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Summary 
Image tampering detection and localization have become an active 
area of research in the field of digital image forensics in recent 
times. This is due to the widespread of malicious image tampering. 
This study presents a new method for image tampering detection 
and localization that combines the advantages of dilated 
convolution, residual network, and UNET Architecture. Using the 
UNET architecture as a backbone, we built the proposed network 
from two kinds of residual units, one for the encoder path and the 
other for the decoder path. The residual units help to speed up the 
training process and facilitate information propagation between 
the lower layers and the higher layers which are often difficult to 
train. To capture global image tampering artifacts and reduce the 
computational burden of the proposed method, we enlarge the 
receptive field size of the convolutional kernels by adopting 
dilated convolutions in the residual units used in building the 
proposed network. In contrast to existing deep learning methods, 
having a large number of layers, many network parameters, and 
often difficult to train, the proposed method can achieve excellent 
performance with a fewer number of parameters and less 
computational cost. To test the performance of the proposed 
method, we evaluate its performance in the context of four 
benchmark image forensics datasets. Experimental results show 
that the proposed method outperforms existing methods and could 
be potentially used to enhance image tampering detection and 
localization.  
Key words: 
Image Tampering, detection, localization, residual UNET, Dilated 
convolution 

I. Introduction  

Nowadays, digital images have become the core medium of 
communication due to their expressive potentials and ease 
of distribution. Consequently, they represent a common 
source of evidence in resolving everyday life controversies 
such as in criminal investigations and legal proceedings [1]. 
However, the advent of sophisticated image editing tools 
and the ease with which digital images can be altered to 
convey false or misleading information has questioned the 
reliability of visual information [2]. This difference 
between the importance of digital images on one hand and 
the doubts regarding their susceptibility to manipulations, 
on the other hand, calls for a means of validating their 
authenticity before using them in important settings.  

Among the known image tampering methods, copy-move 
[3], splicing [4], and removal [1] are the most popular types 

of tampering [3]. Copy move is achieved by copying and 
pasting a portion of an image to another portion on the same 
image. This is usually done to create an object that never 
existed or to conceal an existing object in the image. Image 
splicing copies and paste portions from one image to 
another image to create a composite image. Object removal 
deletes an object from an original image followed by in-
painting to create a tampered image.  

To create more convincing tampering, often some post-
processing operations such as median filtering, and JPEG 
compression are applied to copy moved regions or spliced 
regions to smooth the boundaries of forgery regions making 
them robust against tampering detection techniques. 
Examples of copy-move, splicing, and object removal 
alongside their original images and their corresponding 
ground-truth masks are illustrated in Fig. 1. It can be noticed 
that the tampered images cannot be easily distinguished 
from the authentic images visually even with careful human 
examination. Consequently, detecting image tampering has 
become increasingly difficult, which leads to the 
widespread of malicious image tampering.  

To address this problem, a handful of techniques have been 
proposed recently for detecting and localizing image 
tampering, aiming at improving the state-of-the-art forgery 
detection methods. The earliest methods such as [10], [11], 
and [12] perform forgery detection by exploiting frequency 
domain features, Color Filter Array features, and local 
binary descriptors. Inspired by the performance of the 
Spatial Rich Model (SRM) in image steganalysis, many 
image tampering detection approaches [3] [15] [17] 
utilizing SRM features have been proposed, which 
produced excellent results. With the success of deep 
learning methods, specifically, CNN in many visual 
recognition tasks, recent studies [21] [22] [23] [24] in image 
forensics also seek to leverage the strength of deep learning  
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Figure. 1. Examples of different types of image tampering. Columns 1, 2, 
and 3 show the original images, tampered images, and their ground-truth 
masks respectively. While row 1, 2, and 3 show the examples of removal, 

copy-move, and splicing manipulations respectively. 

 methods to solve the problem of detecting and localizing 
digital image tampering. These methods can automatically 
learn manipulations traces directly from data without the 
need for handcrafted features or human analysis by using a 
set of convolution kernels whose weights are learned via a 
neural network training technique known as back-
propagation. Hence, they provide better performance than 
the earliest methods.  

