##plugins.themes.bootstrap3.article.main##

Growth, mortality and exploitation rate of Selene dorsalis (Gill, 1863) from the continental shelf of Ghana (West Africa) were examined between July 2018 and June 2019. The study provided results on fishery dynamics parameters needed to estimate the stock status and characteristics of S. dorsalis in the coast of Ghana. Monthly length-frequency data were collected from 629 samples and analysed using fisheries models fitted in TropFishR package in R software. The von Bertalanffy growth parameters were utilised to analyse the population dynamics of the species using ELEFAN Simulating Annealing. Based on the estimates, the asymptotic total length (L) was 22.2 cm, the coefficient of growth (K) was 0.76 year-1, and the calculated growth performance index (phi) was 2.58 with Rn value of 0.55. The total mortality rate (Z) was 3.32 year-1 with a natural mortality rate (M) of 1.21 year-1 and fishing mortality rate (F) of 2.11 year-1. The exploitation rate (E) estimated for the species was above the optimum level of 0.5, which indicates that S. dorsalis is overexploited in the coast of Ghana. It can be concluded that the exploitation rate of S. dorsalis has exceeded the optimum limit, hence the need for enforcement and improvement of fisheries management measures such as mesh size regulations, capping of canoes, closed fishing seasons and compliance with fisheries policies.

