
TLS solutions for WSNs

Philipp Lowack

Betreuer: Corinna Schmitt

Seminar Sensorknoten: Betrieb, Netze und Anwendungen SS2012

Lehrstuhl Netzarchitekturen und Netzdienste, Lehrstuhl Betriebssysteme und Systemarchitekturen

Fakultät für Informatik, Technische Universität München

Email: lowack@in.tum.de

ABSTRACT
As most nodes of wireless sensor networks are not very pow-
erful in regard to computational operations and additionally
very limited in power supply, it is not a trivial task to deploy
security features. As more applications for wireless sensor
networks are developed, it becomes more and more impor-
tant and necessary to also provide secure communication
between nodes and to external terminals. In this paper,
three already existing approaches for using the Transport
Layer Security protocol in combination with wireless sensor
networks are presented. The first uses identity based cryp-
tography and bilinear pairing based on elliptic curve cryp-
tography instead of RSA. The second solution modifies the
TLS handshake in order to establish a single TLS session
between multiple entities. In the third solution expensive
cryptographic operations are outsourced to a more powerful
gateway node. For each solution the principles of operation
are explained and afterwards the presented approaches are
compared in regard to applicability and energy consump-
tion.

Keywords
Wireless Sensor Networks, secure communication, Transport
Layer Security, bilinear pairing, Elliptic Curve Cryptogra-
phy, Tiny 3-TLS

1. INTRODUCTION
The Transport Layer Security (TLS) protocol is a wide-
spread and well accepted cryptographic protocol for encrypt-
ing and integrity-protecting the payload of network data
streams. Because of its transparency in regard to the outer
and inner protocols, it is nowadays widely used in many dif-
ferent applications. The perhaps most well-known protocol
which uses TLS is the Secure HyperText Transport Pro-

tocol (HTTPS) which is used by everyone while surfing in
the Internet. But TLS can be used with almost any kind of
protocol and o↵ers sophisticated security for simple private
websites as well as for large commercial banking systems.

The question for researchers is: is this protocol also suit-
able for embedded applications with very limited computing
power and where the power consumption of algorithms is an
essential criterion?

In this paper three separate already existing approaches are
analyzed and compared in regard to their suitability for em-
bedded platforms. To accomplish this task, at first in Sec-
tion 1.1 a short motivation is given why it is not trivial to

find a solution. Then an introduction to TLS is given in
Section 1.2, explaining the basic working principles. Then
the three papers are presented in Section 2 and each one is
explained. The solution presented in Section 2.1 uses iden-
tity based cryptography and bilinear pairing to reduce the
number of packets for the TLS handshake. The second so-
lution, presented in Section 2.2, adapts the TLS handshake
protocol to be able to establish a session between multiple
entities. The last solution, presented in Section 2.3, makes
the use of TLS feasible on embedded platforms by o✏oading
as much cryptographic operations as possible to a more pow-
erful gateway node without interrupting the security model.
The last Section 3 of this paper compares the previously
presented approaches in regard to applicability and energy
consumption, followed by a conclusion.

1.1 Motivation
Wireless Sensor Networks (WSN) are networks of embed-
ded systems which communicate via a wireless network.
These embedded systems, called nodes, are usually limited
in computing power as well as in power supply because only
microprocessors with battery supply are used. The nodes
are deployed in an area to collect sensor measurements which
are then transfered to a central entity. The data is routed
through the network via multiple nodes and finally arrives
at the central entity, called gateway node, which translates
between the wireless network and an external network, for
example the Internet, in order to send the data to its destina-
tion or allow an operator to manage the WSN. The gateway
node is usually not as limited as the sensor nodes and may
even have a static power supply.

If sensitive sensor data is collected, for example health-data
of patients in a hospital or security information of an alarm
system, it is desirable to protect this data against unwanted
disclosure and unauthorized modifications. In order to
achieve this goal encryption algorithms and message authen-
tication codes can be used.

