Skip to main content
Log in

Nutrient limitation of heterotrophic bacteria in Florida Bay

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

We examined heterotrophic bacterial nutrient limitation at four sites in Florida Bay, U. S. in summer 1994 and winter 1995. Bacterial growth and biomass production in this system were most limited by inorganic phosphorus (P) in the eastern and southern regions of the bay. Nutrient additions stimulated productivity and biomass accumulation mostly in summer. The magnitude of growth responses (thymidine incorporation) to nutrient additions was nearly an order of magnitude less in winter than summer. Biomass-normalized alkaline phosphatase activity in the northeast and south-central region was 5–20 times greater than in the northwest and north-central regions, suggesting that P is most limiting to planktonic growth in those areas. Chlorophyll levels were higher in the northwest and north-central regions and P-uptake into particles >1 μm, primarily phytoplankton, was also higher in these regions. Consistent with these observations, others have observed that P is advected into the bay primarily in the northwestern region. Abundant seagrasses in Florida Bay may promote heterotrophic bacterial production relative to phytoplankton production by releasing dissolved organic carbon that makes bacteria more competitive for limiting quantities of inorganic phosphate, especially in the eastern bay where turbidity is low, P is most limiting, and light levels reaching the benthic plants are high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • American Public Health Association 1992. Standard Methods for the Examination of Water and Wastewater, 18th edition. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Anderson, B., R. S. Scalon, E. W. Behrens, andP. L. Parker. 1992. Stable carbon isotope variations in sediment from Baffin Bay, Texas, U.S.A.: Evidence for cyclic changes in organic matter source.Chemical Geology 101:223–233.

    CAS  Google Scholar 

  • Atkinson, M., andS. Smith. 1983. C:N:P ratios of benthic marine plants.Limnology and Oceanography 28:568–574.

    CAS  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, andF. Thingstad. 1983. The ecological role of water-column microbes in the sea.Marine Ecology Progress Series 10:257–263.

    Article  Google Scholar 

  • Biddanda, B., S. Opsahl, andR. Benner. 1994. Plankton respiration and carbon flux through bacterioplankton on the Louisiana shelf.Limnology and Oceanography 39:1259–1275.

    CAS  Google Scholar 

  • Biddanda, B., M. Ogdahl, and J. B. Cotner. In press. Contribution of heterotrophic bacteria to plankton biomass and respiration in lakes and the ocean.Limnology and Oceanography.

  • Bratbak, G. 85. Bacterial biovolume and biomass estimations.Applied and Environmental Microbiology 49:1488–1493.

    Google Scholar 

  • Brylinsky, M. 1977. Release of dissolved organic matter by some marine macrophytes.Marine Biology 39:213–220.

    Article  Google Scholar 

  • Bugden, J. B. C., M. A. Guerrero, andR. D. Jones. 1998. Spatial and temporal variation of marine bacterioplankton in Florida Bay, U.S.A.Journal of Coastal Research 14:1304–1313.

    Google Scholar 

  • Chin-Leo, G., and R. Benner. 92. Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume.Marine Ecology Progress Series 87:87–103.

    Google Scholar 

  • Coffin, R. B., J. P. Connolly, andP. S. Harris. 1993. Availability of dissolved organic carbon to bacterioplankton examined by oxygen utilization.Marine Ecology Progress Series 101:9–22.

    Article  CAS  Google Scholar 

  • Corbett, D. R., J. Chanton, W. Burnett, K. Dillon, C. Rutkowski, andJ. W. Fourqurean. 1999. Patterns of groundwater discharge into Florida Bay.Limnology and Oceanography 44: 1045–1055.

    CAS  Google Scholar 

  • Cotner, J. B., J. A. Ammerman, E. R. Peele, andE. Bentzen. 1997. Phosphorus limited bacterioplankton growth in the Sargasso Sea.Aquatic Microbial Ecology 13:141–149.

    Article  Google Scholar 

  • Cotner, Jr.,J. B. andR. G. Wetzel. 1992. Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton.Limnology and Oceanography 37:232–243.

    CAS  Google Scholar 

  • Coveney, M. F., andR. G. Wetzel. 1988. Experimental evaluation of conversion factors for the [3H]thymidine incorporation assay of bacterial secondary productivity.Applied and Environmental Microbiology 54:2018–2026.

