Skip to main content
Log in

Phytoplankton biomass, cell diameter, and species composition in the low salinity zone of Northern San Francisco Bay estuary

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Phytoplankton chlorophyll a concentration, biovolume, cell diameter, and species composition differed across the narrow, low salinity zone between 0.6‰ to 4‰ and may influence copepod food availability in the northern San Francisco Bay Estuary. The highest chlorophyll a concentrations (range 3.2–12.3 μg 1−1), widest cell diameters (>5 μm diam), highest diatom densities and highest production rates of >10 μm diam cells occurred at the landward edge of the salinity zone in April during a strong spring tide and May during a strong neap tide. Near optimum predator/prey ratios, large prey estimated spherical diameters, and high chlorophyll a concentrations suggest these phytoplankton communities provided good food quantity and quality for the most abundant copepods, Eurytemora affinis, Sinocalanus doerrii, and Pseudodiaptomus forbesi. At the center of the zone, chlorophyll a concentrations, diatom densities, and production rates of >10 μm diam cells were lower and cell diameters were smaller than upstream. Downstream transport was accompanied by accumulation of phytoplankton with depth and tide; maximum biomass occurred on spring tide. The lowest chlorophyll a concentrations (1.4–3.6 μg 1) and consistently high densities (3,000–4,000 cells ml−1) of <5 μm diam cells occurred at the seaward edge of the zone, where the green alga Nannochloris spp. and the bluegreen alga Synechococcus spp. were the most abundant phytoplankton. Low chlorophyll a concentrations and production rates of >10 μm diam cells, small prey estimated spherical diameters, and high predator/prey ratios suggested the seaward edge of the zone had poor phytoplankton food for copepodids and adult copepods. The seaward decrease in phytoplankton chlorophyll a concentration and cell diameter and shift in species composition in the low salinity zone were probably a function of an estuary-wide decrease in chlorophyll a concentration, cell diameter, and diatom density since the early 1980s that was enhanced in the low salinity zone by clam herbivory after 1987. *** DIRECT SUPPORT *** A01BY090 00008

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Alpine, A. E. and J. E. Cloern. 1992. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnology and Oceanography 37:946–955.

    Google Scholar 

  • Ambler, J. W., J. E. Cloern, and A. Hutchinson. 1985. Seasonal cycles of zooplankton from San Francisco Bay. Hydrobiologia 129:177–197.

    Article  Google Scholar 

  • Arthur, J. F. and M. D. Ball. 1979. Factors influencing the entrapment of suspended material in the San Francisco Bay-Delta Estuary, p. 143–174. In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary. Pacific Division of the American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Ball, M. D. and J. F. Arthur. 1979. Planktonic chlorophyll dynamics in the northern San Francisco Bay and Delta, p. 265–286. In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary. Pacific Division of the American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Ball, M. D. and J. F. Arthur. 1981. Phytoplankton setting rates, a major factor in determining estuarine dominance. Estuaries 4:246.

    Google Scholar 

  • Berggeen, U., B. Hansen, and T. Kiorboe. 1988. Food size spectra, ingestion and growth of the copepod. Acartia tonsa during development: Implications for determination of copepod production. Marine Biology 99:341–352.

    Article  Google Scholar 

  • Burau, J. R., J. W. Gartner, and M. Stacey. 1998. Results from the hydrodynamic element of the 1994 entrapment zone study in Suisun Bay, p. 13–62. In W. Kimmerer (ed.), Report of the 1994 Entrapment Zone. Technical Report 56. Interagency Ecologicla Program for the San Francisco Bay Delta Estuary, Sacramento, California.

    Google Scholar 

  • Cloern, J. E. 1979. Phytoplankton ecology of the San Francisco Bay system: The status of our current understanding, p. 164–267. In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary. Pacific Division of the American Association Advancement for Science, San Francisco, California.

    Google Scholar 

  • Cloern, J. E., A. E. Alpine, B. E. Cole, R. L. J. Wing, J. F. Arthur, and M. D. Ball. 1983. River discharge controls phytoplankton dynamics in Northern San Francisco Bay estuary. Estuarine, Coastal and Shelf Science 12:415–429.

    Article  Google Scholar 

  • Cloern, J. E., T. M. Powell, and L. M. Huzzey. 1989. Spatial and temporal variability in south San Francisco Bay (USA). II. Temporal changes in salinity, suspended sediments, and phytoplankton biomass and productivity over tidal time scales. Estuarine, Coastal and Shelf Science 28:599–613.

