The variable viscosity and variable gravity field on the onset of convective motion in a porous layer with throughflow

2024;
: pp. 19–26
https://doi.org/10.23939/mmc2024.01.019
Received: August 08, 2022
Revised: April 03, 2023
Accepted: April 11, 2023

Gangadharaiah Y. H., Manjunatha N., Mebarek-Oudina F. The variable viscosity and variable gravity field on the onset of convective motion in a porous layer with throughflow. Mathematical Modeling and Computing. Vol. 11, No. 1, pp. 19–26 (2024)

1
Department of Mathematics, RV Institute of Technology and Management, Bengaluru, Karnataka, India
2
Department of Mathematics, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
3
Department of Physics, Faculty of Sciences, University of 20 Aout 1955 – Skikda, Skikda, Algeria

In the present article, the combined influence of the changeable gravity field and temperature-reliant viscosity on the porous bed is considered for investigation numerically by the Galerkin technique in the presence of upward vertical throughflow.  The temperature-reliant viscosity is known to be exponential.  The porous matrix is subjected to continuous downward gravity fluctuations varying with distance across the medium and vertical upward throughflow.  Four different cases of gravity variance were discussed.  A parametric analysis is conducted by adjusting the following parameters: throughflow parameter, viscosity parameter, and gravity parameter.  Results show that the beginning of the convective moment would be delayed by all three parameters throughflow, temperature-reliant viscosity, and gravity variance.  It has been shown that the fluidic system is more inconsistent in case (iii) and more consistent in case (iv).

