing 80-150, 400-700 dan 50-90 μm. Peningkatan konsentrasi CaCl2 dan Na2HPO4 meningkatkan jumlah deposit putih (CaP) dipermukaan prototipe implan titanium. Sampel kontrol L0 memperlihatkan lapisan TiO2 lebih tinggi dibandingkan sampel L1, L2 dan L3 dengan angka ketebalan masing-masing sebagai berikut: 135 , 70.5, 104 dan 92 μm. Simpulan: Prototipe implan gigi titanium yang dimodifikasi permukaan dengan metode alternate soaking process dengan konsentrasi CaCl2 200 mmol/L dan Na2HPO4 20 mmol/L menghasilkan mikrostruktur berporus yang berpotensi lebih optimal dalam menginduksi pertumbuhan jaringan tulang.

Kata kunci: implan gigi; titanium; modifikasi permukaan; alternate soaking process

 

 

ABSTRACT

Introduction: Several methods have been developed to improve the osseointegration process of titanium implants, including the alternate soaking process. This method was proven to create porosity roughness and CaP compounds on implants through immersion in a solution of CaCl2 and Na2HPO4. The study aimed to determine the microstructure of the surface-modified titanium dental implant prototype using the alternate soaking process method with different concentrations of CaCl2 and Na2HPO4. Methods: A descriptive exploratory research was conducted on the samples, which were titanium implant prototype sized 20x15x0.5mm, divided into four categories based on the treatment. Samples without pre-treatment and surface modification were determined as control (L0). Samples with pre-treatment and surface modification using the alternate soaking process method with CaCl2 and Na2HPO4 solutions of 67 mmol/L and 40 mmol/L were determined as L1; concentrations of 200 mmol/L and 120 mmol/L as L2; concentrations of 600 mmol/L and 360 mmol/L as L3. Results: The microstructural examinations showed that samples in the L0 group were not porous, while samples in the L1, L2, and L3 groups appeared to be porous, with the porous size of 80-150, 400-700, and 50-90 m, respectively. Increasing CaCl2 and Na2HPO4 increased the amount of white deposit (CaP) on the titanium implant prototype surface. The samples in group L0 showed a higher TiO2 layer than samples in group L1, L2, and L3 with thickness figures of 135, 70.5, 104, and 92 m, consecutively. Conclusions: Surface modified titanium dental implant prototype with alternate soaking process method with 200 mmol/L of CaCl2 and 20 mmol/L of Na2HPO4 produced a porous microstructure which has the potential to be more optimal in inducing bone tissue growth.

Keywords: dental implant; titanium; surface modification; alternate soaking process


Keywords


implan gigi; titanium; modifikasi permukaan; alternate soaking process; dental implant; titanium; surface modification; alternate soaking process

Full Text:

PDF

References


Pierre C, Bertrand G, Rey C, Benhamou O, Combes C. Calcium phosphate coatings elaborated by the soaking pro-cess on titanium dental implants: Surface preparation, processing and physical-chemical characterization. Dent Ma-ter. 2019 Feb;35(2):e25–35. DOI: 10.1016/j. dental.2018.10.005

Osman RB, Swain M V. A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirco-nia. Mater (Basel, Switzerland). 2015 Mar;8(3):932–58. DOI: 10.3390/ma8030932

Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F. Surface characteristics of dental implants: A review. Dent Mater. 2018;34(1):40– 57. DOI: 10.1016/j.dental.2017.09.007

Guillaume B. Dental implants: A review. Morphologie. 2016 Dec;100(331):189–98. DOI: 10.1016/j.morpho.2016.02.002

Mandracci P, Mussano F, Rivolo P, Carossa S. Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology. Coatings. 2016;6(1). DOI: 10.3390/ coat-ings6010007

Wang X-X, Yan W, Hayakawa S, Tsuru K, Osaka A. Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials. 2003 Nov;24(25):4631–7. DOI: 10.1016/s0142- 9612(03)00357-0