    Article  CAS  Google Scholar 

  • Demers, S., P. E. Lafluer, L. Legendre, and C. L. Trump. 1979. Short-term covariability of chlorophyll and temperature in the St. Lawrence Estuary. Canadian Journal of Fisheries Research Board 36:568–573.

    Google Scholar 

  • Demers, S., L. Legendre, and J.-C. Therriault. 1986. Phytoplankton responses to vertical tidal mixing, p. 1–40. In J. Bowman, C. M. Yentsch, and W. T. Peterson (eds.), Tidal Mixing and Plankton Dynamics. Springer-Verlag, New York.

    Google Scholar 

  • Durbin, E. G., A. G. Durbin, T. J. Smayda, and P. G. Verity. 1983. Food limitation of production by adult Acartia tonsa in Narragansett Bay, Rhode Island. Limnology and Oceanography 28:1199–1213.

    Article  Google Scholar 

  • Dustan, P. and J. L. Pickney, Jr. 1989. Tidally induced estuarine phytoplankton patchiness. Limnology and Oceanography 34: 410–419.

    Google Scholar 

  • Frenette, J.-J., W. F. Vincent, J. J. Dodson, and C. Lovejoy. 1995. Size-dependent variations in phytoplankton and protozoan community structure across the St. Lawrence transition region. Marine Ecology Progress Series 120:99–110.

    Article  Google Scholar 

  • Fulton III, R. S. 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwater Biology 20:263–271.

    Article  Google Scholar 

  • Hansen, B. H., P. K. Bjornsen, and P. J. Hansen. 1994. The size ratio between planktonic predators and their prey. Limnology and Oceanogrpahy 39:395–403.

    Article  Google Scholar 

  • Hollibaugh, J. T. and P. S. Wong. 1999. Microbial processes in the San Francisco Bay estuarine turbidity maximum. Estuaries 22:848–862.

    Article  CAS  Google Scholar 

  • Ianora, A. and S. A. Poulet. 1993. Egg viability in the copepod Temora stylifera. Limnology and Oceanography 38:1615–1626.

    Google Scholar 

  • Jassby, A. D., W. J. Kimmerer, S. G. Monismith, C. Armor, J. E. Cloern, T. M. Powell, J. R. Schubel, and T. J. Vendlinski. 1995. Isohaline position as a habitat indicator for estuarine populations. Ecological Applications 5:272–289.

    Article  Google Scholar 

  • Jassby, A. D. and T. M. Powell. 1994. Hydrodynamic influences on internnual chlorophyll variability in an estuary: Upper San Francisco Bay-Delta (California, U.S.A.). Estuarine, Coastal and Shelf Science 39:595–618.

    Article  Google Scholar 

  • Kimmerer, W. J., E. Gartside, and J. J. Orsi. 1994. Predation by an introduced clam as the likely cause of substantial declines in zooplankton of San Francisco Bay. Marine Ecology Progress Series 113:81–93.

    Article  Google Scholar 

  • Kimmerer, W. J. and J. J. Orsi. 1996. Changes in the zooplankton of the San Francisco Bay estuary since the introduction of the clam Potamocorbula amurensis, p. 403–424. In J. T. Hollibaugh (ed.), San Francisco Bay: The Ecosystem. Pacific Division of the American Association Advancement for Science, San Francisco, California.

    Google Scholar 

  • Kiorboe, T. and K. Johansen. 1986. Studies of a larval herring (Clupea harengus L.) patch in the Buchan area. IV. Zooplankton distribution and productivity in relation to hydrographic features. Dana 6:37–51.

    Google Scholar 

  • Kiorboe, T., H. Kaas, B. Kruse, F. Mohlenber, P. Tiselius, and G. Aertebjerg. 1990. The structure of the pelagic food web in relation to water column structure in the Skagerrak. Marine Ecology Progress Series 59:19–32.

    Article  Google Scholar 

  • Kiorboe, T., F. Mohlenberg, and P. Tiseilus. 1988. Propagation in marine planktonic copepods: Production and mortality of eggs, p. 219–225. In G. A. Boxshall and H. K. Schminke (eds.), Biology of Copepods. Kluwer Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Klein Breteler, W. C. M., H. G. Fransz, and S. R. Gonzalez. 1982. Growth and development of four calanoid copepod species under experimental and naturla conditions. Netherlands Journal of Sea Research 16:195–207.

    Article  Google Scholar 

  • Kleppel, G. S., D. V. Holliday, and R. E. Pieper. 1991. Trophic interactions between copepods and microplankton: A question about the role of diatoms. Limnology and Oceanography 36: 172–178.