  1. Nield D. A., Bejan A.  Convection in Porous Media.  Springer, New York (2006).
  2. Nield D. A., Kuznetsov A. V.  The effect of vertical throughflow on the onset of convection in a porous medium in a rectangular box.  Transport in Porous Media.  90, 993–1000 (2011).
  3. Nield D. A.  Onset of convection in a fluid layer overlying a layer of a porous medium.  Journal of Fluid Mechanics.  81 (3), 513–522 (1977).
  4. Shivakumara I. S., Suma S. P., Indira R., Gangadharaiah Y. H.  Effect of internal heat generation on the onset of Marangoni convection in a fluid layer overlying a layer of an anisotropic porous medium.  Transport in Porous Media.  92, 727–743 (2012).
  5. Vafai K.  Handbook of Porous Media. Boca Raton, Crc Press (2015).
  6. Suma S. P., Gangadharaiah Y. H., Indira R., Shivakumara I. S.  Throughflow effects on penetrative convection in superposed fluid and porous layers.  Transport in Porous Media.  95, 91–110 (2012).
  7. Gangadharaiah Y. H.  Onset of Benard-Marangoni convection in composite layers with anisotropic porous material.  Journal of Applied Fluid Mechanics.  9 (3), 1551–1558 (2016).
  8. Wang S., Tan W.  Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below.  Physics Letters A.  372 (17), 3046–3050 (2018).
  9. Ingham D. B., Pop I.  Transport Phenomena in Porous Media.  Pergamon, Elsevier (1998).
  10. Celli M., Barletta A., Rees D.  Local thermal non-equilibrium analysis of the instability in a vertical porous slab with permeable sidewalls.  Transport in Porous Media.  119, 539–553 (2017).
  11. Mahajan A., Sharma M. K.  Penetrative convection in magnetic nanofluids via internal heating.  Physics of Fluids.  29 (3), 221–228 (2017).
  12. Banu N., Rees D. A. S.  Onset of Darcy–Bénard convection using a thermal non-equilibrium.  International Journal of Heat and Mass Transfer.  45 (11), 2221–2228 (2002).
  13. Alex S. M., Patil P. R.  Effect of a variable gravity field on convection in an anisotropic porous medium with internal heat source and inclined temperature gradient.  ASME Journal of Heat and Mass Transfer.  124 (1), 144–150 (2002).
  14. Alex S. M., Patil P. R., Venkatakrishnan K.  Variable gravity effects on thermal instability in a porous medium with internal heat source and inclined temperature gradient.  Fluid Dynamics Research.  29 (1), 244–250 (2001).
  15. Pradhan G., Samal P.  Thermal stability of a fluid layer under variable body forces.  Journal of Mathematical Analysis and Applications.  122 (2), 487–495 (1987).
  16. Alex S. M., Patil P. R.  Effect of variable gravity field on Soret driven thermosolutal convection in a porous medium.  International Communications in Heat and Mass Transfer.  28 (4), 509–518 (2001).
  17. Rionero S., Straughan B.  Convection in a porous medium with internal heat source and variable gravity effects.  International Journal of Engineering Science.  28 (6), 497–503 (1990).
  18. Rossby H. T.  A study of Bénard convection with and without rotation.  Journal of Fluid Mechanics.  36 (2), 309–335 (1969).
  19. Torrance K. E., Turcotte D. L.  Thermal convection with large viscosity variations.  Journal of Fluid Mechanics.  47 (1), 113–125 (1948).
  20. Barletta A., Nield D. A.  Variable viscosity effects on the dissipation instability in a porous layer with horizontal throughflow.  Physics of Fluids.  24 (10), 104102 (2012).
  21. Solomatov V. S., Barr A. C.  Onset of convection in fluids with strongly temperature-dependent, power-law viscosity.  Physics of the Earth and Planetary Interiors.  155 (1–2), 140–145 (2006).
  22. Booker J. R.  Thermal convection with strongly temperature-dependent viscosity.  Journal of Fluid Mechanics.  76 (4), 741–754 (1976).
  23. Hassan M., Mebarek-Oudina F., Faisal A., Ghafar A., Ismail A. I.  Thermal energy and mass transport of shear-thinning fluid under effects of low to high shear rate viscosity.  International Journal of Thermofluids.  15, 100176 (2022).
  24. Reddy Y. D., Mebarek-Oudina F., Goud B. S., Ismail A. I.  Radiation, velocity and thermal slips effect toward MHD boundary layer flow through heat and mass transport of Williamson nanofluid with porous medium.  Arabian Journal for Science and Engineering.  47, 16355–16369 (2022).
  25. Chabani I., Mebarek-Oudina F., Ismail A. I.  MHD flow of a hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle.  Micromachines.  13 (2), 224 (2022).
  26. Suma S. P., Gangadharaiah Y. H., Indira R.  Effect of throughflow and variable gravity field on thermal convection in a porous layer.  International Journal of Engineering Science and Technology.  3, 7657–7668 (2003).
  27. Gangadharaiah Y. H., Suma S. P., Ananda K.  Variable gravity field and throughflow effects on penetrative convection in a porous layer.  International Journal of Computers & Technology.  5 (3), 170–191 (2013).
  28. Cordell L.  Gravity analysis using an exponential density-depth function-San Jacinto Graben, California.  Geophysics.  38, 684–690 (1973).
  29. Shneiderov A. J.  The exponential law of gravitation and its effects on seismological and  tectonic phenomena: a preliminary exposition.  Eos, Transactions American Geophysical Union.  24 (1), 61–88 (1943).
  30. Shi L., Li Y., Zhang E.  A new approach for density contrast interface inversion based on the parabolic density function in the frequency domain.  Journal of Applied Geophysics.  116, 1–9 (2015).
  31. Nagarathnamma H., Gangadharaiah Y. H., Ananda K.  Effects of variable internal heat source and variable gravity field on convection in a porous layer.  Malaya Journal of Matematik.  8, 915–919 (2020).
  32. Nagarathnamma H., Ananda K., Gangadharaiah Y. H.  Effects of variable heat source on convective motion in an anisotropic porous layer.  IOP Conference Series: Materials Science and Engineering.  1070, 012018 (2021).
  33. Visweswara Rao C., Chakravarthi V., Raju M. L.  Forward modeling: gravity anomalies of two-dimensional bodies of arbitrary shape with hyperbolic and parabolic density  functions.  Computers & Geosciences.  20 (5), 873–880 (1994).
  34. Manjunatha N., Yellamma, Sumithra R., Yogeesha K. M., Rajesh Kumar, Naveen Kumar R.  Roles and impacts of heat source/sink and magnetic field on non-Darcy three component Marangoni convection in a two-layer structure.  International Journal of Modern Physics B.  37 (19), 2350186 (2023).
  35. Manjunatha N., Sumithra R.,  Nazek Alessa, Loganathan K., Selvamani C., Sonam Gyeltshen.  Influence of temperature gradients and heat source in a combined layer on double component-magneto-Marangoni-convection.  Journal of  Mathematics.  2023, 1537674 (2023).
  36. Yellamma, Manjunatha N., Khan U., Elattar S.,  Eldin S. M., Chohan J. S., Sumithra R., Sarada K.  Onset of triple-diffusive convective stability in the presence of a heat source and temperature gradients: an exact method. AIMS Mathematics.  8 (6), 13432–13453 (2023).
  37. Yellamma, Manjunatha N., Abdulrahman A., Khan U., Sumithra R., Gill H. S., Elattar S., Eldin S. M.  Triple diffusive Marangoni convection in a fluid-porous structure: Effects of a vertical magnetic field and temperature profiles.  Case Studies in Thermal Engineering.  43, 102765 (2023).