Of course, there are many protocols available for this pur-
pose. Renowned protocols are IPsec[9] and Transport

Layer Security (TLS)[5]. The disadvantage with IPsec is
that it encrypts the network layer payload and therefore
also non-critical data like for example TCP handshakes and
adds more extra size to the original packet than TLS [1]. As
the computing power of embedded devices is strictly lim-
ited, this additional overhead is undesirable. TLS however
works between the transport and the application layer and

doi: 10.2313/NET-2012-08-2_06Seminar SN SS2012 
Network Architectures and Services, August 2012

41



therefore reduces said overhead. It o↵ers privacy and data
integrity and, by using asymmetric key cryptography, also
can authenticate the sender of a message. Additionally, TLS
is transparent to the operating system and the network and
can be used to encapsulate any other protocol.

When implementing and deploying encryption in a WSN
the two key points to consider are the computational im-
pact and the implicated power consumption of encryption
algorithms. Therefore not all available algorithms are appli-
cable. But this does not only concern the encryption of the
payload data, but most importantly the costly operations
to do public-key cryptography when initializing a session.
Another very important aspect to consider is the number of
packets to send. Transmitting data via a radio link consumes
more energy the stronger the signal is. If the distribution
of the sensor nodes is very sparse and therefore the signal
has to be rather strong, transmitting more data strongly af-
fects the power consumption. But also if the nodes are dis-
tributed rather dense and therefore the signal does not have
to be that strong, it is still desirable to limit the amount of
data to send.

1.2 Introduction to TLS
The goal of TLS is to provide a secure communication chan-
nel between two applications. The established channel en-
sures confidentiality and data integrity and also o↵ers replay
protection.

The Secure Socket Layer (SSL) was originally developed
by Netscape and the first draft was released to the public
in 1995 [8]. In 1999, the Transport Layer Security (TLS)

protocol was released as an upgrade to SSL 3.0, but because
of “significant changes” was not interoperable with SSL [4].
The latest version of TLS is 1.2 and has been released in
2008 [5].

TLS itself is two-layered and consists of multiple sub-
protocols. The TLS Record Protocol builds the lower layer
of TLS and is responsible for transporting any data, may it
be of other TLS sub-protocols or of higher level protocols.
This layer is also responsible for encrypting and integrity
protecting the data. As asymmetric cryptographic opera-
tions are very expensive, the TLS Record Protocol uses a
symmetric algorithm for the bulk encryption of the data.

The most important sub-protocol of the upper TLS layer is
the TLS Handshake Protocol. It is responsible for estab-
lishing a session by negotiating security parameters and can
also be used to authenticate the two endpoints. Other proto-
cols of the upper layer are the Change Cipher Spec Proto-

col (switches the currently used algorithms and keys), the
Alert Protocol (communicates alerts to the remote end-
point) and the Application Data Protocol (encapsulates
higher level data).

Because of the huge number of available encryption and hash
algorithms, TLS uses so called cipher suites to organize
them. A cipher suite is a set of four algorithms, namely
a key-exchange algorithm, a bulk-encryption algorithm, a
message authentication code and a pseudorandom function.
The key-exchange algorithm determines how the server and
the client authenticate each other during the session initial-

ization. The bulk-encryption algorithm is used by the TLS

Record Protocol to encrypt the data. The message au-
thentication code algorithm is also used by the TLS Record

Protocol to protect the data’s integrity. The pseudoran-
dom function is a cryptographically secure pseudorandom
number generator used for generating keying material.

TLS is mostly used along with asymmetric cryptography and
certificates. When a Public Key Infrastructure (PKI) is
not available or authentication is not necessary the Di�e-
Hellman key exchange algorithm (or one of its variants) can
be used instead of public and private keys [5]. But as this
technique is vulnerable to man-in-the-middle attacks it is
barely ever used.

