Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-20T08:57:26.146Z Has data issue: false hasContentIssue false

The multitype measure branching process

Published online by Cambridge University Press:  01 July 2016

Luis G. Gorostiza*
Affiliation:
Centro de Investigación y de Estudios Avanzados
Jose A. Lopez-Mimbela*
Affiliation:
Centro de Investigación y de Estudios Avanzados
*
Postal address for both authors: Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Matematicas, Apartado Postal 14-740, 07000 Mexico D.F.
Postal address for both authors: Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Matematicas, Apartado Postal 14-740, 07000 Mexico D.F.

Abstract

The existence of the multitype measure branching process is established as a small particle limit of a system of particles of several types in Rd with immigration undergoing migration, branching and mutation. The process is characterized as a solution of a martingale problem. The single-type case was studied by Dawson (1975), (1977) and Watanabe (1968).

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1990 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research supported in part by CONACyT grant PCEXCNA-040319.

References

[1] Athreya, K. and Ney, P. (1972) Branching Processes. Springer-Verlag, New York.Google Scholar
[2] Billingsley, P. (1968) Convergence of Probability Measures. Wiley, New York.Google Scholar
[3] Cox, J. T. and Griffeath, D. (1985) Occupation times for critical branching Brownian motions. Ann. Prob. 13, 11081132.CrossRefGoogle Scholar
[4] Dawson, D. A. (1975) Stochastic evolution equations and related measure processes. J. Multivariate Anal. 5, 152.CrossRefGoogle Scholar
[5] Dawson, D. A. (1977) The critical measure diffusion process. Z. Wahrscheinlichkeitsth. 40, 125145.CrossRefGoogle Scholar
[6] Dawson, D. A. (1986) Measure-valued processes. Construction, qualitative behavior and stochastic geometry. In Stochastic Spatial Processes, ed. Tautu, P., Lecture Notes in Mathematics 1212, Springer-Verlag, Berlin, 6993.Google Scholar
[7] Dawson, D. A. and Fleischmann, K. (1988) Strong clumping of critical space-time branching models in subcritical dimensions. Stoch. Proc. Appl. 30, 193208.Google Scholar
[8] Dawson, D. A. and Gorostiza, L. G. (1988) Generalized solutions of a class of nuclear space valued stochastic evolution equations. J. Appl. Math. Optim. To appear.Google Scholar
[9] Dawson, D. A. and Hochberg, K. J. (1979) The carrying dimension of a stochastic measure diffusion. Ann. Prob. 7, 693703.Google Scholar
[10] Dawson, D. A., Iscoe, I. and Perkins, E. A. (1988) Super-Brownian motion: path properties and hitting probabilities. Prob. Theory Rel. Fields. To appear.Google Scholar
[11] Dawson, D. A. and Ivanoff, B. G. (1978) Branching diffusions and random measures. In Stochastic Processes, ed. Joffe, A. and Ney, P., Marcel Dekker, New York, 61104.Google Scholar
[12] Dynkin, E. B. (1988) Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times. Colloque Paul Lévy sur les processus stochastiques. Astérisque, 157–158, 147171.Google Scholar
[13] El Karoui, N. (1985) Non-linear evolution equations and functionals of measure-valued branching processes. In Stochastic Differential Systems, ed. Metivier, M. and Pardoux, E.. Lecture Notes in Control and Information Science 69, Springer-Verlag, Berlin, 2534.Google Scholar
[14] El Karoui, N. and Roelly-Coppoletta, S. (1987) Study of a general class of measure-valued branching processes: a Lévy–Hinchin representation. Preprint.Google Scholar
[15] Ethier, S. N. and Kurtz, T. G. (1986) Markov Processes. Characterization and Convergence. Wiley, New York.Google Scholar
[16] Fernández, B. (1986) Teoremas límites de alta densidad para campos aleatorios ramificados. Aportaciones Matemáticas, Com. 2, Soc. Mat. Mex. Google Scholar
[17] Fleischmann, K. (1988) Critical behavior of some measure-valued processes. Math. Nachr. 135, 131147.Google Scholar
[18] Fleischmann, K. and Gärtner, J. (1986) Occupation time process at a critical point. Math. Nachr. 125, 275290.Google Scholar
[19] Gorostiza, L. G. (1986) Asymptotics and spatial growth of branching random fields. In Stochastic Spatial Processes, ed. Tautu, P., Lecture Notes in Mathematics 1212, Springer-Verlag, Berlin, 124135.Google Scholar
[20] Gorostiza, L. G. (1988) The demographic variation process of branching random fields. J. Multivariate Anal. 25, 174200.Google Scholar
[21] Ito, K. and Mckean, H. P. (1965) Diffusion Processes and their Sample Paths. Springer-Verlag, Berlin.Google Scholar
[22] Iscoe, I. (1986) A weighted occupation time for a class of measure-valued branching processes. Prob. Theory Rel. Fields 71, 85116.Google Scholar
[23] Iscoe, I. (1986) Ergodic theory and a local occupation time for measure-valued critical branching Brownian motion. Stochastics 18, 197243.Google Scholar
[24] Iscoe, I. (1988) On the supports of measure-valued critical branching Brownian motion. Ann. Prob. 16, 200221.Google Scholar
[25] Ivanoff, B. G. (1981) The multitype branching diffusion. J. Multivariate Anal. 11, 289318.Google Scholar
[26] Jakubowski, A. (1986) On the Skorokhod topology. Ann. Inst. H. Poincaré Sect. B 22, 263285.Google Scholar
[27] Joffe, A. and Metivier, M. (1986) Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Prob. 18, 2065.Google Scholar
[28] Kono, N. and Shiga, T. (1988) Stochastic partial differential equations for some measure-valued diffusions. Prob. Theory Rel. Fields 79, 201225.Google Scholar
[29] López-Mimbela, J. A. (1989) Teoremas límites para campos aleatorios ramificados multitipo. . Depto. Mat., CIEA.Google Scholar
[30] Méléard, S. and Roelly-Coppoletta, S. (1989) A generalized equation for a continuous measure branching process. In Stochastic Differential Equations and Applications II, ed. Da Prato, G. and Tubaro, L., Lecture Notes in Mathematics 1390, Springer-Verlag, Belin, 171185.Google Scholar
[31] Metivier, M. (1982) Semimartingales, a Course on Stochastic Processes. de Gruyter, Berlin.Google Scholar
[32] Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Berlin.Google Scholar
[33] Perkins, E. A. (1988) A space-time property of a class of measure-valued branching diffusions. Trans. Amer. Math. Soc. 305, 743795.Google Scholar
[34] Roelly-Coppoletta, S. (1986) A criterion of convergence of measure-valued processes: application to measure branching processes. Stochastics 17, 4365.Google Scholar
[35] Walsh, J. B. (1984) An introduction to stochastic partial differential equations. Ecole d'Eté de Probabilités de Saint-Flour XIV. Lecture Notes in Mathematics 1180, Springer-Verlag, Berlin, 260439.Google Scholar
[36] Watanabe, S. (1968) A limit theory of branching processes and continuous state branching processes. J. Math. Kyoto Univ. 8, 141167.Google Scholar