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ABSTRACT
We propose a novel approach for using directional Line Space information in calculation of indirect illumination.

Typically, the Line Space is build on top of regular recursive grids and contains visibility information which is used

to perform an efficient empty space skipping during traversal. In our method we extend the stored information by

precomputed representative candidates, which are based on the Line Space shafts and serve as an approximation

of the actual scene geometry. By using these candidates it is not necessary to compute any intersection tests and

therefore the traversal is accelerated. However, the candidate approximation leads to visible artifacts. We therefore

present a technique that significantly reduces these artifacts by extrapolation of the actual surface and demonstrate

that the artifacts are nearly not perceivable in the application of indirect illumination. Moreover we adapt the Line

Space to other data structures like bounding volume hierarchies (BVHs) which further increases the performance

in ray tracing. Compared to the pure data structures we achieve significantly better performance with nearly no

drawback in quality of indirect lighting.
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1 INTRODUCTION

Calculation of global illumination and indirect lighting

is a non-trivial task which significantly improves real-

ism of generated images and renders the possibility for

photo realistic effects. The two main ways for computa-

tion of global illumination are depth-based rasterization

techniques and ray tracing. The former is typically used

in interactive and real-time rendering, due to the high

performance that is achieved. The basic idea is to de-

termine the visible scene primitives through projection

to the screen in object order. Adding complex render-

ing effects like global illumination without ray tracing

is a non-trivial task and suffers from different quality

problems [Rit12]. In ray tracing the visible surfaces are

calculated per screen pixel by computing intersections

between rays and the scene primitives. By using addi-

tional rays per pixel it is possible to calculate complex

rendering effects and indirect lighting. However, be-
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Figure 1: Example of our technique. The left column

shows correct results as reference, the other columns

show the utilization of precomputed scene primitives in

the Line Space using a low and a high depth parame-

ter. In the top row indirect illumination is presented.

The middle row shows a comparison to ground truth,

where the left image presents only direct illumination

and shadows. The last row consists of the final images.
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cause of the huge number of intersection calculations,

this process is quite slow and therefore a well defined

acceleration data structure is needed.

Most data structures used for this purpose work in

a spatial manner by grouping scene primitives within

bounding volumes and thereby limiting the needed in-

tersection tests to a minimum. During ray traversal the

bounding volumes are tested for intersection first and

only those scene primitives that are contained by in-

tersected bounding volumes are tested for intersection

with the ray. Most of the primitives are excluded within

a short time. On a basic level spatial data structures

are distinguished by the size and arrangement of these

volumes [Hav00]. A common similarity of most of the

used data structures is that axis aligned bounding boxes

are used as bounding volumes because of their simplic-

ity. Still, a lot of intersection tests need to be calculated.

A further approach is to precompute visibility in a data

structure and therefore eliminating the need of intersec-

tion tests. More recently this technique received re-

newed interest and was used to accelerate the traver-

sal of shadow rays and intersection finding. Recursive

grids were extended by directional information of the

Line Space, which uses ray clustering into predefined

shafts. Binary visibility information based on the shafts

was computed and during runtime applied to the con-

tained rays. This allowed a direct access of visibility

information instead of complex intersection tests.

While in previous work only binary visibility informa-

tion was used, we further extend the Line Space by

precomputing a representative candidate (i.e. a trian-

gle) for each non-empty shaft. This leads to signif-

icantly faster but approximated results, which can be

used for the acceleration of indirect lighting computa-

tions. While the results suffer from approximation arti-

facts, it was shown in [Yu09] that indirect illumination

does not require correct results and therefore the arti-

facts can be disregarded in this context, as shown in

Figure 1. Moreover we use a general Line Space de-

scription on basis of bounding boxes. With this our ap-

proach can be applied to almost every spatial data struc-

ture used as base structure. We demonstrate this appli-

cability with the NTree, a regular recursive grid struc-

ture, as used in previous work, and BVHs and therefore

show the general utility in terms of accelerating perfor-

mance. The main contributions of our paper are:

• An approach for precomputation of possible inter-

section candidates based on the simplification of

clustering rays into shafts in the Line Space with the

application of indirect lighting calculation without

the need of intersection tests.

• A generalization of the Line Space to bounding

boxes and therefore the adaption to almost all

commonly used spatial data structures.

• An evaluation in terms of performance, memory

consumption, initialization speed and quality of the

base data structure in combination with the Line

Space and the comparison to the pure data structure.

2 RELATED WORK
Rendering of indirect lighting and global illumination

is a well studied and complex topic. Therefore we refer

to [Wal03] [Pha16] and [Rit12] for a broad overview of

techniques and possibilities in ray tracing and rasteriza-

tion based techniques. We focus specifically on the ac-

celeration of approximated intersection point computa-

tion through the usage of sophisticated data structures.