The following explanation of the Handshake Protocol is
based on the use of public key cryptography with certifi-
cates. In order to prevent the explanation from getting to
complex, it is limited to essential elements which are nec-
essary to understand TLS itself and the improvements that
will be presented. Therefore some messages are omitted. In
order to provide a consistent naming scheme, Table 1 defines
the used symbols and their meaning.

Symbol Description

{x} K encryption of message x with key K
a|b concatenation of messages a and b
Pub-x, Pub

x

the public key of entity x
Cert-x, Cert

x

the certificate of entity x
(includes Pub

x

)
N-x, N

x

nonce choosen by entity x
ECDH-x, ECDH

x

the public ECDH values of entity x
E-q, E

q

an elliptic Curve
P a point on E

q

Table 1: Variables used in this paper

Figure 1: Standard TLS handshake using asymmet-
ric cryptography. [5]

The basic message flow for establishing a TLS session is
depicted in Figure 1. As TLS works with exactly two end-
points, the one establishing the connection is named client,
the other one is named server. The client initiates the hello
phase of the TLS Handshake Protocol by sending an (unen-
crypted) ClientHello message to the server. This message
contains mainly a random number (named nonce, number
only used once) and all supported cipher suites of the client.

doi: 10.2313/NET-2012-08-2_06Seminar SN SS2012 
Network Architectures and Services, August 2012

42



The server also generates a nonce, chooses an acceptable ci-
pher suite out of the received ones and sends these values in
a ServerHello message to the client. The server also sends
his certificate, which contains his private key, to the client.
If the client needs to be authenticated, the server also sends
a requests for the client’s certificate. The ServerHelloDone

message indicates the end of the hello phase. If the client’s
certificate has been requested by the server, the client will
send it to the server upon reception of the ServerHelloDone
message.

Now begins the authentication phase. In order to ensure au-
thenticity, the received certificates are now verified. If the
certificates can be verified, the client generates a so called
pre-master secret from both random numbers, encrypts it
with the servers public key and sends it in a ClientKeyEx-

change message to the server. The server can decrypt the
pre-master secret with its private-key. As both parties now
are in the possession of the pre-master secret and both ran-
dom numbers, they both can generate the master secret

from these values. The master secret is used for generating
the session keys for the encryption of all further data.

In the finish phase, the protocol switches to the new cipher
suite and session keys. The client sends a change cipher

spec message to signal that the negotiated parameters are
valid and should be used now. The server also answers with
a change cipher spec message and now expects encrypted
messages. In order to verify that the encryption works cor-
rectly, both endpoints send a finish message to each other
and verify that they are able to decrypt the received mes-
sage.

In regard to WSN, there are also some disadvantages with
TLS. One problem is that TLS oftentimes uses RSA for
asymmetric cryptography as this algorithm is considered
very secure. But the computational impact of the RSA al-
gorithm is very high, resulting in high energy consumption
when encrypting or decrypting data. Though with the re-
cent progress on Elliptic Curve Cryptography (ECC) this
problem has become less severe. A 224-bit key used with
ECC is considered as secure as a 2048-bit key used with RSA
and at the same time ECC is as fast as the RSA public-key
operation and even outperforms the RSA private-key oper-
ation by one order of magnitude [7]. With longer keys this
results in an even greater advantage for ECC. Another prob-
lem with TLS is the number of packets in the handshake.
The standard handshake with mutual authentication needs
13 packets. As the radio module needs a relatively large
amount of energy when transmitting a signal, even saving
only a few packets per handshake results in a significant en-
ergy saving, as the number of performed handshakes can
be very large. Designing power-aware protocols is therefore
very important for WSNs [2]. All these problems combined
make it non-trivial to implement TLS-based security on such
limited hardware as it is used in WSNs.

