Skip to main content
Log in

Genetic differentiation of three key anadromous fish populations of the Hudson River

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Large, recreationally or commercially important populations of Atlantic sturgeon (Acipenser oxyrinchus), American shad (Alosa sapidissima), and striped bass (Morone saxatilis) occur in the Hudson River. Members of the Hudson River populations of these fishes also occur over a broad range along the Atlantic coast where they mix with conspecifics from other anadromous populations. For management purposes, it is imperative to be able to discriminate among individual stocks so that weak stocks may be protected and harvest may be allocated equitably. Because of their sensitivity and resistance to environmentally-induced temporal variation, molecular approaches have been increasingly employed in stock identification studies. However, post-Pleistocene recolonization of the Hudson River must have occurred less than 10,000 years ago—a relatively brief period for genetic divergence among populations. We tested whether various measures of DNA variation between Hudson River populations and adjacent populations of Atlantic sturgeon, American shad, and striped bass were sufficient to discriminate among their conspecific populations. American shad populations surveyed for mtDNA variation were highly diverse genotypically, but genotypic frequencies among the populations of the Connecticut, Hudson, and Delaware rivers were statistically homogenous (p>0.05). In contrast, Atlantic sturgeon (surveyed for mtDNA variation) and striped bass (surveyed for mtDNA and nuclear DNA variation) populations of the Hudson River were not genotypically diverse, but they were differentiated from northern and southern populations. Our results suggest higher gene flow (and lesser homing fidelity) among American shad populations in comparison with the two other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Avise, J. C., J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel C. A. Reeb, andN. C. Saunders. 1987. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics.Annual Review of Ecology and Systematics 18:489–522.

    Google Scholar 

  • Bentzen, P., G. G. Brown, andW. C. Leggett. 1989. Mitochondrial DNA polymorphism, population structure, and life history variation in American shad (Alosa sapidissima).Canadian Journal of Fisheries and Aquatic Sciences 46:1446–1454.

    Article  Google Scholar 

  • Berggren, T. J. andJ. T. Lieberman. 1978. Relative contribu tion of Hudson, Chesapeake, and Roanoke striped bass,Morone saxatilis, stocks to the Atlantic coast fishery.United States National Marine Fisheries Service Fishery Bulletin 76:335–346.

    Google Scholar 

  • Billington, N. andP. D. N. Hebert. 1991. Mitochondrial DNA diversity in fishes and its implications for introductions.Canadian Journal of Fisheries and Aquatic Sciences 48 (Supplement 1): 80–94.

    Google Scholar 

  • Bowen, B. W. andJ. C. Avise. 1990. Genetic structure of Atlantic and Gulf of Mexico populations of sea bass, menhaden, and sturgeon: Influence of zoogeographic factors and life-history patterns.Marine Biology 107:371–381.

    Article  Google Scholar 

  • Dadswell, M. J., G. D. Melvin, P. J. Williams, andD. E. Themelis. 1987. Influences of origin, life history, and chance on the Atlantic coast migration of American shad.American Fisheries Society Symposium 1:313–330.

    Google Scholar 

  • Dovel, W. L. andT. J. Berggren. 1983. Atlantic sturgeon of the Hudson estuary.New York Fish and Game Journal 30:140–172.

    Google Scholar 

  • Fabrizio, m. C. 1985. Discrimination and classification of striped bass stocks. Ph.D. Dissertation. University of Rhode Island, Kingston, Rhode Island.

    Google Scholar 

  • Fabrizio, M. C. 1987. Contribution of Chesapeake Bay and Hudson River stocks of striped bass to Rhode Island coastal waters as estimated by isoelectric focusing of eye lens proteins.Transactions of the American Fisheries Society 116:588–593.

    Article  Google Scholar 

  • Goodyear, C. P., J. E. Cohen, andS. W. Christensen. 1985. Maryland striped bass: Recruitment declining below replacement.Transactions of the American Fisheries Society 114:146–151.

    Article  Google Scholar 

  • Hoff, T. B., J. B. McLaren, andJ. C. Cooper. 1988. Stock characteristics of Hudson River striped bass.American Fisheries Society Monography 4:59–68.

    Google Scholar 

  • Leggett, W. C. 1976. The American shad (Alosa sapidissima), with special reference to its migration and population dynamics in the Connecticut River.American Fisheries Society Monograph: 1:169–225.

    Google Scholar 

  • Lorda, E. andV. A. Crecco. 1987. Stock-recruitment relationship and compensatory mortality of American shad in the Connecticut River.American Fisheries Society Symposium 1:469–482.