    Google Scholar 

  • Laflaeur, P. E., L. Legendre, and A. Cardinal. 1979. Dynamique d'une population estuarienne de diatomees planctoniques: Effet de l'alternanace des marees de morte-eau et de vie-eau. Oceanologica Acta 2:307–315.

    Google Scholar 

  • Le Fevre, J. 1986. Aspects of frontal systems. Advances in Marine Biology 23:164–299.

    Google Scholar 

  • Lehman, P. W. 1992. environmental factors associated with longterm changes in chlorophyll concentration in the Sacramento-San Joaquin Delta and Suisun Bay, California. Estuaries 15: 335–348.

    Article  CAS  Google Scholar 

  • Lehman, P. W. 1996a. Changes in chlorophyll a concentration and phytoplankton community composition with water-year type in the upper San Francisco Bay Estuary, p. 351–374. In J. T. Hollibaugh (ed.), San Francisco Bay: The Ecosystem. Pacific Division of the American Association Advancement for Science, San Francisco, California.

    Google Scholar 

  • Lehman, P. W. 1996b. Water quality conditions in the Sacramento-San Joaquin Delta, 1970–1993. Environmental Services Office, Department of Water Resources, Sacramento, California.

    Google Scholar 

  • Lehman, P. W. in press. The influence of climate on phytoplankton communities in the upper San Francisco Bay estuary. Limnology and Oceanography.

  • Lehman, P. W. and R. W. Smith. 1991. Environmental factors associated with phytoplankton succession for the Sacramento-San Joaquin Delta and Suisun Bay Estuary, California. Estuarine, Coastal and Shelf Science 32:105–128.

    Article  Google Scholar 

  • Levasseur, M., J.-C. Therriault, and L. Legendre. 1984. Hierarchical control of phytoplankton succession by physical factors. Marine Ecology Progress Series 19:211–222.

    Article  Google Scholar 

  • Malone, T. C. 1977. Environmental regulation of phytoplankton productivity in the lower Hudson River. Estuarine and Coastal Marine Science 5:157–171.

    Article  CAS  Google Scholar 

  • McCauley, E. 1984. The estimation of the abundance and biomass of zooplankton in samples, p. 228–265. In J. A. Downing and F. H. Rigler (eds.), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  • Murrell, M. C. and J. T. Hollibaugh. 1998. Microzooplankton grazing in northern San Francisco Bay measured by the dilution method. Aquatic Microbial Ecology 15:53–63.

    Article  Google Scholar 

  • Nichols, F. H., J. K. Thompson, and L. E. Schemel. 1990. Remarkable invasion of San Francisco Bay (California, USA) by the Asian clam Potamocorbula amurensis. 2. Displacement of a former community. Marine Ecology Progress Series 66:95–101.

    Article  Google Scholar 

  • Obrebski, S., J. J. Orsi, and W. J. Kimmerer. 1992. Long-term Trends in Zooplankton Distribution and Abundance in the Sacramento-San Joaquin Estuary. Technical Report 32. Interagency Ecological Studies Program for the Sacramento-San Joaquin Estuary. Department of Water Resources, Sacramento, California.

    Google Scholar 

  • Orsi, J. J. 1995. Food Habits of Several Abundant Zooplankton Species in the Sacramento-San Joaquin Estuary. Technical Report 41. Interagency Ecological Program for the Sacramento-San Joaquin Estuary, Sacramento, California.

    Google Scholar 

  • Orsi, J. J., T. E. Bowman, D. C. Marelli, and A. Hutchinson. 1983. Recent introduction of the planktonic calanoid Sinocalanus doerri (Centropagidae) from mainland China to the Sacramento-San Joaquin Estuary of California. Journal of Plankton Research 5:357–375.

    Article  Google Scholar 

  • Orsi, J. J. and W. Mecum. 1986. Zooplankton distribution and abundance in the Sacramento-San Joaquin Delta in relation to certain environmental factors. Estuaries 9:326–339.

    Article  CAS  Google Scholar 

  • Orsi, J. J. and W. Mecum. 1996. Food limitation as the probable cause of a long-term decline in the abundance of Neomysis mercedis the Opossum Shrimp in the Sacramento-San Joaquin estuary, p. 375–402. In J. T. Hollibaugh (ed.), San Francisco Bay: The Ecosystem. Pacific Division of the American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Orsi, J. J. and T. E. Walter. 1991. Pseudodiaptomus forbesi and P. marimus (Copepoda: Calanoida), the latest copepod immigrants to California's Sacramento-San Joaquin Estuary, p. 553–562. In S. I. Uye, S. Nishida, and J.-S. Ho (eds.), Proceedings of the 4th International Conference on Copepoda. Special Volume, Bulletin of the Plankton Society of Japan. Hiroshima.