Spatial data structures.
Nowadays most acceleration data structures for ray

tracing work with a hierarchical spatial subdivision

of the scene space [Hav00]. All geometrical objects

of the scene are arranged depending on their spa-

tial localization and clustered in separate bounding

volumes of the data structure. During rendering the

rays are traversed along those bounding volumes and

only the scene objects within passed volumes are

used for intersection tests. In this kind recursive grids

[Jev89] are the combination of a grid like subdivision

of volumes in a recursive hierarchical structure. It

was shown, that ray traversal greatly benefits from

those data structures. The bounding volume hierarchy

(BVH) works by recursively grouping of adjacent

scene primitives within axis aligned bounding boxes

[Ail13]. It is currently the most used data structure,

mainly because of the good performance even in

dynamic scenes, the small memory footprint and

fast build time in comparison to other data structures

[Vin16]. It is important for BVHs to construct a high

quality tree and many different initialization algorithms

were proposed for this purpose. The surface area

heuristic (SAH) used in combination with spatial splits

is an example for a good tree construction [Sti09].

Moreover there exist build algorithms that work on

already constructed BVHs, which are then optimized

to gain better quality [Kar13]. The bonsai algorithm

uses a two-level construction with optimization in so

called mini trees resulting in high performance and

good build times [Gan15]. By using agglomerative

clustering and multi-threaded CPU approximations a

good trade-off between quality and construction time

can be found [Gu13]. By optimizing spatial splitting

during construction this trade-off is further improved

[Wod17] [Mei17]. While all previously mentioned

approaches result in good tree quality, their construc-

tion takes quite a long time and dynamic scenes are

not covered. Using linear sorting through morton

codes leads to the linear BVH (LBVH) with fast build

times due to parallelization on the GPU, however with

inferior tree quality [Lau09]. An advancement to this is
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the hierarchical LBVH (HLBVH), which is especially

used in full dynamic scenes because of the fast creation

[Pan10] [Gar11]. Further optimization of fast BVH

construction can be made by refitting of splitting planes

in dynamic scenes [Yin14]. Usually the traversal of

a BVH works in a stack-based manner [Ail12]. More

recently combinations of multiple data structures are

explored [Wan16].

Directional data structures.
Using directional information instead of or in addition

to spatial information provides the possibility for visi-

bility precomputation. Most attempts aim to generalize

rays on a higher level and then precompute informa-

tion on an intermediate representation. Examples for

this are the generalization of rays to cones [Ama84],

beams [Hec84] [Res05] [Lai09] or more generally to

higher dimensional generalizations [Arv87]. In the lat-

ter, rays are classified by their three dimensional origin

and their two dimensional direction and for each result-

ing five dimensional generalization a sorted list of in-

tersecting objects is stored. This was optimized by re-

ducing the generalization to four dimensions [Kwo98].

The four dimensional visibility field could be projected

onto a bounding sphere which was then used to speed

up ambient occlusion and stochastic ray tracing calcu-

lations [Mor07] [Gai10]. In a similar manner visibility

information can be projected on planes, leading to inter-

section fields which were used for fast computation of

global illumination [Ren05]. The concept of general-

izing rays to shafts was introduced, where each shaft

is the volume that is constructed by connecting two

patches and forming their convex hull [Hai94] [Dre97].

There, a candidate list per shaft is created and later on

used for all rays that pass a given shaft, which was ap-

plied to ray tracing and radiosity calculations. Recently,

this approach was combined with a spatial recursive

grid structure in terms of empty space skipping [Keu16]

and shadow calculation [Bil16] [Keu17]. In this con-

text, shafts have binary visibility information and are

created between all patches of the regular subdivided

boundary of each branching node in the tree hierarchy

resulting in the Line Space.

In our approach the Line Space can be adapted to all

spatial data structures that use bounding boxes of any

kind. In addition to the binary visibility information of

previous approaches, we store actual geometry infor-

mation in the Line Space.

3 LINE SPACE WITH REPRESENTA-
TIVE CANDIDATE DATA

The Line Space, as proposed by previous work

[Keu16], is a data structure providing directional

information for a given bounding box. The six faces

of the box are equally divided into N2 rectangular

patches. Pairs of those patches that are arranged on

different box faces are defined as shafts. The volume of

a shaft is the convex set of all line segments connecting

any point in the start patch with any point in the end

patch. The Line Space stores arbitrary data for each

shaft. A Line Space where a substitution of the start

and end patches leads to the same result as the original

one is called symmetric. There are 30N4 shafts in

a non-symmetric Line Space and 15N4 shafts in a

symmetric Line Space, therefore potentially resulting

in a big memory consumption, as shown by previous

work.