References

  1. Tsikliras, A. C., Stergiou, K.I. and Froese, R. (2013). Editorial note on reproductive biology of Fishes. Acta Icthyologica et Piscatoria, 43(1):1-5.
     Google Scholar
  2. Arra S., Sylla S., Kouame A. C., Zan-BI T. T. and Ouattaraw M. 2018. Reproductive biology of the African moonfish, Selene dorsalis (Gill, 1862) (Carangidae) in continental shelf of Côte d’Ivoire fishery (West Africa). International Journal of Fisheries and Aquatic Studies, 6(2): 358-363.
     Google Scholar
  3. Arra, S., Sylla, S., Zan-Bi, T. T., Loukou, A. and Ouattara, M. (2020). Stock assessment and population dynamics of Senegal Jack, Caranx senegallus Cuvier, 1833, from industrial fishery of Cote d’Ivoire (West Africa). Agronomie Africaine, 32:37-49.
     Google Scholar
  4. Froese, R. and Binohlan, C. (2000). Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. Journal of Fish Biology, 56 (4): 758–773.
     Google Scholar
  5. Garcia, C. B. and Duarte, L. O. (2006). Length-based estimates of growth parameters and mortality rates of fish populations of the Caribbean Sea. Journal of Applied Ichthyology, 22:193-200.
     Google Scholar
  6. Ogidiaka, E., Atadiose, J., Bekederemo, B. and Omoariagbin, B. (2019). Some aspects of Biology of Selene dorsalis from Forcados river estuary, Niger delta, Nigeria. Journal of Fisheries and Life Sciences, 4(2): 15-16.
     Google Scholar
  7. Froese, R. and D. Pauly (Eds). (2020). FishBase World Wide Web electronic publication. Retrieved from www.fishbase.org, on 21/1/21.
     Google Scholar
  8. Edwards, A. J., Gill, C. A. and Abohwekyere, P. O. (2001). A Revision of Irvine’s Marine Fishes of Tropical West Africa. Darwin Initiative Report 2, Ref. 162/7/451:157 p. .186 pp.
     Google Scholar
  9. Smith-Vaniz, W.F. (1986). Carangidae. p. 815-844. In P.J.P. Whitehead, M.-L. Bauchot, J.-C. Hureau, J. Nielsen and E. Tortonese (eds.) Fishes of the north-eastern Atlantic and the Mediterranean. UNESCO, Paris. vol. 2. (Ref. 4233).
     Google Scholar
  10. Cordeiro A. S. and Luque J. L. 2004. Community ecology of the metazoan parasites of Atlantic Moonfish, Selene setapinnis (Osteichthyes: Carangidae) from the coastal zone of the state of Rio de Janeiro, Brazil. Brazilian Journal of Biology, 64(3a): 399-406.
     Google Scholar
  11. Aggrey-Fynn, J. and Sackey-Mensah, R. (2012). Species Diversity and Relative Abundance of Fisheries Resources Found in Beach Seine along the Central Coast of Ghana. West African Journal of Applied Ecology, 20(1): 9pp.
     Google Scholar
  12. Nunoo, F. K. E. and Berchie, A. (2013). An investigation of fish-catch data and its implications for management of small-scale fisheries of Ghana. International Journal of Fisheries and Aquatic Sciences, 2(3): 46-57.
     Google Scholar
  13. FAO. (2021). Capture fisheries resources. Rome, FAO. http://www.fao.org/fishery/resources/capture/en (accessed on December 02, 2020).
     Google Scholar
  14. Schneider, W. (1990). FAO species identification sheets for fishery purposes. Field guide to the commercial marine resources of the Gulf of Guinea. Prepared and published with the support of the FAO Regional Office for Africa. Rome: FAO, 268 p.
     Google Scholar
  15. Anato, C. B. (1999) Les Sparidae des côtes béninoises: Milieu de vie, pêche, présentation des espèces et biologie de Dentex angolensis Poll et Maul, 1953. Thèse de Doctorat d’Etat es Sciences, Fac. Sci. 1060 Tunis, 277 p.
     Google Scholar
  16. Munro, J. L. and Pauly, D. (1984). Once more on the comparison of growth in fish and invertebrates. ICLARM Fishbyte, 2: 21 p.
     Google Scholar
  17. Aleev, Y. G. (1952). Horse Mackerel of the Black Sea, VNIRO Press.
     Google Scholar
  18. Sparre, P. and Venema, S.C. (1992) Introduction to Tropical Fish Stock Assessment. Part 1. Manual, FAO Fisheries Technical Paper, 306. No. 1, Review 1, FAO, Rome, 376 p.
     Google Scholar
  19. Then, A. Y., Hoenig, J. M, Hall, N. G. and Hewitt D. A. (2015). Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science. 72: 82-92.
     Google Scholar
  20. Qamar, N, Panhwar, S. K. and Brouwer, S. (2016). Population Characteristics and Biological Reference Point Estimates for Two Carangid Fishes, Megalaspis cordyla and Scomberoides tol, in the Northern Arabian Sea Coast of Pakistan. Pakistan Journal of Zoology, 48(3): 869-874.
     Google Scholar
  21. Georgiev, Z. M. and Kolarov, P. (1962). “On the migration and distribution of horse mackerel (Trachurus ponticus Aleev) in the western part of Black Sea,” Arbeiten des Zentralen Forschungsinstitutes Fur Fishzught und Fisherei Varna, 2: 148–172.
     Google Scholar
  22. Pauly, D. (1984). Fish population dynamics in tropical waters: a manual for use with programmable calculators. ICLARM Contribution, Makati, Metro, Manila, Philippines, (143): 325.
     Google Scholar
  23. Taylor, M. and Mildenberger, T. K. (2017). Extending electronic length frequency analysis in R. Fisheries Management and Ecology. s24: 330–338.
     Google Scholar
  24. Costa, Marcus Rodrigues da, Tubino, Rafael de Almeida, & Monteiro-Neto, Cassiano. (2018). Length-based estimates of growth parameters and mortality rates of fish populations from a coastal zone in the Southeastern Brazil. Zoologia (Curitiba), 35, e22235. https://doi.org/10.3897/zoologia.35.e22235.
     Google Scholar
  25. Morales-Nin, B. (1994). Growth of demersal fish species of the Mexican Pacific Ocean. Marine Biology, 121: 211-217.
     Google Scholar
  26. Espino Barr, E., Gallardo Cabello, M., Cabral Solís, E. G., Garcia Boa, A. and Puente Gómez, M. (2008). Growth of the Pacific jack Caranx caninus (Pisces: Carangidae) from the coast of Colima, México. Revista de Biologia Tropical, 56 (1): 171–179.
     Google Scholar
  27. Amponsah S. K. K., Ofori-Danson P. K., Nunoo F. K. E. (2016). Study of the population parameters of the bigeye grunt, Brachydeuterus auritus (Valenciennes, 1831) in Ghanaian coastal waters and its implications for management. International Journal of Fisheries and Aquatic Studies, 4 (6): 413-419.
     Google Scholar
  28. Tarkan, A. S. and Vilizzi, L. (2015). Patterns, latitudinal clines and countergradient variation in the growth of roach Rutilus rutilus (Cyprinidae) in its Eurasian area of distribution. Reviews in Fish Biology and Fisheries, 25 (4): 587–602. DOI: .https://doi.org/10.1007/s11160-015-9398-6.
     Google Scholar
  29. Pauly, D. and Soriano, M. L. (1986). Some practical extentions to Beverton and Holt's relative yield per- recruit model, pl49-495. In J.L.Maclean, L.B.Dizon and L.V.Hosillos (eds) First Asian Fisheries Forum, Asian Fisheries Society, Manila, Philippines.
     Google Scholar
  30. Gheshlaghi, P., Vahabnezhad, A. and Taghavi Motlagh, S. A. (2012). Growth parameters, mortality rates, yield per recruit, biomass, and MSY of Rutilus frisii kutum, using length frequency analysis in the Southern parts of the Caspian Sea. Iranian Journal of Fisheries Science, 11(1):48-62.
     Google Scholar
  31. Macer, C. T. (1977). “Some aspects of the biology of the horse mackerel [Trachurus trachurus (L.)] in waters around Britain,” Journal of Fish Biology, 10(1): 51–62.
     Google Scholar
  32. De Queiroz, J. D. G. R., Salvador, N. L. A., Sousa, M. F., Da Silva, V. E. L., Fabré, N. N., Vandick S. and Batista, V. S. (2018). Life-History Traits of Chloroscombrus Chrysurus (Actinopterygii: Perciformes: Carangidae) In Tropical Waters of The Atlantic Ocean. Acta Ichthyologica Et Piscatoria, 48 (1): 1–8.
     Google Scholar
  33. Azim M. K. M., Amin S. M. N., Romano N., Arshad A. and Yusoff F. M. (2017). Population Dynamics of Yellowtail Scad, Atule mate (Cuvier 1833) in Marudu Bay, Sabah, Malaysia; Sains Malaysiana, 46(12): 2263- 2271.
     Google Scholar
  34. Gulland, J. A. (1971). The fish resources of the oceans. West by fleet survey. Fishing News (Books) Ltd., for FAO, West By fleet, England:255.
     Google Scholar