2. TLS SOLUTIONS FOR WSN
In the following part three already existing solutions for se-
curing communication in a WSN using TLS are presented.
The first one uses identity based cryptography and bilinear
pairing in order to reduce the number of sent messages. It
is followed by an approach which enables TLS to establish

a shared session between multiple parties. The third so-
lution, called Tiny 3-TLS, o✏oads expensive cryptographic
operations from the sensor node to the gateway node in or-
der to allow for very performance limited sensor nodes. All
solutions will be compared in Section 3.

2.1 Adapting TLS for Identity Based Cryp-
tography

When using public-key cryptography while also allowing
peer to peer communication, a certificate for each node is
necessary. Additionally the whole certificate path to the
root certificate authority needs to be known in order to ver-
ify a certificate. All these certificates need to be stored on
each node and occupy precious storage.

Mzid et al. describe in [12] how to modify the TLS handshake
protocol to support identity based cryptography in an IP-
based WSN in order to save this space.

Identity Based Cryptography (IBC) is based on ECC and
eliminates the need for certificates [13]. In the context of
WSNs the (public) IP address of a node can be used as its
public key. Instead of a PKI only a Private Key Generator

(PKG) is needed, which takes the role of the Trusted Third
Party. For each node, its private key is generated by the
PKG and then, bundled with some further parameters like
the elliptic curve itself as well as a point P on that curve,
transferred to and stored on the node before deployment.
The key must only be known to the node and the PKG. All
other parameters may be publicly known and the elliptic
curve even has to be the same for all nodes. Using IBC to-
gether with elliptic curve based Di�e-Hellman key exchange
(ECDH [11]) as shown in Figure 2, it is now possible to reduce
the number of necessary handshake protocol packets from 13
to 10.

Figure 2: TLS handshake using IBC and ECDH. [12]

The second proposed improvement to the handshake pro-
tocol is the use of bilinear pairing, which is the basis for a
di↵erent key exchange algorithm. Let G1 denote a cyclic
additive group of some large prime order q = 2m and G2 de-
notes a cyclic multiplicative group of the same prime order.
Then a map e : G1 ⇥G1 7! G1 is called a pairing. This map
has the very special property of bilinearity: if P,Q 2 G1 and
a 2 Z⇤

q

then e(aP,Q) = e(P, aQ) = e(P,Q)a. More details
can be found in reference [10]. This mathematical construct
enables two parties to generate a shared secret without any
interaction between them.

doi: 10.2313/NET-2012-08-2_06Seminar SN SS2012 
Network Architectures and Services, August 2012

43



In order to use bilinear pairing, two separated phases are
considered. In the pre-deployment phase, the PKG chooses
several parameters:

• an elliptic curve E
q

,

• G1 ✓ E
q

and G2,

• a bilinear map e as described above,

• a hash function H which returns points of the elliptic
curve, and

• a random number S 2 Z⇤
q

.

Except S all values can be publicly known. The PKG gener-
ates the private key of a node calculating Priv

i

= S⇤H(IP
i

)
where IP

i

is the IP address of node i. To finish the pre-
deployment phase, the tuple < G1, G2, e, q, Priv

i

, H > is
transfered to and stored on the nodes.

In the post-deployment phase, two nodes can generate the
pre-master secret as soon as they know the address of the
remote end by calculating:

• on the server: e(H(IP
client

), P riv
server

)

• on the client: e(Priv
client

, H(IP
server

))

As both parties are in possession the remote IP address after
the ServerHello message1, the number of necessary packets
can be reduced from 13 to only 7. Figure 3 illustrates the
improved handshake.

Figure 3: TLS handshake using bilinear pairing. [12]

Mzid et al. not only propose the improvements but also eval-
uates them in regard of storage costs, handshake duration
and energy consumption [12]. The storage costs are signifi-
cantly reduced by the use of IBC as no certificates need to
be stored. Each node only has to store its private key as
the public key can be derived from an identity. The dura-
tion of the handshake is especially important for real-time
applications but it is not only then desirable to reduce this
delay. Both improvements reduce the duration of the hand-
shake. And when using both server and client authentica-
tion, the improvement is almost by an order of magnitude
as two certificate verification operations are needless. Also
both improvements reduce the energy consumption of the
handshake by an order of magnitude.
1Client and server have first to agree on a cipher suite that
uses bilinear pairing.