  • Paffenhofer, G. and S. C. Knowles. 1978. Feeding of marine planktonic copepods on mixed phytoplankton. Marine Biology 48:143–152.

    Article  Google Scholar 

  • Peterson, D. H., T. J. Conomos, W. W. Broenkow, and P. C. Doherty. 1975. Location of the non-tidal current null zone in northern San Francisco Bay. Estuarine and Coastal Marine Science 3:1–11.

    Article  Google Scholar 

  • Peterson, W. T., P. Tiselius, and T. Kiorboe. 1991. Copepod egg production, molting and growth rates, and secondary production in the Skagerrak in August 1988. Journal of Plankton Research 13:131–154.

    Article  Google Scholar 

  • SAS Institute Inc. 1989. SAS/STAT User's Guide, Version 6, 4th edition, volume 1 and 2. Cary, North Carolina.

  • Seliger, H. H., K. R. McKinley, W. H. Biggley, R. B. Rivkin, and K. R. H. Aspden. 1981. Phytoplankton patchiness and frontal regions. Marine Biology 61:119–131.

    Article  Google Scholar 

  • Sinclair, M., 1978. Summer phytoplankton variability in the lower St. Lawrence estuary. Journal of the Fisheries Research Board of Canada 35:1171–1185.

    Google Scholar 

  • Singlair, M., J. P. Chanut, and M. El-Sabh. 1980. Phytoplankton distributions observed during a 3 1/2 days fixed-station in the lower St. Lawrence estuary. Hydrobiologia 75:129–147.

    Article  Google Scholar 

  • Small, L., C. D. McIntire, K. B. MacDonald, J. R. Lara-Lara, B. E. Frey, M. C. Aamspoker, and T. Winfield. 1990. Primary production, plant and detrital biomass and particulate transport in the Columbia River estuary. Progress in Oceanography 25:175–210.

    Article  Google Scholar 

  • Strathmann, R. R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnology and Oceanography 12:411–418.

    CAS  Google Scholar 

  • Strickland, J. D. H. and T. R. Parsons. 1972. A practical handbook of seawater analysis, 2nd edition. Bulletin of the Fisheries Research Board of Canada. Volume 167.

  • Therriault, J.-C., L. Legendre, and S. Demers. 1990. Oceanography and ecology of phytoplankton in the St. Lawrence estuary, p. 269–295. In M. I. El-Sabh and N. Silverberg (eds.), Oceanography of a Large-scale Estuarine System, The St. Lawrence. Springer-Verlag, New York.

    Google Scholar 

  • Turpin, D. H. and P. J. Harrison. 1980. Cell size manipulation in natural marine, planktonic, diatom communities. Canadiam Journal of Fisheries and Aquatic Science 37:1193–1195.

    Google Scholar 

  • Twombly, S. and C. W. Burns. 1996. Effects of food quality on a individual growth and development in the freshwater copepod Boekella triarticulata. Journal of Plankton Research 18: 2179–2190.

    Article  Google Scholar 

  • Utermöhl, H. 1958. Zur Vervollkommung der quantitätiven Phytoplankton-methodik. Mitteilungen Internationale Verejnigung für Theoretische und Angewandte. Limnologie 9:1–38.

    Google Scholar 

  • Werner, I. and J. T. Hollibaugh. 1993. Potamocorbula amurensis: Comparison of clearance rates and assimilation efficiencies for phytoplankton and bacterioplankton. Limnology and Oceanography 38:949–964.

    Article  Google Scholar 

  • Wong, R. L. J. and J. E. Cloern. 1981. Plankton Studies in San Francisco Bay. II. Phytoplankton Abundance and Species Composition. July 1977–December 1979. Open-File Report 81-214. United States Geological Survey, Menlo Park, California.

    Google Scholar 

  • CDWR. Unpublished data. California Department of Water Resources, Environmental Services Office, 3251 S Street, Sacramento, California 95816.

  • Guivetchi, K. 1986. Salinity Unit Conversion Equations. June 24, 1986 Memorandum. California Department of Water Resources, Sacramento, California.

  • Orsi, J. California Department of Fish and Game. 4001 N. Wilson Way, Stockton, California.

  • Thompson, J. Personal communication. U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Lehman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehman, P.W. Phytoplankton biomass, cell diameter, and species composition in the low salinity zone of Northern San Francisco Bay estuary. Estuaries 23, 216–230 (2000). https://doi.org/10.2307/1352829

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352829

Keywords

Navigation