Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T09:35:49.910Z Has data issue: false hasContentIssue false

Looking at graphs through infinitesimal microscopes, windows and telescopes

Published online by Cambridge University Press:  22 September 2016

David Tall*
Affiliation:
Mathematics Education Research Centre, University of Warwick, Coventry CV4 7AL

Extract

The differential triangle of Leibniz for a real function f is found by taking an increment dx in the variable x, finding the corresponding increment dy in y = f(x) and drawing the ‘triangle’ in Fig. 1. Here ds is the increment in the length of the graph, where

and the derivative of f is

Type
Research Article
Copyright
Copyright © Mathematical Association 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Robinson, A., Non-standard analysis. North-Holland (1970).Google Scholar
2. Tall, D. O., Standard infinitesimal calculus using the superreal numbers. Preprint, Warwick University (1979).Google Scholar
3. Tall, D. O., Infinitesimals constructed algebraically and interpreted geometrically. Mathematical Education for Teaching (to appear, 1979).Google Scholar
4. Keisler, H. J., Foundations of infinitesimal calculus. Prindle, Weber & Schmidt (1976).Google Scholar
5. Barrow, I., Lectiones geometriae (1670), edited as Geometrical lectures by Child, J. M.. Chicago (1916).Google Scholar
6. Leibniz, G. W., Nova methodus pro maximis et minimis, itemque tangentibus, quae ne fractas nec irrationales quantitates moratur, et singulare pro illi calculi genus. Acta Eruditorum 3, 467473 (1684).Google Scholar
7. Leibniz, G. W., De geometriae recondita et analysi indivisibilium atque infinitorum. Acta Eruditorum 5, 292300 (1686).Google Scholar