2.2 Using a single TLS session for multiple en-
tities

Badra proposes a solution to establish a TLS session between
more than two entities [3]. The new behavior is implemented
by a new set of cipher suites which reuse existing RSA based
cipher suites. Solely the TLS handshake protocol is modified
to establish a session between multiple entities. As all enti-
ties then have the session keys, they can freely communicate
with each other.

Figure 4: Handshake between three entities. [3]

For the following part, three entities are considered, but the
protocol can be easily adapted to any number of entities.
The basic message flow is depicted in Figure 4. The mod-
ified handshake happens as follows: The first entity (E1)
connects to the second entity (E2) and sends a ClientHello
message which includes one or more of the new cipher suites
in the list of supported cipher suites and a random number.
If E2 supports the new cipher suites, then one of them is
selected. E2 now sends a ClientHello message to the third
entity (E3) which includes the selected cipher suite and the
same random number as received by E1.

If the cipher suite sent by E2 is accepted by E3, it sends
a ServerHello message containing a session identifier, a new
random value and the selected cipher suite to E2. E2 and E3

now finish the hello phase and E3’s ServerHello message as
well as its certificate are forwarded by E2 to E1. In addition,
the new IntermediateServerKeyExchange (ISKE) message
is also sent to E1. It contains a list of all host names involved
in the session and E2’s certificate.

In the authentication phase, E1 generates a pre-master se-
cret. The pre-master secret is then encrypted once with
E3’s public key to get the EncryptedPreMasterSecret and
once with E2’s public key to get the InterEncryptedPre-

MasterSecret. The InterEncryptedPreMasterSecret is sent
via the new IntermediateClientKeyExchange (ICKE) mes-
sage to E2 and the EncryptedPreMasterSecret is sent to E2

via the ClientKeyExchange (CKE) message, which also in-
cludes the previously received list of involved host names.
Also, E1 immediately sends its finish message.

doi: 10.2313/NET-2012-08-2_06Seminar SN SS2012 
Network Architectures and Services, August 2012

44



E2 can now compute the master-key from the pre-master
secret included in the IntermediateClientKeyExchange mes-
sage and therefore verify E1’s certificate, signature and fin-
ish message. All messages except the IntermediateClien-
tKeyExchange message are forwarded to E3. E3 can now
decrypt the ClientKeyExchange message, compute the mas-
ter key and also verify E1’s certificate, signature and finish
message. If these operations are successful, a finish message
is sent to E2 which forwards it to E1. After E1, and option-
ally also E2, verified E3’s finish message, the TLS handshake
is complete and all involved entities are in possession of the
master key. If one of the entities now wants to communicate
with any other involved entity, it just sends a ClientHello
message containing the previously stored session identifier
to the other entity2and is able to securely communicate with
the other entity without performing a full handshake.

This design is fully backwards compatible with standard
TLS and even allows to communicate with non-modified
clients. Furthermore this approach theoretically performs
better than establishing separate TLS sessions, as for N en-
tities at best N � 2 signature operations, N � 2 certificate
verification operations and N � 2 signature verification op-
erations are saved.

2.3 Tiny 3-TLS
The goal of “Tiny 3-TLS” as presented in [6] is to o✏oad
expensive cryptographic operations to the more powerful
gateway node in order to relieve the sensor nodes without
putting the security at risk. The network model of the paper
is as follows. A WSN consisting of multiple sensor nodes is
connected to an external network via a gateway acting as
reverse proxy. A so called “remote monitor” R wants to es-
tablish a secure connection to one of the sensor nodes S.
Each sensor node has a pre-shared key K which is known
to the gateway G. In order to ensure confidentiality, each
sensor node should have a di↵erent pre-shared key.