3.1 Representative Candidate per shaft
Until now, the Line Space was only used to store bi-

nary visibility information, i.e. whether a given shaft

contains any geometry at all. This approach was uti-

lized for empty space skipping [Keu16] and accelerated

shadow computation [Bil16] [Keu17]. We extend it by

storing a representative triangle for each shaft, which

serves as an approximation for the geometry inside of

the shaft. The stored information can be used during the

traversal step of ray tracing to get a possible intersection

between a given ray and the scene geometry. Instead of

testing all candidate triangles of the given bounding box

for intersections, only the previously stored representa-

tive triangle is considered. The intersection between the

ray and the bounding box geometry is approximated as

shown in algorithm 1.

Algorithm 1 The accelerated intersection algorithm be-

tween a ray and a Line Space bounding box.

(tstart , tend)← points where ray intersects box

i← CALCPATCH(tstart ) � start patch

j← CALCPATCH(tend) � end patch

shaftID← CALCSHAFT(i, j)

triangle← GETCANDIDATETRIANGLE(shaftID)

if triangle exists then
return ray triangle intersection

return 0

The representative candidate Line Space is non-

symmetric. The candidate used as the shaft repre-

sentative is the triangle that optimally approximates

the object surface within the shaft. To find it we

search for an intersection between the geometry and

the ray defined by the centroids of the shaft’s start

and end patches. This is illustrated in Figure 2. If no

intersection is found, the shaft is marked as empty.

The percentage of empty Line Space shafts is typically

between 30%− 70% for manifold meshes and there-

fore a lot of memory can be saved with an appropriate

memory layout, which is explained later on.

The surface inside a shaft can be classified into three

categories:
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Figure 2: The representative candidate triangle (shown

in red) is the triangle that is used to approximate the ge-

ometry in one shaft. This triangle is found by comput-

ing an intersection between the geometry and the cen-

troid ray of the shaft.

1. The surface is closed and covers the whole shaft

width.

2. The shaft lies at the boundary of a surface or con-

tains multiple disconnected surfaces.

3. The shaft is empty.

Since we only store the single triangle per shaft, it is

not inherently possible to distinguish the first two cases.

The candidate triangle does not necessarily cover the

whole shaft surface, as it is shown in Figure 2. To com-

pensate this, the triangle is treated as infinite plane de-

fined by its vertices. This approximation is used when

searching for an intersection between a ray and the ge-

ometry contained in the shaft. Per-vertex normals can

be interpolated by using the intersection parameters of

the constructed plane. If the intersection point is out-

side of the triangle, it is computed by the extrapolation,

therefore providing smooth normals for the whole shaft

width. This is a rather big approximation, especially for

highly curved surfaces, however it lowers discontinuity

artifacts. To reduce artifacts for shafts that are not fully

covered by a surface, edges can be found by calculat-

ing the angle between the extrapolated normal and the

mean normal of the triangle. If the angle is bigger than

a given threshold then the intersection is discarded.

The representative candidate Line Space stores a refer-

ence to a triangle for each shaft. In our case, this refer-

ence is a 32-bit index pointing to a buffer containing all

triangles of the scene geometry. Depending on the stor-

age layout of the scene geometry, more space efficient

data types are possible. Since the Line Space stores data

for every combination of start and end patch, it contains

M = 30N4 elements. While most of these shafts are

empty and do not point to a valid triangle, we are able

to only store the shaft information of filled shafts. This

Figure 3: The sparse memory layout of our structure.

Nodes have references to their bitsets (shown in green),

which signal whether associated shafts are filled or

empty. To access the triangle data, an additional off-

set per bitset is needed (shown in red).

is done by using a simple sparse scheme based on a bit-

set and offset buffer to skip empty shaft entries and only

store filled shafts consecutively in memory. In addition

we need to store one bit of information for each shaft,

signaling whether the shaft is empty or filled. These bits

are grouped in bitsets and are efficiently represented by

32-bit words. Moreover an offset for every bitset is

stored, which specifies where the corresponding filled

shaft entries withing the shaft buffer are located. This

is shown in Figure 3. The memory overhead of this

scheme therefore sums up to M
16 32-bit words. Finally,

the sparse storage is more memory efficient compared

to dense storage if less than 15
16 ≈ 93% of the shafts are

filled, which is always the case. The offset computation

is done by a parallel prefix sum, efficiently calculated

on the GPU. It should be noted that the bitsets are iden-

tical with the binary Line Space, and therefore they are

implicitly calculated. The data access with the sparse

memory layout has a constant time complexity and is

presented in algorithm 2. We use 32-bit words for all

bitset and offset operations due to the better interaction

with GPU computations. However, this can be general-

ized for arbitrary sizes like 64-bit words.

