Common Workflow Language Execution on the I8-Testbed

Thomas Dietrich, Sebastian Gallenmiiller*, Manuel Simon*
*Chair of Network Architectures and Services
School of Computation, Information and Technology, Technical University of Munich, Germany
Email: thomas.dietrich@tum.de, gallenmu@unet.in.tum.de, simonm@net.in.tum.de

Abstract—The Common Workflow Language (CWL) is an
open standard to describe workflows in a portable way.
Data analysis using workflows has increased significantly in
science. Nevertheless, there has been no coordinated way to
express them, resulting in multiple diverse workflow systems
that are complicated to exchange. Exchange and verification
are fundamental principles in research. Therefore, it is
essential to share the workflows behind the findings in a
standardised way so that the results are reproducible and can
be confirmed. This article describes the necessary steps to
install and execute CWL workflows on a testbed that uses the
pos framework to manage nodes. For the execution of CWL,
we chose an implementation called StreamFlow because it
provides SSH Connectors. A CWL execution on this testbed
utilises a combination of StreamFlow, the pos framework
and bash scripts. This automation framework can execute
new CWL workflows or existing ones from other researchers
without a high expense. It enables data analysis with CWL
and its verification. An example implementation is available
at https://gitlab.lrz.de/netintum/teaching/iitm/repos/2023ss-
bs/u838/-/tree/main/resources/experiment.

Index Terms—experiment workflows, common workflow lan-
guage, streamflow, testbed

1. Introduction

Scientific experiments are capable of analysing data
to acquire knowledge. These data analyses can consist of
several steps following a fixed sequence to generate in-
sights and meaningful output data from the input material.
Computers carry out these workflows when dealing with
large amounts of data or complex tasks. For this, scientists
need applications that execute these workflows based on
input data. Competing solutions exist from various com-
panies that perform workflows in different ways. Baker
and van Hemert’s research [1] concluded that workflows
become the dominant technology in describing scientific
processes. As a result of this growth, there are over 300
different computational data analysis workflow systems
compiled by Amstutz et al. [2].

Exchange with other researchers, mutual control, peer
review and transparency are the fundamentals of scientific
research. For this, workflows used in scientific methods
must be traceable. However, this is complex, with multi-
ple different systems. Repeating experiments with other
systems requires a high expense and is impossible if
two systems are incompatible. A new standard called the
Common Workflow Language (CWL) was developed by

Seminar IITM SS 23

19

Amstutz et al. [3] to ensure that academic principles can
also be maintained when using workflows. A multi-faceted
project created by Crusoe et al. [4] around the mere
language strives for portably exchangeable workflows be-
tween systems with various environments, thus enabling
scientists to reproduce data analyses for more transparency
and better control over results. Due to these reasons,
Leipzig [5] identified the CWL standard as a rising trend
in his review of bioinformatic pipeline frameworks.

In addition, the CWL project provides tools to facilitate
editing and viewing workflows, converting existing lan-
guages into CWL through converters and enabling exe-
cution through frameworks. The creators of CWL also
provide a reference implementation called cwltool that
supports local execution on Linux, Mac and Windows.
Besides the reference solution, production-ready imple-
mentations with other features exist, such as the Stream-
Flow implementation by Colonnelli et al. [6] with various
connectors. These connectors allow StreamFlow to con-
nect to hybrid workflows using cloud computing and high-
performance computers or multi-container environments
like Docker containers by Merkel [7].

This paper describes the necessary steps to install and ex-
ecute the CWL. It uses an implementation of StreamFlow
with SSH Connectors to combine CWL workflow steps to
nodes on the testbed of the Chair of Network Architectures
and Services from the Technical University of Munich
(I8), which Haden et al. introduced in [8]. In addition, bash
scripts automate the execution of StreamFlow projects
on the testbed of the I8 using the pos framework from
Gallenmiiller et al. [9].