Two distinct modes of operation are presented which dif-
fer in the trust-level of the gateway. If the gateway is fully
trusted, it can handle all of the cryptographic operations of
the TLS handshake and then provide the sensor node with
the actual session keys. That way, the gateway is also in
possession of the secrets. If the gateway is only partially
trusted, then the gateway does handle the asymmetric en-
cryption and decryption of the TLS-handshake packets but
the generation of the session keys happens at the remote
monitor and the sensor node via ECDH. This way, the gate-
way does not know the session keys. In both cases, all three
parties are mutually authenticated. The gateway and the
sensor nodes of the WSN authenticate each other by prov-
ing the knowledge of the pre-shared key K. The gateway
and the remote endpoint authenticate each other via cer-
tificates. The trust between the remote endpoint and the
sensor node is then transitively achieved. If on the other
hand the gateway is not trusted at all, for example because
it is either unknown or publicly available, this solution is not
applicable. An untrusted or even malicious gateway could
easily perform a man-in-the-middle (MITM) attack and suc-
cessfully capture or manipulate any data.

2TLS calls this a resumed handshake.

Figure 5: Tiny3-TLS with a partially trusted gate-
way. [6]

The message flow in case of a partially trusted gateway is
depicted in Figure 5. When the remote monitor wants to
communicate with a sensor node it sends a ClientHello mes-
sage, which is encrypted with the appropriate pre-shared
key by the gateway and relayed to the sensor node. The
node answers with a ServerHello message encrypted by K
and also its public ECDH values. The gateway decrypts the
message, keeps the ECDH values ECDH

S

and forwards the
ServerHello message to the remote monitor. It also adds its
own certificate and a request for the certificate of the re-
mote monitor. The remote monitor validates the gateway’s
certificate and, if valid, answers with his own certificate and
his public ECDH values ECDH

R

, both encrypted with the
gateway’s public key. If the gateway can validate the remote
monitor’s certificate it sends ECDH

R

, encrypted with K,
to the sensor node and ECDH

S

, encrypted by the remote
monitor’s public key, to the remote monitor. Now the sen-
sor node and the remote monitor can generate the session
keys from ECDH

R

and ECDH
S

and can encrypt all further
direct communication.

Figure 6: Tiny 3-TLS with a fully trusted gateway.
[6]

In case of a fully trusted gateway, the handshake happens as
before, but this time ECDH

S

is not selected by the sensor
node but directly by the gateway. The message flow is de-
picted in Figure 6. That way the gateway itself can generate
the session keys without any interaction of the sensor node.
Once the session keys are generated, the gateway encrypts
them with the pre-shared key and sends them to the sensor
node.

This approach can, if applicable, reduce the load on the sen-
sor node drastically. Instead of expensive asymmetric cryp-
tographic operations like signature verifications only rather
inexpensive symmetric encryption and decryption operations
are necessary. But this comes at the cost that the gateway

doi: 10.2313/NET-2012-08-2_06Seminar SN SS2012 
Network Architectures and Services, August 2012

45



Protocols
TLS Single-TLS-Session Tiny-3TLS IBC

Uses certificates x x x -
Based on RSA RSA ECC ECC
usable for P2P x x - x
Ext. ! Node x x x x
Performance 13 messages saves:

N � 2 signature operations
N � 2 signature verifications
N�2 certificate verifications

GW: 7 message
Node: 3 messages

7 messages

Table 2: Comparison of the presented solutions

node has a much higher load.