Algorithm 2 The algorithm presents the access of the

shaft data in the sparse memory scheme.

procedure GETSPARSEDATA(ShaftIndex n)

bitsetID← � n
32�

bitset← GETBITSET(bitsetID)

bit← n mod 32

if (bitset & (1� bit)) �= 0 then
offset← GETOFFSET(bitsetID)

id← BITCOUNT(bitset� (31 - bit)) - 1)

return GETDATA(offset + id)

else
return 0
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3.2 General Line Space for spatial datas-
tructures

Because of the construction on top of bounding boxes,

the Line Space can be adapted and integrated into each

spatial data structure that consists of bounding boxes in

any way. It provides directional information in addition

to the spatial subdivision and therefore is able to mini-

mize the traversal cost. Typical data structuces that can

be used for this are Octrees, BVHs, k-d trees, uniform

grids or recursive grids (such as the NTree in previous

work).

We generate a representative candidate Line Space for

selected tree nodes of the data structure to approximate

the scene geometry. While the produced errors are too

striking for direct illumination of primary rays, they

are less perceivable when used for indirect illumination,

which is in accordance to [Yu09], stating that accurate

calculations are not required for global and indirect il-

lumination. Therefore we use the representative can-

didate as approximation instead of the correct triangle

data to calculate the intersection points in indirect illu-

mination. In terms of the underlying base data structure

it is necessary to consider which nodes in the tree need

to store the Line Space information.

Adaptation to NTree
The data structure previously used for Line Space com-

putations is the NTree, which is a regular recursive grid

that repeatedly subdivides the scene and the already

produced subdivisions into N3 equally sized bounding

boxes. In our case, we constrain the size of theses boxes

to be cubes. This simplifies some computations when

building and traversing the NTree while not having any

detrimental effect for the data structure. The NTree pro-

vides increased traversal performance in comparison to

a regular Octree or single layer uniform grid. This is

because the tree width of an NTree with N > 2 can

be larger than for Octrees, effectively lowering the tree

depth. Since the bounding boxes of NTree nodes are

equally sized, the NTree is a natural fit for Line Space

computations, as shown in previous work. The Line

Space patch size for a specific tree depth is equal for all

nodes and correlates with the size of the node subdivi-

sions.

To use the NTree with the representative candidate Line

Space for indirect lighting approximations we first gen-

erate the NTree including the exact triangle data of the

scene. This NTree can be used for all exact computa-

tions like primary or shadow rays. Moreover we uti-

lize it for faster initialization of the representative can-

didates. We only compute the Line Space data on spe-

cific nodes in the NTree, which are determined by the

depth D or a triangle count lower than T (i.e. T = 8). In

our case the NTree and therefore also the representative

candidate Line Space have a parameter values N = 6

or N = 10 and D = 2 for Line Space utilization, which

is consistent with the results of previous work. The N
value describes the branching factor of the NTree as

well as the Line Space resolution. It was found to be

accurate enough for the approximation while also grant-

ing sufficient performance. The depth parameter D also

determines the performance, memory requirements and

the approximation accuracy of the Line Space. Higher

depth values lead to more Line Space nodes and there-

fore higher computation times and memory consump-

tion. However, lower depth values decrease the accu-

racy of scene approximations but significantly increase

the traversal performance. This is due to the fact that

the number of nodes greatly increases with the depth of

the underlying tree. The shown value of D = 2 for the

usage of Line Spaces within the NTree is sufficient for

quality, traversal speed and memory consumption.

When traversing indirect rays, these Line Space nodes

are treated as leaf nodes in the NTree and are therefore

able to terminate the traversal. Intersections with the

scene are calculated by the procedure explained in sub-

section 3.1. The general traversal algorithm of the data

structure does not need to be changed, only the handling

of leaf nodes needs to be replaced by the appropriate

Line Space calculations as shown in algorithm 1.

Adaptation to BVH
By using a BVH, the scene is recursively subdivided

by axis aligned bounding boxes that tightly enclose the

geometry. Besides the NTree, the BVH is also used as

a base data structure for the Line Space in our work.

The representative candidate in the Line Space nodes

are used in the same way as described with the NTree.

Due to the reason that every BVH node branches into

only 2 subnodes, the tree depth is normally much higher

than for the NTree. With this BVH nodes converge to

the actual scene geometry and they are not constrained

to be equal in size in every tree layer. Typically less

nodes are needed in the BVH for scenes with a high

amount of empty space. Again, the depth D and the

triangle count T are used to determine whether a node is

extended by a Line Space. Furthermore, it is possible to

consider the box size as criterion for this determination,

but this was not done in our work.