    Google Scholar 

  • Lund, W. A. 1957. Morphometric study of the striped bass,Roccus saxatilis. United States Fish and Wildlife Service Special Scientific Report Fisheries 216.

  • Mansueti, R. and H. Kolb. 1953. A historical review of the shad fisheries of North America. Chesapeake Biological Laboratory, Publication 97. Solomons, Maryland.

  • Melvin, G. D., M. J. Dadswell, andJ. D. Martin. 1986. Fidelity of American shad,Alosa sapidissima, to its river of previous spawing.Canadian Journal of Fisheries and Aquatic Sciences 43: 640–646.

    Article  Google Scholar 

  • Murawski, S. A. and A. L. Pacheco. 1977. Biological and fisheries data on Atlantic sturgeon,Acipenser oxyrhynchus. United States National Marine Fisheries Service, Sandy Hook Laboratory Technical Service Report 10.

  • Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.

    Google Scholar 

  • Nolan, K., J. Grossfield, andI. Wirgin. 1991. Discrimination among Atlantic coast populations of American shad (Alosa sapidissima) using mitochondrial DNA.Canadian Journal of Fisheries and Aquatic Sciences 48:1724–1734.

    Article  CAS  Google Scholar 

  • Raney, E. C. andD. P. de Sylva. 1953. Racial investigations of the striped bass,Roccus saxatilis (Walbaum).Journal of Wildlife Management 17:495–509.

    Article  Google Scholar 

  • Raney, E. C., W. S. Woolcott, andA. G. Mehring. 1954. Migratory pattern and racial structure of Atlantic coast striped bass.Transactions of the North American Wildlife and Nature Resources Conference 19:376–396.

    Google Scholar 

  • Richards, R. A. andD. G. Deuel. 1987. Atlantic striped bass: Stock status and the recreational fisheryMarine Fisheries Review 49:58–66.

    Google Scholar 

  • Rigby, P. W. J., M. Diekmann, C. Rhodes, andP. Berg. 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I.Journal of Molecular Biology 113:237–251.

    Article  CAS  Google Scholar 

  • Roff, D. A. andP. Bentzen. 1989. The statistical analysis of mitochondrial DNA polymorphisms: {ie767-1} and the problem of small samples.Molecular Biology and Evolution 6:539–545.

    CAS  Google Scholar 

  • Saghai-Maroof, M. A., K. M. Soliman, R. A. Jorgneson, andR. W. Allard. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America 81: 8014–8018.

    Article  CAS  Google Scholar 

  • Schmidt, R. E. 1986. Zoogeography of the northern Appalachians, p. 137–159.In C. H. Hocutt and E. O. Wiley (eds.), The Zoogeography of North American Freshwater Fishes. John Wiley and Sons, New York.

    Google Scholar 

  • Secor, D. H. andP. M. Piccoli. 1996. Age- and sex-dependent migrations of striped bass in the Hudson River as determined by chemical microanalysis of otoliths.Estuaries 19:778–793.

    Article  CAS  Google Scholar 

  • Slatkin, M. 1985. Rare alleles as indicators of gene flow.Evolution 39:53–65.

    Article  Google Scholar 

  • Smith, C. L. andT. R. Lake. 1990. Documentation of the Hudson River fish fauna.American Museum Novitates 2981:1–17.

    Google Scholar 

  • Smith, T. I. J. 1985. The fishery, biology, and management of Atlantic sturgeon,Acipenser oxyrhynchus, in North American.Environmental Biology of Fishes 14:61–72.

    Article  CAS  Google Scholar 

  • Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis.Journal of Molecular Biology 98:503–517.

    Article  CAS  Google Scholar 

  • Tallman, R. F. andM. C. Healey. 1994. Homing, straying, and gene flow among seasonally separated populations of chum salmon (Oncorhynchus keta).Canadian Journal of Fisheries and Aquatic Sciences 51:577–588.

    Article  Google Scholar 

  • Tamura, K. andT. Aotsuka. 1988. Rapid isolation method of animal mitochondrial DNA by the alkaline lysis procedure.Biochemical Genetics 26:815–819.

    CAS  Google Scholar 

  • Taub, S. H. 1990. Fishery management plan for Atlantic sturgeon (Acipenser oxyrhynchus oxyrhynchus). Atlantic States Marine Fisheries Commission, Washington, D.C. Fisheries Management Report 17.

    Google Scholar 

  • Utter, F. andN. Ryman. 1993. Genetic markers and mixed stock fisheries.Fisheries (Bethesda) 18:11–21.