The content of this paper is structured as follows. Sec. 2
briefly describes how to write a workflow in CWL, fol-
lowed by Sec. 3, explaining how StreamFlow is structured
and how to use it to execute the CWL. Sec. 4 uses this
information to combine CWL and StreamFlow with bash
scripts and the pos framework to create an experiment
runnable on the testbed. Sec. 5 concludes the paper and
provides an outlook on further contents of the CWL
project.

2. Common Workflow Language

CWL is an open and free standard. It describes work-
flows in a human-readable way. CWL focuses on its
community and aims to be interoperable, vendor-neutral
and portable across different platforms. Reusable work-
flows and reproducible results can improve transparency in
research. There are tools, libraries and editor plugins that
already support CWL. Furthermore, you can parallelize

doi: 10.2313/NET-2023-11-1 04

workflows with the scatter feature [4] to make them
scalable. However, this paper will only deal with the basic
functionalities of CWL because additions like tools or the
scatter feature would exceed its scope.

CWL workflow files are written in YAML and have
the ending .cwl. There are two essential class types:
the CommandLineTool and the Workflow class. The
CommandLineTool class is a wrapper for software tools
executed with the command line. It stores the command,
describes input and output and assigns them an id defined
in the Workflow class [3].

1 |cwlVersion: vl1.2

2 |class: CommandLineTool
3 | baseCommand: echo
4 | stdout: output.txt
5 | inputs:

6 step_in:

7 type: string

8 inputBinding:
9 position: 1
10 | outputs:

11 step_out:

12 type: stdout

Listing 1: echo.cwl

The functionality of the file above is to repeat an in-
put message captured in a text file called output.txt.
After specifying the cwlVersion and the class type, a
baseCommand has to be declared. The expression in Line 4
of Listing 1 captures the messages from stdout in a file.
The class assigns input and output names and types. The
inputBinding describes the position of arguments after
the command [3].

1 | cwlVersion: vl1.2

2 |class: Workflow

3 | inputs:

4 message: string

5 |outputs:

6 out:

7 type: File

8 outputSource:
echo/step_out

9 | steps:

10 echo:

11 run: echo.cwl

12 in:

13 step_in: message

14 out: [step_out]

Listing 2: workflow.cwl

To define the workflow, the Workflow class uses the
CommandLineTool classes. It specifies the input and out-
put of the whole workflow and assigns intermediate prod-
ucts to steps. Inputs of workflows are typically stored in
JSON or YAML files with the same name as the workflow
file followed by a "-job" suffix. CWL is limited by the
input given once the workflow has been started. Since
it is not possible to add input later, care must be taken
to add all the required data before starting the workflow
to avoid later problems. The workflow.cwl file uses the
CommandLineTool from Listing 1 to build an example

Seminar IITM SS 23

20

workflow with one step. A complex workflow can be cre-
ated, in a human-readable manner, by adding other work
steps. CWL also supports additional requirements like us-
ing JavaScript with the InlineJavaScriptRequirement
for added functionality. Installing the required packages
for all extra functionalities in the setup is necessary. To
evaluate, e. g. inline JavaScript expressions, Node. js has
to be installed in addition to the basic packages, as shown
in Section 4.2 [3].

3. StreamFlow

StreamFlow is a workflow manager capable of execut-
ing CWL workflows on different architectures. As shown
in Figure 1, this workflow manager executes a StreamFlow
file. This file is written in YAML and conventionally is
called streamflow.yml. It consists of two parts. The first
one is called "Model description files" and contains a
YAML description of infrastructures that should execute
the workflow steps, e.g., different servers or different

nodes of a testbed.
/"?r% ********** i!i =:=
) ’w Model description
‘\,, == files
T e S

StreamFlow executor

Deployment
manager

Scheduler Data manager

StreamFlow
extensions

Docker/
- _

Figure 1: StreamFlow Model from [6]