    CAS  Google Scholar 

  • Currie, D. J., andJ. Kalff. 1984a. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus.Limnology and Oceanography 29:298–310.

    CAS  Google Scholar 

  • Currie, D. J., andJ. Kalff. 1984b. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater.Limnology and Oceanography 29:311–321.

    CAS  Google Scholar 

  • Fourqurean, J. W., R. D. Jones, andJ. C. Zieman. 1993. Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL., USA: Inferences from spatial distributions.Estuarine, Coastal and Shelf Science 36:295–314.

    Article  CAS  Google Scholar 

  • Fourqurean, J. W., J. C. Zieman, andG. V. N. Powell. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from C:N:P ratios of the dominant seagrass.Thalassia testudinum. Limnology and Oceanography 37:161–171.

    Google Scholar 

  • Fuhrman, J. A. andF. Azam 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results.Marine Biology 66:109–120.

    Article  Google Scholar 

  • Gardner, W. S. andP. A. St. John. 1991. High-performance liquid chromatographic method to determine ammonium ion and primary amines in seawater.Analytical Chemistry 63: 537–540.

    Article  CAS  Google Scholar 

  • Griffith, P. C., D. J. Douglas, andS. C. Wainright. 1990. Metabolic activity of size-fractionated microbial plankton in estuarine, nearshore, and continental shelf waters of Georgia.Marine Ecology Progress Series 59:263–270.

    Article  Google Scholar 

  • Havens, K. E., T. L. East, R. H. Meeker, W. P. Davis, andA. D. Steinman. 1996. Phytoplankton and periphyton responses to in situ experimental nutrient enrichment in a shallow subtropical lake.Journal of Plankton Research 18:551–566.

    Article  Google Scholar 

  • Healey, F. P. andL. L. Hendzel. 1979. Fluorometric measurement of alkaline phosphatase activity in algae.Freshwater Biology 9:429–439.

    Article  CAS  Google Scholar 

  • Hecky, R. E., P. Campbell andL. L. Hendzel. 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans.Limnology and Oceanography 38: 709–724.

    CAS  Google Scholar 

  • Hobbie, J. E., R. J. Daley, andS. Jasper. 1977. Use of Nucleopore filters for counting bacteria by fluorescence microscopy.Applied and Environmental Microbiology 33:1225–1228.

    CAS  Google Scholar 

  • Hoppe, H. 3. Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria, p. 423–431.In P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole (eds.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, Florida.

  • Kirchman, D. 0. Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific.Marine Ecology Progress Series 62:47–54.

  • Lavrentyev P. J., H. A. Bootsma, T. H. Johengen, J. F. Cavaletto, andW. S. Gardner. 1998. Microbial plankton response to resource limitation: Insights from microbial plankton structure and seston elemental stoichiometry in Florida Bay.Marine Ecology Progress Series 165:45–57.

    Article  CAS  Google Scholar 

  • Lee, S. and J. A. Fuhrman. 987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton.Applied and Environmental Microbiology 53:1298–1303.

    Google Scholar 

  • Montague, C. L. andJ. A. Ley 1993. A possible effect of salinity fluctuation on abundance of benthic vegetation and associated fauna in northeastern Florida Bay.Estuaries 16:703–717.

    Article  CAS  Google Scholar 

  • Moran, M., andR. Hodson. 1989. Formation and bacterial utilization of dissolved organic carbon derived from detrital lignocellulose.Limnology and Oceanography 34:1034–1047.

    CAS  Google Scholar 

  • Moriarty, D. J. W., R. L. Iverson, andP. C. Pollard. 1986. Exudation of organic carbon by the seagrassHalodule wrightii Aschers. and its effect on bacterial growth in the sediment.Journal of Experimental Marine Biology and Ecology 96:115–126.

    Article  CAS  Google Scholar 

  • Morris, D. P., andW. M. J. Lewis. 1992. Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado.Limnology and Oceanography 37:1179–1192.

    CAS  Google Scholar 

  • Phlips, E. J., T. C. Lynch, andS. Badylak. 1995. Chlorophyll a, tripton, color, and light availability in a shallow tropical innershelf lagoon, Florida Bay, USA.Marine Ecology Progress Series 127:223–234.