    Google Scholar 

  • Van Eenennaam, J. P., S. I. Doroshov, G. P. Moberg, J. G. Watson, D. S. Moore, andJ. Linares. 1996. Reproductive conditions of the Atlantic sturgeon (Acipenser oxyrinchus) in the Hudson River.Estuaries 19:769–777.

    Article  Google Scholar 

  • Wahl, G. M., M. Stern, andG. R. Stark. 1979. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate.Proceedings of the National Academy of Sciences of the United States of America 76:3683–3687.

    Article  CAS  Google Scholar 

  • Walburg, C. H. andR. P. Nichols. 1967. Biology and management of the American shad and status of the fisheries, Atlantic coast of the United States, 1960.United States Fish and Wildlife Service Special Scientific Report Fisheries 550:1–105.

    Google Scholar 

  • Waldman, J. R., D. J. Dunning, Q. E. Ross, andM. T. Mattson. 1990. Range dynamics of Hudson River striped bass along the Atlantic coast.Transactions of the American Fisheries Society 119: 910–919.

    Article  Google Scholar 

  • Waldman, J. R. and M. f. Fabrizio. 1994. Problems in stock definition in estimating the relative contributions of Atlantic striped bass to the coastal fishery.Transactions of the American Fisheries Society 123.

  • Waldman, J. R., J. Grossfield, andI. I. Wirgin. 1988. A review of stock discrimination techniques for striped bass.North American Journal of Fisheries Management 8:410–425.

    Article  Google Scholar 

  • Waldman, J. R. andI. I. Wirgin. 1994a. Use of DNA analyses in the management of natural fish populations, p. 29–64.In S. J. Garte (ed.), Molecular Environmental Biology. Lewis Publishers, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Waldman, J. R. andI. I. Wirgin. 1994b. Origin of the present Delaware River striped bass population as shown by analysis of mitochondrial DNA.Transactions of the American Fisheries Society 123:15–21.

    Article  Google Scholar 

  • Waldman, J. R. andI. I. Wirgin. 1995. Mitochondrial DNA stability and striped bass stock identification.Transactions of the American Fisheries Society 124:954–956.

    Article  Google Scholar 

  • Wirgin, I. I. 1987. Molecular evolution in the fish genusMorone. Ph.D. dissertation, City University of New York, New York.

    Google Scholar 

  • Wirgin, I. I., D. Currie, andS. J. Garte. 1989. Activation of the K-ras oncogene in liver tumors of Hudson River tomcod.Carcinogenesis 10:2311–2315.

    Article  CAS  Google Scholar 

  • Wirgin, I. I. andL. Maceda. 1991. Development and use of striped bass-specific RFLP probes.Journal of Fish Biology 39 (Supplement A):159–167.

    Article  CAS  Google Scholar 

  • Wirgin, I. I., S. Maceda, M. Pedersen, J. R. Waldman, S. Courtenay, B. Jessop. 1995. Mixed stock analysis of striped bass in two rivers of the Bay of Fundy as revealed by analysis of mitochondrial DNA.Canadian Journal of Fisheries and Aquatic Sciences 52:961–970.

    Article  Google Scholar 

  • Wirgin, I. I., L. Maceda, J. R. Waldman, andR. N. Crittenden. 1993a. Use of mitochondrial DNA polymorphisms to estimate the relative contributions of the Hudson River and Chesapeake Bay stocks to the mixed fishery on the Atlantic coast.Transactions of the American Fisheries Society 122:669–684.

    Article  CAS  Google Scholar 

  • Wirgin, I. I., T.-L. Ong, L. Maceda, J. R. Waldman, D. Moore, andS. Courtenay. 1993b. Mitochondrial DNA variation in striped bass (Morone saxatilis) from Canadian rivers.Canadian Journal of Fisheries and Aquatic Sciences 50:80–87.

    Article  Google Scholar 

  • Wirgin, I. I., P. Silverstein, andJ. Grossfield. 1990. Restriction endonuclease analysis of striped bass mitochondrial DNA: The Atlantic coastal migratory stock.American Fisheries Society Symposium 7:475–491.

    Google Scholar 

  • Wirgin, I. I. andJ. R. Waldman. 1994. What DNA can do for you.Fisheries 19:16–27.

    Article  Google Scholar 

  • Xu, S., C. J. Kobak, andP. E. Smouse. 1994. Constrained least squares estimation of mixed population stock composition from mtDNA haplotype frequency data.Canadian Journal of Fisheries and Aquatic Sciences 51:417–425.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldman, J.R., Nolan, K. & Hart, J. Genetic differentiation of three key anadromous fish populations of the Hudson River. Estuaries 19, 759–768 (1996). https://doi.org/10.2307/1352295

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352295

Keywords

Navigation