Connector

The deployment diagrams in the upper right corner
show that there can be multiple models with different
structures within a single model description file. A model
has a type section containing the chosen connector and
a config field with connector-specific configuration pa-
rameters. The second part, called "Workflow description
files", references a workflow file like workflow.cwl in
Listing 2, or, as indicated by the activity diagram in the
upper left corner of Figure 1, can be a complex workflow
that runs in parallel steps. Input files mentioned in Section
2 and a bindings section are also part of these description
files. The binding section describes which workflow step is
deployed on which model. This section can, e. g. specify
that the echo step in Listing 2, Line 10 should be executed
on a specific node from the testbed mentioned in the
introduction. This binding is visualised by the arrows in
the illustration in the middle of Figure 1 that combine
the deployment diagram and the activity diagram. As a
whole, combined by the bindings section, these two
description files result in a StreamFlow file. With this
file, the StreamFlow executor can interpret CWL, schedule

doi: 10.2313/NET-2023-11-1 04

tasks and deploy the workflow to connected environments
while managing the data by itself [6].

This paper uses an SSHConnector to connect to dif-
ferent nodes. The names of the used nodes listed in an
array called nodes, the username in a field username,
and a path to the SSH key file on the nodes in sshKey are
configuration parameters for this connector. As depicted
in Figure 1, there also exist other connectors for high-
performance computing (HPC) and container technolo-
gies. As mentioned in the introduction, there is, e.g. a
DockerConnector that requires a docker image as his
config or a SlurmConnector that is capable of connect-
ing to an HPC facility orchestrated by the Slurm queue
manager from Yoo et al. [10]. This SlurmConnector
requires a hostname of an HPC facility and a username
for the SSH connection to this facility. While container
connectors would also be feasible on the 18-testbed, HPC
connectors require an HPC facility [6].

4. Implementation on the Testbed

Once the workflow is described by CWL and the exe-
cution is managed with StreamFlow, a Bash script called
experiment.sh is executed on the management node. It
automatically orchestrates nodes from the testbed [8] us-
ing the pos framework, simultaneously installs the needed
packages, prepares SSH Connections for the connectors
mentioned at the end of Section 3, copies required files
to the nodes and executes the StreamFlow file.

4.1. Orchestration of Nodes

The testbed consists of nodes orchestrated by a
management node through the pos framework [9].
The framework can reserve selected nodes by creating
calendar entries for them. It allocates the nodes for
the experiment and boots them with specified images.
Furthermore, pos can copy files from the management
node to other nodes and remotely execute commands
or executables on selected nodes. For the execution of
StreamFlow, a master node is set up that uses a selectable
amount of worker nodes, as shown in Figure 2. A Debian
11 (bullseye) image, e.g. is needed, since StreamFlow
requires python >= 3.8 [6].

[Management node]

Master node Worker nodes

Figure 2: Testbed typology

Seminar IITM SS 23

21

4.2. Basic Nodes Setup

The experiment.sh script simultaneously executes a
setup script called setup.sh on all selected nodes using
the pos launch feature. The script displayed in Listing 3
installs the needed packages for CWL and the StreamFlow
execution [9].

s

1 | #!/bin/bash

2 |apt-get update

3 |apt-get install -y python3-pip

4 |pip install streamflow

5 |pip install --force-reinstall
"cwltool==3.1.20220802125926"

6 |curl -fsSL
https://deb.nodesource.com/setup_19.x
| bash - &&\

7 |apt-get install -y nodejs

8

9 | #add needed packages here

Listing 3: The setup.sh script

After updating, the script installs the Python package
installer pip because it is used to install StreamFlow. Once
pip is available, it installs StreamFlow. Installing Stream-
Flow downloads a cwltool version missing a file [11].
Therefore, it is necessary to reinstall the latest version,
cwltool==3.1.20220802125926, without this bug. Users can
add other packages required for the experiment to this
list. Inline Javascript expressions, €.g., can be used in
the CWL. To evaluate these expressions, NodeSource, a
distribution of Node. js for Debian [12], must be installed.
Once all packages are installed, the master and worker
nodes are processed differently. Only the master node re-
ceives the streamflow folder in the experiment directory
displayed in Figure 3.