Nevertheless, the usage of a BVH with the representa-

tive candidate Line Space has two disadvantages. Since

the bounding boxes are not cubical, the shaft patch size

will slightly differ for each bounding box. The approx-

imation artifacts in that case are not distributed in any

predictive manner, and therefore have significant im-

pact, depending on the used parameter set. This is visi-

ble in the results using low parameter sets for the BVH

Line Space. Additionally, BVH nodes may overlap, es-

pecially in scenes where the triangle size is highly di-

verse. Therefore, multiple Line Space nodes and their

shafts may overlap and approximate the same scene ge-

ometry using different representative candidates. These
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effects are mostly visible in architectural scenes, as

shown in the results. A spatial split BVH construction

might reduce these effects significantly, however this

was not used in our work.

4 RESULTS
For the evaluation we used two different base data

structures: the NTree, a regular recursive grid as it

was used in previous work on the binary Line Space

[Keu16] [Bil16], and a state of the art BVH algorithm

[Ail12], which is used as comparison in multiple re-

lated works. For the NTree we used a branching fac-

tor of 6 and 10 and a hierarchical depth of 3, as those

are the proposed parameters by [Keu16]. We did not

incorporate any further optimizations of the BVH tree

quality, as recently proposed [Gan15] [Yin14]. The

Line Space with precomputed representative shaft can-

didates is then used in a given hierarchical depth of the

base data structure. Within the NTree this depth is set to

the lowest branching nodes in the hierarchy, i.e. depth

2. The Line Space depth within the BVH is more ver-

satile and can be set arbitrarily to achieve a good trade-

off between performance and memory consumption as

well as initialization time. The chosen depths and their

impact are shown in the diagram and the visual results.

We measured the quality and the differences in per-

formance, initialization time and memory consump-

tion. For this purpose different widely used test scenes

with special characteristics are evaluated. In principle

they are dividable into two categories: scenes contain-

ing a single object (BUNNY, DRAGON and BUDDHA)

and architectural scenes (SIBENIK, SPONZA and CON-

FERENCE), which are more suitable for usage in video

games. Apart from this, the number of scene primitives

varies significantly in the used scenes and ranges from

~70k triangles up to ~1 million triangles. The test re-

sults were produced on a GeForce GTX 1080, however

the relative performance is the same on similar systems.

All data structures are implemented in the same envi-

ronment and supported by acceleration in agreement.

Hence, a fair comparison of the used structures is guar-

anteed. The resolution of the renderings was in all cases

720p. Primary and shadow rays were rendered with

fast rasterization accelerated by a binary Line Space

techniques as proposed by [Bil16] and [Keu17] and are

therefore out of our scope. Regarding this, our ap-

proach accelerates calculations of all indirect lighting

effects, resulting for example in ambient occlusion, dif-

fuse illumination and glossy reflections.

Table 1 shows the quantitative results using the two

main data structures with and without the acceleration

of the Line Space with the mentioned depth parame-

ter. We evaluated the build time, the memory con-

sumption and the performance in ray tracing for indi-

rect rays. Obviously, the computation time and memory

consumption of the Line Space need to be summed up

on the values of the base data structure. The illustrated

Line Space values in the table are already combined and

therefore show the total sum. Moreover the build times

and the memory consumption of the Line Space sig-

nificantly scale with the total number of computed Line

Spaces and not the number of scene triangles. For BVH

initialization we use a binned SAH construction, result-

ing in good quality but non-interactive build times. The

used build algorithm significantly affects the build time

of the BVH, but as our work focuses on the relative

comparison of the data structure with the usage of the

Line Space, this does not affect our results.

The runtime performance was measured in frames per

second only counting indirect illumination. Apart from

absolute values, the relative differences between pure

and Line Space supported data structures show the ben-

efit of our approach. The BVH performance is near

state-of-the-art in ray tracing performance. It is mainly

regulated by the quality of the underlying tree and can

be further optimized by recent techniques as proposed

by [Gan15] and [Yin14]. Using our technique gives a

significantly better performance, however with approx-

imated results. This is due to the simplification of shaft

data, where only a single candidate is stored and used

for all rays passing a given shaft. Moreover it is no-

ticeable that the usage of the Line Space accelerates the

data structure to an acceptable level, even in those cases

where the base data structure performs very poorly.

Figure 5 shows the qualitative differences of various

depths used in Line Space accelerated BVH in compar-

ison to ground truth data. It is observable that lower

parameter sets result in visible artifacts due to shaft

simplification. However, by using higher depths for

the Line Space within the BVH hierarchy the artifacts

become manageable. The artifacts are especially no-

ticeable in bigger scenes when the camera is positioned

close to an object. This is mostly observable in the ar-

chitectural scenes as shown in figure 6 on the last page.

