鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
力学特性
5%Mn鋼の組織,機械的性質に及ぼす冷間圧延の影響
棗田 浩和 北原 周橋本 俊一
著者情報
ジャーナル オープンアクセス HTML

2018 年 104 巻 5 号 p. 274-283

詳細
抄録

Recently, medium Mn steel has been focused on as one of the promising candidates for third generation AHSS, due to it having an excellent TS-El relationship. Medium Mn steel can retain a lot of austenite by reheating to an (α+γ) intercritical temperature. Research on this material was performed on hot rolled steel sheet and cold rolled steel sheet, using the martensite as the starting microstructure.

The effect of cold reduction on the microstructure and mechanical property after intercritical annealing was discussed by using 0.2C-2Si-5Mn steel with softened bainite structure at 575°C and the following results were obtained.

(1) Hot rolling and intercritical annealed steel sheet showed a lath type structure of ferrite and retained austenite. On the other hand, cold rolling and intercritical annealed steel sheet showed a mixture of equiaxed ultrafine ferrite and retained austenite. The volume fraction of retained austenite increased as the intercritical annealing time increased. The increasing behavior was promoted by cold reduction. The maximum volume fraction of retained austenite was about 40%, and was obtained for the longest annealing time, 300 min, in all steels.

(2) Excellent mechanical properties, for example, TS; 1217 MPa, UEl; 27.6%, TS×UEl; 33,592 MPa% were obtained for the steel intercritically annealed at 675°C for 30 min after 50% cold reduction. Hot rolled steel showed continuous yielding, while cold rolled steel exhibited about 7% yield point elongation.

These results were almost accorded with the previously reported results whose initial microstructure was martensite.

著者関連情報
© 2018 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top