    Article  Google Scholar 

  • Pomeroy, L. R., J. E. Sheldon, W. M. Sheldon, andF. Peters. 1995. Limits to growth and respiration of bacterioplankton in the Gulf of Mexico.Marine Ecology Progress Series 117:259–268.

    Article  Google Scholar 

  • Fedfield, A. C. 1958. The biological control of chemical factors in the environment.American Scientist 46:205–221.

    Google Scholar 

  • Rudnick, D. T., Z. Chen, D. L. Childers, J. N. Boyer, andT. D. Fontaine III. 1999. Phosphorus and nitrogen inputs to Florida Bay: The importance of the Everglades watershed.Estuaries 22:398–416.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss, andE. Jeppesen. 1993. Alternative equilibria in shallow lakes.Trends in Ecology and Evolution 8:275–279.

    Article  Google Scholar 

  • Sharp, J. H., R. Benner, L. Bennett, C. A. Carlson, R. Dow, andS. E. Fitzwater. 1993. Re-evaluation of high temperature combustion and chemical oxidation measurements of disolved organic carbon in seawater.Limnology and Oceanography 38:1774–1782.

    Article  CAS  Google Scholar 

  • Smith, S. 1984. Phosphorus versus nitrogen limitation in the marine environment.Limnology and Oceanography 29:1149–1160.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H., andT. R. Parsons. 1972. A Practical Handbook of Seawater Analysis, 2nd edition. Fisheries Research Board of Canada, Ottawa, Canada

    Google Scholar 

  • Sugimura, Y., andY. Suzuki. 1988. A high temperature catalytic oxidation method for nonvolatile dissolved organic carbon in seawater by direct injection of liquid samples.Marine Chemistry 24:105–131.

    Article  CAS  Google Scholar 

  • Suttle, C., andP. Harrison. 1988. Ammonium and phosphate uptake kinetics of size-fractionated plankton from an oligotrophic freshwater lake.Journal of Plankton Research 10:133–149.

    Article  CAS  Google Scholar 

  • Thingstad, T. F., andF. Rassoulzadegan. 1995. Nutrient limitations, microbial food webs, and “biological C-pumps”: Suggested interactions in a P-limited Mediterranean.Marine Ecology Progress Series 117:299–306.

    Article  Google Scholar 

  • Thingstad, T. F., E. F. Skjoldal, andR. A. Bohne. 1993. Phosphorus cycling and algal-bacterial competition in Sandsfjord, Western Norway.Marine Ecology Progress Series 99:239–259.

    Article  CAS  Google Scholar 

  • Tomas, C. R., B. Bendis, andK. Johns. 1999. Role of nutrients in regulating plankton blooms in Florida Bay, p. 323–337.In H. Kumpf, K. Steidinger, and K. Sherman (eds.), The Gulf of Mexico Large Marine Ecosystem: Assessment, Sustainability, and Management, Blackwell Science, Malden, Massachusetts.

    Google Scholar 

  • Toolan, T., J. D. Wehr, andS. Findlay. 1991. Inorganic phosphorus stimulation of bacterioplankton production in a mesoeutrophic lake.Applied and Environmental Microbiology 57:2074–2078.

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency 1974. Methods for Chemical Analysis of Water and Wastes, V. 625-/6-74-003a. Environmental Protection Agency, Cincinnati, Ohio.

    Google Scholar 

  • Vadstein, O., A. Jensen, Y. Olsen, andH. Reinertsen. 1988. Growth and phosphorus status of limnetic phytoplankton and bacteria.Limnology and Oceanography 33:489–503.

    CAS  Google Scholar 

  • Wetzel, R. G. andP. A. Penhale. 1979. Transport of carbon and excretion of dissolved organic carbon by leaves and roots/rhizomes in seagrasses and their epiphytes.Aquatic Bolany 6:149–158.

    Article  CAS  Google Scholar 

  • Zieman, J. C., J. W. Fourqurean, andT. A. Frankovich. 1999. Seagrass die-off in Florida Bay: Long-term trends in abundance and growth of turtle grass.Thalassia testudinum. Estuaries 22:460–470.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Cotner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotner, J.B., Sada, R.H., Bootsma, H. et al. Nutrient limitation of heterotrophic bacteria in Florida Bay. Estuaries 23, 611–620 (2000). https://doi.org/10.2307/1352888

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352888

Keywords

Navigation