There, also the NTree results with the Line Space are

shown. As with the BVH, the quality of the Line Space

accelerated NTree improves when the Line Space is

used in a deeper level of the tree hierarchy. Because

of its regular structure, the NTree Line Space is mostly

better suited for big architectural scenes and produces

less approximation artifacts for these cases in compari-

son to the BVH Line Space. However, as it was shown

by [Yu09], correctness in indirect illumination is not re-

quired and approximations are sufficient in most cases.

Following this the BVH Line Space has better perfor-

mance with mostly sufficient quality.

The main factor for quantitative and qualitative analy-

sis is the value of the used depth parameter where Line

Spaces are created and used. A deeper depth results in

more Line Spaces, therefore causing higher build time
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BUNNY DRAGON BUDDHA SIBENIK SPONZA CONFERENCE

Figure 4: The evaluated test scenes. Renderings were done in 720p. Primary rays were calculated with rasteriza-

tion, shadow rays were rendered with a binary Line Space and indirect rays were produced with our technique.

Scene BVH NT (6, 3) NT (10, 3)

pure LS (9) LS (12) pure LS (2) pure LS (2)

Bunny init 0,3 2,2 10,4 3,7 9,6 17,2 44,3

69k tris size 5,5 38,7 227,2 1,5 17,6 23,9 149,7

perf 76,7 194,7 2,5x 131,0 1,7x 20,6 89,4 4,3x 36,7 63,0 1,7x
Dragon init 1,7 5,6 17,1 22,5 50,3 100,6 209,7

871k tris size 35,5 74,8 280,0 4,1 10,8 13,2 65,5

perf 45,9 169,4 3,7x 110,2 2,4x 1,4 107,9 77x 11,7 62,1 5,3x
Buddha init 2,0 6,2 17,6 27,6 61,6 123,2 254,2

1087k tris size 40,7 80,0 285,0 4,5 10,9 11,6 57,5

perf 62,4 195,4 3,1x 128,0 2,1x 1,1 121,4 108x 12,1 69,4 5,7x
Sibenik init 0,1 1,9 7,4 2,3 18,6 13,0 102,3

75k tris size 3,0 57,7 251,6 8,3 286,4 106,9 2114,3

perf 19,3 38,3 2x 28,4 1,5x 8,8 23,1 2,6x 8,6 12,8 1,5x
Sponza init 0,5 3,0 9,2 7,1 28,5 36,3 153,0

262k tris size 10,1 54,1 231,2 8,9 347,6 133,3 2680,4

perf 16,7 48,5 2,9x 33,2 2x 5,8 27,4 4,7x 10,1 16,2 1,6x
Conference init 0,7 3,2 9,6 7,3 27,0 36,8 115,2

331k tris size 13,4 61,3 213,2 6,3 170,9 86,3 1014,9

perf 16,0 44,6 2,8x 33,6 2,1x 1,4 26,3 19x 8,4 20,7 2,5x
Table 1: Test results of our evaluation. We measured the initialization time in seconds, the memory consumption in

MB and the ray tracing performance in FPS for BVH and NTree as base data structures without and with the usage

of the Line Space with varying depth parameter. Line Space values are already combined with the base structure.

BVH initialization was optimized in terms of ray tracing performance and not initialization speed. The relative

differences in comparison to the base data structure without Line Space acceleration are marked.

and memory consumption, as well as lower ray tracing

performance. This is due to the fact, that with a deeper

Line Space depth more nodes in the hierarchy need to

be traversed. However the quality gets better when

more Line Spaces are used. With this the Line Space

depth can be used as an arbitrary parameter for setting

a trade-off between quality and performance. This is

especially true, when the base data structure produces a

deep tree hierarchy, as it is done with BVHs. The NTree

naturally only has a shallow tree hierarchy, therefore is

not that suitable for a dynamic trade-off.

5 CONCLUSION AND FUTURE
WORK

We presented the non-binary Line Space with visibil-

ity precomputation of scene information, which stores a

single candidate as a representative per shaft. With this

work, we explored the general approach of precomput-

ing directional information per Line Space shaft in ap-

plication of indirect and global illumination. Through

the representative candidate precomputation, the need

for intersection tests during traversal could be elimi-

nated as far as possible. Although this technique results

in approximation artifacts if the depth parameter is not

high enough, we were able to show that these errors are

nearly non-perceivable in the context of indirect illumi-

nation. When compared to the base data structure, this

technique results in higher memory size and build time

but is in all cases able to significantly surpass the base

structure in terms of performance.