4.3. Preparation of SSH Connections

From now on, it would be possible to execute CWL
files on nodes locally with the cwltool mentioned in
Section 4.2. So it would also be possible to build fur-
ther preparation steps as a workflow. However, since this
would generate a lot of overhead and exceed the con-
cepts presented in section 2, bash scripts also perform
further preparations. By default, the management node can
communicate with other nodes. To achieve connectivity
- as shown in Figure 2 - the master node should also
be able to connect to the worker nodes. Therefore, the
experiment script prepares the master and worker nodes
for SSH connections. The experiment directory contains
a pre-generated SSH key pair with a private key called
worker and a public key called worker. pub, as shown in
Figure 3. The framework script experiment.sh executed
on the management node remotely copies the public SSH
key to all worker nodes with the pos copy feature. Then a
script called keyexchange. sh is remotely executed on all
workers with the pos remote command execution feature
from the management node. This setup script appends
the copied public key to the authorized_keys in the
.ssh folders to approve the new SSH connection. The
streamflow folder copied to the master node, as described

doi: 10.2313/NET-2023-11-1 04

in Section 4.2, contains the private key worker. To copy
the private key, pos needs read permission on this file.
Therefore the private key has reading permissions for
everyone (644). Since this would be a security gap, the
main script repeals the read permissions by executing the
safeKey.sh script remotely on the master node. As a
result, the private key has the default permissions 600.
Besides the private key, the master node needs all worker
nodes mentioned in his known_hosts. The framework
script uses the command ssh-keyscan to gather all pub-
lic keys from the worker nodes in a manually created
known_hosts file. This file is remotely stored on the
master node by the management node and replaces the
existing known_hosts file to verify all worker nodes to
the master. After this preparation, the master node can
connect to all worker nodes through an SSH connection
to delegate work.

experiment
streamflow
streamflow.yml
worker
workflow-job. json
workflow.cwl
experiment.sh
keyexchange.sh
safeKey.sh
setup.sh
worker.pub

Figure 3: The experiment directory

4.4. Execution of the Experiment

The directory structure of a StreamFlow experiment
could be set up as depicted in Figure 3. The experiment
directory contains a streamflow subfolder that is copied
to the master node from the management node. It contains
the workflow files from Section 2, the StreamFlow file
from Section 3 and the private SSH key. Section 4.3
explained this key with the public SSH key, the key-
scripts safeKey. sh and keyexchange. sh. The main script
experiment.sh explained in Section 4 and the setup.sh
script shown in Listing 3 complete the experiment.

An example implementation can be downloaded from a
GitLab Repository [13]. To execute the workflow, the
experiment directory in Figure 3 can be copied to
the management node of the testbed using the secure
copy command scp. The main bash script that starts
the whole experiment, "bash experiment/experiment.sh",
is executed from the parent directory of experiment as
the working directory. It takes a master node as the first
argument and at least one worker node as the following
arguments. For the workflow to function, the workers
listed in the nodes array mentioned in Section 3 have to
be passed as parameters after the freely selectable master
node. When using this framework with larger projects,
the hardcoded waiting time for the preparation to finish
in experimant.sh has to be adjusted. Through the freely
adjustable number of worker nodes, the script can scale
with larger projects until all nodes from the testbed work
to capacity if the workflows are built in a parallelisable

Seminar IITM SS 23

22

way, e. g., by using the scatter feature mentioned in Sec-
tion 2. Additional tools required for workflow steps, can
be added to the setup.sh script, as shown in Section 4.2.
Consequently, this proof of concept can be used for further
workflow experiments.