Siddiqi A, Payne AGT, De Silva RK, Duncan WJ. Titanium allergy: Could it affect dental implant integration? Clin Oral Implants Res. 2011;22(7):673–80. DOI: 10.1111/j.1600- 0501.2010.02081.x

Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface Modifications and Their Effects on Titanium Dental Implants. Biomed Res Int. 2015;2015:791725. DOI: 10.1155/2015/791725

Alipal J, Lee TC, Koshy P, Abdullah HZ, Idris MI. Evolution of anodised titanium for implant applications. Heliyon. 2021;7(7):e07408. DOI: 10.1016/j.heliyon.2021.e07408

Ben-Nissan B, Choi A, Roest R, Latella BA, Bendavid A. Adhesion of hydroxyapatite on titanium medical implants. Hydroxyapatite Biomed Appl. 2015 Dec 31;21–51.

Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis- -a review. Acta Biomater. 2014 Feb;10(2):557– 79. DOI: 10.1016/j.actbio.2013.10.036

Le VQ, Pourroy G, Cochis A, Rimondini L, Abdel-Fattah WI, Mohammed HI, et al. Alternative technique for cal-cium phosphate coating on titanium alloy implants. Biomatter. 2014;4:e28534. DOI: 10.4161/biom.28534

Adawy A, Abdel-Fattah W. An efficient biomimetic coating methodology for a prosthetic alloy. Mater Sci Eng C Mater Biol Appl. 2013 Apr 1;33:1813–8. DOI: 10.1016/j. msec.2012.12.056

Strange D, Oyen M. Biomimetic bone-like composites fabricated through an automated alternate soaking pro-cess. Acta Biomater. 2011 Jun 21;7:3586–94. DOI:10.1016/j. actbio.2011.06.025

Koju N, Sikder P, Ren Y, Zhou H, Bhaduri SB. Biomimetic coating technology for orthopedic implants. Curr Opin Chem Eng. 2017;15:49–55.

Dehestani M, Ilver L, Adolfsson E. Enhancing the bioactivity of zirconia and zirconia composites by surface modification. J Biomed Mater Res B Appl Biomater. 2012 Apr;100(3):832–40. DOI: 10.1002/jbm.b.32647

Ahmadi SM, Campoli G, Amin Yavari S, Sajadi B, Wauthle R, Schrooten J, et al. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J Mech Behav Biomed Mater. 2014;34:106–15. DOI: 10.1016/j.jmbbm.2014.02.003

Wally ZJ, van Grunsven W, Claeyssens F, Goodall R, Reilly GC. Porous titanium for dental implant applica-tions. Metals (Basel). 2015;5(4):1902–20. DOI:10.3390/met6050097

Fu Q, Hong Y, Liu X, Fan H, Zhang X. A hierarchically graded bioactive scaffold bonded to titanium substrates for attachment to bone. Biomaterials. 2011 Oct;32(30):7333–46. DOI: 10.1016/j.biomaterials.2011.06.051

Chen H, Wang C, Zhu X, Zhang K, Fan Y, Zhang X. Fabrication of porous titanium scaffolds by stack sintering of microporous titanium spheres produced with centrifugal granulation technology. Mater Sci Eng C Mater Biol Appl. 2014 Oct;43:182–8. DOI: 10.1016/j. msec.2014.07.026

Pantaroto HN, Cordeiro JM, Pereira LT, de Almeida AB, Nociti Junior FH, Rangel EC, et al. Sputtered crystalline TiO2 film drives improved surface properties of titanium-based biomedical implants. Mater Sci Eng C. 2021;119:111638. DOI: 10.1016/j.msec.2020.111638



Digital Object Identifier

DOI : https://doi.org/10.24198/jkg.v33i3.37203


Dimension Citation Metrics Badge

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal Kedokteran Gigi Universitas Padjadjaran

INDEXING & PARTNERSHIP

     

      

     

 

Statistik Pengunjung

Creative Commons License
Jurnal Kedokteran Gigi Universitas Padjadjaran dilisensikan di bawah Creative Commons Attribution 4.0 International License