日本金属学会誌
Online ISSN : 1880-6880
Print ISSN : 0021-4876
ISSN-L : 0021-4876
オーバービュー(解説論文)
ホモロガス構造を有するGe-Sb-Te系化合物の結晶構造と熱電特性
小菅 厚子石橋 広記久保田 佳基木舩 弘一
著者情報
ジャーナル フリー

2015 年 79 巻 11 号 p. 562-568

詳細
抄録

  We studied the effects of different preparation method and In-substitution on its crystal structure and thermoelectric (TE) properties of polycrystalline GeSb6Te10. Firstly, the effects of spark plasma sintering (SPS) on the crystal structure and elemental distribution of GeSb6Te10 were discussed. GeSb6Te10 consolidated using SPS consisted of a mixture of GeSb6Te10-type homologous and Sb2Te3-type tetradymite structures, whereas the sample prepared by melting had a single homologous structure. The elemental compositional deviation from the nominal composition of the sample prepared by SPS was wider than that prepared by melting. This implies that SPS promoted atomic diffusion and rearrangement of elements, leading to a substantial change in the crystal structure and elemental distribution of GeSb6Te10. Secondly, the effects of In-substitution on the crystal structure and TE properties of GeInxSb6−xTe10 (x=0, 0.18, 0.3, and 0.6) prepared by melting were discussed. Rietveld and Le Bail analyses showed that all compositions crystallized in trigonal structures with a 51-layer period. Substituting In decreased both the lattice and electronic thermal conductivity, as well as markedly increased the Seebeck coefficient. We ascribed this increase to increases in the effective mass of the carriers, likely caused by the formation of additional energy states near the Fermi level. In GeIn0.6Sb5.4Te10, we found a maximum dimensionless figure of merit: ZTmax of 0.75 at 710 K, 1.9 times higher than that of GeSb6Te10.

著者関連情報
© 2015 (公社)日本金属学会
前の記事 次の記事
feedback
Top