Moreover, we showed a generalization of the Line

Space to all spatial data structures based on bounding

boxes. We demonstrated this with an adaptation to a

state-of-the-art BVH, resulting in higher performance

in comparison to the NTree, the typically used base

data structure of previous work.

Future Work
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Figure 5: Some of the results of our evaluation. As illustrated, the buddha scene especially focuses on ambient

occlusion, the bunny scene on diffuse materials and the dragon scene on glossy reflections. Nevertheless, all

visual effects were indifferently produced with the same technique with the only difference in the object material.

Therefore the results are not optimized to show specific effects. The maximum Line Space depth d within the BVH

is shown in LS(d).

The precomputation of scene information is only a be-

ginning. By calculating and storing the lighting state

in a shaft it may be possible to use a great variety of

rendering techniques without further computation over-

head during traversal. Although this leads to a signif-

icantly increase in memory consumption, the gain in

tracing performance can be a big improvement in path

tracing scenarios. Using a dynamic combination with

the base data structure has the potential to accelerate

most ray tracing systems, using the base structure in

situations where correct information is needed and the

Line Space where fast approximated data is sufficient.

An approach to further tackle the difficulties of mem-

ory size and initialization speed is to use the Line Space

based on objects rather than the whole scene. With this

each geometrical object has its own single Line Space.

This grants the possibility for object instancing and a

significant reduction of memory needed. Furthermore,

Line Space information is more accurate, solving the

teapot in a stadium problem. Object Line Spaces can be

created beforehand and therefore significantly reducing

initialization time. By combining the instancing aspect

with local transformations creates the possibility to ren-

der dynamic scenes.

Another aspect that needs further investigation is the

selection of the used parameter set. Currently, a fixed

depth parameter is used for the whole Line Space

tree, resulting in unnecessary high subdivision rate in

sparsely filled areas. A dynamic subdivision scheme

based on the number of candidates and the size of the

current node would benefit the traversal and the Line

Space accuracy.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu/ Vol.26, 2018, No.1

18



6 REFERENCES

[Ail12] Aila, T., Laine, S., and Karras, T. Understanding

the efficiency of ray traversal on gpus–kepler and fermi

addendum. NVIDIA Technical Report, 2012.

[Ail13] Aila, T., Karras, T., and Laine, S. On quality metrics

of bounding volume hierarchies. In Proc. 5th High-
Performance Graphics Conference. 2013.

[Ama84] Amanatides, J. Ray tracing with cones. In ACM
Siggraph Computer Graphics. 1984.

[Arv87] Arvo, J. and Kirk, D. Fast ray tracing by ray classifi-

cation. In ACM Siggraph Computer Graphics. 1987.

[Bil16] Billen, N. and Dutré. Visibility acceleration using

efficient ray classification. Department of Computer
Science, KU Leuven, 2016.

[Dre97] Drettakis, G. and Sillion, F. Interactive update of

global illumination using a line-space hierarchy. In

Proc. ACM SIGGRAPH. 1997.

[Gai10] Gaitatzes, A., Andreadis, A., Papaioannou, G., and

Chrysanthou, Y. Fast approximate visibility on the gpu

using precomputed 4d visibility fields. WSCG, 2010.

[Gan15] Ganestam, P., Barringer, R., Doggett, M., and

Akenine-Möller, T. Bonsai: rapid bounding volume

hierarchy generation using mini trees. Journal of Com-
puter Graphics Techniques Vol 4, 2015.

[Gar11] Garanzha, K., Pantaleoni, J., and McAllister, D. Sim-

pler and faster hlbvh with work queues. In Proc. ACM
Siggraph Symp. High Performance Graphics. 2011.

[Gu13] Gu, Y., He, Y., Fatahalian, K., and Blelloch, G. Ef-

ficient bvh construction via approximate agglomerative

clustering. In Proc. 5th High-Performance Graphics
Conference. 2013.

[Hai94] Haines, E. A. and Wallace, J. R. Shaft culling for ef-

ficient ray-cast radiosity. In Proc. Second Eurographics
Workshop on Rendering. 1994.

[Hav00] Havran, V. Heuristic ray shooting algorithms. Ph.D.

thesis, Ph.D. Thesis, Czech Technical University in

Prague, 2000.

[Hec84] Heckbert, P. S. and Hanrahan, P. Beam tracing polyg-

onal objects. ACM Siggraph Computer Graphics, 1984.

[Jev89] Jevans, D. and Wyvill, B. Adaptive voxel subdivision

for ray tracing. In Proc. Graphics Interface. 1989.

[Kar13] Karras, T. and Aila, T. Fast parallel construction of

high-quality bounding volume hierarchies. In Proc. 5th
High-Performance Graphics Conference. 2013.