5. Conclusion

Instead of using proprietary workflow systems, com-

plex data analysis flows can be described in the CWL
standard. The StreamFlow manager can execute workflow
descriptions in CWL. This manager interprets CWL and
uses SSHConnectors to connect the master nodes with
workers. In addition, it independently schedules deploy-
ment to workers and accomplishes data management. To
automatically run the experiment on the I8-Testbed, bash
scripts use features from the pos framework to orchestrate
nodes, set them up, prepare SSH connections and execute
the StreamFlow file. This way, data analysis workflows
are portable and can be exchanged with other researchers
to reuse the workflows and reproduce results. The ex-
changeable and verifiable CWL standard improves two
necessary principles of modern research using automated
data analysis and enhancing the transparency of scientific
findings.
This paper is a proof of concept for a testbed framework of
the CWL standard and does not cover the whole standard.
There are further undiscussed CWL topics regarding CWL
because it would have been too much for the scope of this
paper. CWL offers, e.g., a scatter feature to parallelise
workflows to improve their scalability.

References

[1] A. Barker and J. van Hemert, “Scientific workflow: A survey and
research directions,” in Parallel Processing and Applied Mathe-
matics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Was-
niewski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 746-753.

[2] P. Amstutz, M. Mikheev, M. R. Crusoe, N. Tijani¢, and
S. Lampa, “Existing workflow systems,” 2022, updated 2023-03-
10, accessed 2023-03-28]. [Online]. Available: https://s.apache.
org/existing-workflow-systems

[3] P. Amstutz, M. R. Crusoe, N. Tijani¢, B. Chapman,
J. Chilton, M. Heuer, A. Kartashov, D. Leehr, H. M¢nager,
M. Nedeljkovich, M. Scales, S. Soiland-Reyes, and
L. Stojanovic, “Common Workflow Language, v1.0,” 7 2016.
[Online]. Available: https:/figshare.com/articles/dataset/Common_
Workflow_Language_draft_3/3115156

[4] M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Ti-
jani¢, H. Ménager, S. Soiland-Reyes, B. Gavrilovi¢, C. Goble, and
T. C. Community, “Methods included: Standardizing computational
reuse and portability with the common workflow language,” Com-
mun. ACM, vol. 65, no. 6, p. 54-63, may 2022.

[5] . Leipzig, “A review of bioinformatic pipeline frameworks,” Brief-
ings in bioinformatics, vol. 18, no. 3, pp. 530-536, 2017.

[6] 1. Colonnelli, B. Cantalupo, I. Merelli, and M. Aldinucci, “Stream-
flow: Cross-breeding cloud with hpc,” IEEE Transactions on
Emerging Topics in Computing, vol. 9, no. 4, pp. 1723-1737, 2021.
[71 D. Merkel, “Docker: lightweight linux containers for consistent
development and deployment,” Linux journal, vol. 2014, no. 239,
p- 2, 2014.

doi: 10.2313/NET-2023-11-1 04

(8]

(91

M. Haden, “I8-testbed: Introduction,” in Proceedings of the Semi-
nar Innovative Internet Technologies and Mobile Communications
(IITM), Summer Semester 2020, ser. Network Architectures and
Services (NET), G. Carle, S. Giinther, and B. Jaeger, Eds., vol.
NET-2020-11-1. Munich, Germany: Chair of Network Architec-
tures and Services, Department of Computer Science, Technical
University of Munich, Nov. 2020, pp. 61-65.

S. Gallenmiiller, D. Scholz, H. Stubbe, and G. Carle, “The pos
framework: A methodology and toolchain for reproducible network
experiments,” in Proceedings of the 17th International Confer-
ence on Emerging Networking EXperiments and Technologies, ser.
CoNEXT °21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 259-266.

Seminar IITM SS 23

23

[10]

[11]

[12]

(13]

A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple
linux utility for resource management,” in Job Scheduling Strate-
gies for Parallel Processing, D. Feitelson, L. Rudolph, and
U. Schwiegelshohn, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 44-60.

Updated 2023-03-10, accessed 2023-03-28]. [Online]. Available:
https://github.com/alpha-unito/streamflow/issues/15

Updated 2023-03-10, accessed 2023-03-28]. [Online]. Available:
https://github.com/nodesource/distributions

T. Dietrich, accessed 2023-03-28]. [Online]. Available: https:
//gitlab.Irz.de/netintum/teaching/iitm/repos/2023ss-bs/u838.git

doi: 10.2313/NET-2023-11-1 04