3. CONCLUSION
All three solutions presented in this paper help to secure
communication in a WSN environment. The improvements
presented in Section 2.1 reduce the number of necessary
packets for a TLS handshake and also eliminate the need
for certificates and a PKI. This also significantly improves
the energy consumption of the nodes, enabling them to op-
erate for a longer period of time, or even making it possible
to lower the hardware requirements. Establishing a single
TLS session for multiple nodes as described 2.2 also saves
packets and therefore energy. But as that paper did not have
embedded systems in mind, power consumption was not a
key point of the improvement. This approach is also only
applicable when it is desirable to share a single set of ses-
sion keys for multiple entities. But in an environment where
data streams of di↵erent nodes must be protected from each
other, for example sensor nodes collecting health-data from
patients in a hospital, it is not desirable that all nodes share
the same keys. Finally, Tiny 3-TLS, presented in Section
2.3, only secures the communication with an external re-
mote terminal, but does not provide secure point to point
communication within the WSN.

Tiny 3-TLS and the paper about establishing a single TLS
session for multiple entities have each a special use-case in
mind for which they try to find an optimal solution. There-
fore they do not directly compete with each other as di↵erent
environments and use-cases require di↵erent solutions. As
for IBC and bilinear pairing, these approaches can help the
former solutions to save more energy and other resources
and therefore further boost them.

References
[1] A. Alshamsi and T. Saito. A technical comparison of

ipsec and ssl. In 19th International Conference on Ad-
vanced Information Networking and Applications, 2005.
AINA 2005., volume 2, pages 395–398. IEEE, 2005.

[2] S. Aslam, F. Farooq, and S. Sarwar. Power consump-
tion in wireless sensor networks. In Proceedings of the
7th International Conference on Frontiers of Informa-
tion Technology, page 14. ACM, 2009.

[3] M. Badra. Securing communications between multiple
entities using a single TLS session. In New Technologies,
Mobility and Security (NTMS), 2011 4th IFIP Interna-
tional Conference on, pages 1–4. IEEE, 2011.

[4] T. Dierks and C. Allen. The TLS protocol. IETF RFC
2246, January 1999.

[5] T. Dierks and E. Rescorla. The transport layer security
(TLS) protocol, version 1.2. IETF RFC 5246, August
2008.

[6] S. Fouladgar, B. Mainaud, K. Masmoudi, and H. Afifi.
Tiny 3-TLS: A trust delegation protocol for wireless
sensor networks. In L. Buttyán, V. Gligor, and D. West-
ho↵, editors, Security and Privacy in Ad-Hoc and Sen-
sor Networks, volume 4357 of Lecture Notes in Com-
puter Science, pages 32–42. Springer Berlin / Heidel-
berg, 2006. ISBN 978-3-540-69172-3.

[7] N. Gura, A. Patel, A. W, H. Eberle, and S. C. Shantz.
Comparing elliptic curve cryptography and RSA on 8-
bit CPUs. 2004.

[8] K. E. Hickman. The SSL protocol. Netscape Commu-
nications Corp., Feb 1995.

[9] S. Kent and K. Seo. Security architecture for the inter-
net protocol. IETF RFC 4301, December 2005.

[10] D. Me↵ert. Bilinear pairings in cryptography. Master’s
thesis, Radboud Universiteit Nijmegen, 2009.

[11] V. Miller. Use of elliptic curves in cryptography.
In H. Williams, editor, Advances in Cryptology —
CRYPTO ’85 Proceedings, volume 218 of Lecture Notes
in Computer Science, pages 417–426. Springer Berlin /
Heidelberg, 1986. ISBN 978-3-540-16463-0.

[12] R. Mzid, M. Boujelben, H. Youssef, and M. Abid.
Adapting TLS handshake protocol for heterogenous IP-
based WSN using identity based cryptography. In In-
ternational Conference on Communication in Wireless
Environments and Ubiquitous Systems: New Challenges
(ICWUS), 2010, pages 1–8. IEEE, 2010.

[13] A. Shamir. Identity-based cryptosystems and signa-
ture schemes. In Advances in cryptology, pages 47–53.
Springer, 1985.

doi: 10.2313/NET-2012-08-2_06Seminar SN SS2012 
Network Architectures and Services, August 2012

46