[Keu16] Keul, K., Müller, S., and Lemke, P. Accelerating spa-

tial data structures in ray tracing through precomputed

line space visibility. Computer Science Research Notes,
WSCG, 2016.

[Keu17] Keul, K., Klee, N., and Müller, S. Soft shadow

computation using precomputed line space visibility

information. Journal of WSCG, 2017.

[Kwo98] Kwon, B., Kim, D. S., Chwa, K.-Y., and Shin, S. Y.

Memory-efficient ray classification for visibility oper-

ations. IEEE Transactions on Visualization and Com-

puter Graphics, 1998.

[Lai09] Laine, S., Siltanen, S., Lokki, T., and Savioja, L. Ac-

celerated beam tracing algorithm. Applied Acoustics,
2009.

[Lau09] Lauterbach, C., Garland, M., Sengupta, S., Luebke,

D., and Manocha, D. Fast bvh construction on gpus. In

Computer Graphics Forum. 2009.

[Mei17] Meister, D. and Bittner, J. Parallel locally-ordered

clustering for bounding volume hierarchy construc-

tion. IEEE Transactions on Visualization and Computer
Graphics, 2017.

[Mor07] Mortensen, J., Khanna, P., Yu, I., and Slater, M. A

visibility field for ray tracing. In Computer Graphics,
Imaging and Visualisation, CGIV’07. 2007.

[Pan10] Pantaleoni, J. and Luebke, D. Hlbvh: hierarchical

lbvh construction for real-time ray tracing of dynamic

geometry. In Proc. High Performance Graphics. 2010.

[Pha16] Pharr, M., Jakob, W., and Humphreys, G. Physi-
cally based rendering: From theory to implementation.
Morgan Kaufmann, 2016.

[Ren05] Ren, Z., Hua, W., Chen, L., and Bao, H. Intersec-

tion fields for interactive global illumination. The Visual
Computer, 2005.

[Res05] Reshetov, A., Soupikov, A., and Hurley, J. Multi-

level ray tracing algorithm. ACM Transactions on
Graphics (TOG), 2005.

[Rit12] Ritschel, T., Dachsbacher, C., Grosch, T., and Kautz,

J. The state of the art in interactive global illumination.

In Computer Graphics Forum. 2012.

[Sti09] Stich, M., Friedrich, H., and Dietrich, A. Spatial

splits in bounding volume hierarchies. In Proc. High
Performance Graphics. 2009.

[Vin16] Vinkler, M., Havran, V., and Bittner, J. Performance

comparison of bounding volume hierarchies and kd-

trees for gpu ray tracing. In Computer Graphics Forum.

2016.

[Wal03] Wald, I., Purcell, T. J., Schmittler, J., Benthin, C.,

and Slusallek, P. Realtime ray tracing and its use for in-

teractive global illumination. Eurographics State of the
Art Reports, 2003.

[Wan16] Wang, Y., Guo, P., and Duan, F. A fast ray tracing al-

gorithm based on a hybrid structure. Multimedia Tools
and Applications, 2016.

[Wod17] Wodniok, D. and Goesele, M. Construction of bound-

ing volume hierarchies with sah cost approximation on

temporary subtrees. Computers & Graphics, 2017.

[Yin14] Yin, M. and Li, S. Fast bvh construction and refit for

ray tracing of dynamic scenes. Multimedia tools and
applications, 2014.

[Yu09] Yu, I., Cox, A., Kim, M. H., Ritschel, T., Grosch,

T., Dachsbacher, C., and Kautz, J. Perceptual influence

of approximate visibility in indirect illumination. ACM
Transactions on Applied Perception (TAP), 2009.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu/ Vol.26, 2018, No.1

19



Reference BVH + LS (9) BVH + LS (12) NTree (6) + LS (2) NTree (10) + LS (2)

Reference BVH + LS (9) BVH + LS (12) NTree (6) + LS (2) NTree (10) + LS (2)

D
et
ai
l
4

D
et
ai
l
3

D
et
ai
l
2

D
et
ai
l
1

Reference BVH + LS (9) BVH + LS (12) NTree (6) + LS (2) NTree (10) + LS (2)

Figure 6: The test results with the architectural scenes. All images were rendered in 720p and only present indirect

illumination. In bigger scenes using a lower parameter for the depth of the Line Space usage within the base

data structure, more approximation artifacts due to shaft simplification occur. The detailed magnifications and the

heatmaps specifically show the weaknesses of our technique using a low depth parameter. These artifacts especially

occur in the transitions of different Line Spaces. However, a deeper Line Space depth improves image quality

significantly, making Line Space accelerated results suitable for indirect illumination. Overall, the perception in

indirect illumination given a suitable depth parameter is mostly similar to ground truth renderings, but granting

significantly better performance.
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