In recent times, a variety of studies utilizing deep neural 
networks have suggested that their performance could be 
improved by increasing the depth of the network [8-9]. But, 
as the network gets deeper, they become difficult to train 
due to the performance degradation problem. He et al [5] 
proposed the concept of residual learning, which uses 
identity mapping to speed up training, thus, overcoming this 
problem. To overcome the limitation of having large 
training data, Ronnebegger et al [6], proposed the UNET 
architecture. The UNET architecture heavily relies on data 
augmentation and allows signals to propagate easily from 
low levels to high levels of the network to improve image 
segmentation performance. To increase the receptive field 
size of convolution kernels, Yu et al [7] suggested the use 
of dilated convolutions. The Dilated convolution introduces 
a new parameter to the standard convolution, the dilation 
rate that widens the receptive field size of the convolution 

kernels enabling them to capture more image clues without 
loss of resolution and at a reduced computational cost.   

Inspired by the residual network, UNET architecture, and 
dilated convolution, we proposed the Deep Residual UNET 
with Stacked Dilated Convolutions to solve the problem of 
image tampering detection and localization. The proposed 
network combines the strengths of the residual network, 
UNET architecture, and dilated convolution. To assess the 
performance of the proposed network, we evaluated its 
performance on four benchmark image manipulation 
datasets. Experimental results show that the proposed 
method outperforms existing methods and could be 
potentially used to enhance image tampering detection and 
localization. The new network differs from the conventional 
UNET in the following areas: 1)  the use of two types of 
residual unit, one for building the encoding path of the 
network and the other for building the decoding path; 2) the 
use of dilated convolutions, instead of using only the 
standard convolution, we adopted dilated convolutions in 
our residual units to widen their receptive field size; 3) the 
bottleneck path connecting the encoding and decoding path 
of the network is built entirely from a stacked of dilated 
convolutions.   

II.  Related work  

A handful of techniques have been proposed for detecting 
and localizing image tampering such as copy-move, image-
splicing, object-removal, and content preserving 
manipulations such as median filtering and JPEG 
compression. In this section, we will briefly discuss some 
of the existing methods used for detecting and localizing 
digital image tampering. The traditional methods try to 
come up with better ways of representing image 
manipulations using handcrafted features.  For instance, in 
[10] the authors suggest a forgery detection model that 
exploits subtle inconsistencies in the color illumination of 
the image. They used texture and edge-based features from 
the images and utilized a machine learning method for 
classification. To adapt to JPEG compression, which can 
reduce the characteristics of local correlation patterns, Li et 
al [11], proposed a method of image tampering detection 
using Color Filter Array (CFA) interpolation. The 
frequency characteristics of the posterior probability map 
are computed, combined, and then compared to a threshold 
to classify the image as either tampered or not. Carvalho et 
al [12], utilized several local image descriptors and color 
space models to reveal the traces introduced by splicing in 
image illuminant maps and achieved excellent performance 
on DSO-1 image splicing datasets. 

Inspired by the success of the Spatial Rich Model (SRM) in 
many image steganalysis tasks [13], several image 
manipulation detection based on SRM have been proposed. 
Cozzolino et al [14] examine and show the robustness of 
SRM features in detecting image tampering. They 

Original Tampered Ground truth 
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combined SRM features with CNN to perform image 
tampering localization. Sundus et al [15] also investigate 
and demonstrate the performance of SRM and Local Binary 
Pattern (LBP) in detecting multiple image tampering. They 
embedded LBP in SRM sub-models to capture detailed 
statistics of the quantized version of image noise residuals. 
The resulting features were used for classification using an 
ensemble classifier. Rao et al. [16] and [17] initialized the 
weights of their networks with SRM filter kernels to 
enhance image forgery detection and localization.  

With the success of deep learning methods, specifically, 
CNN in many visual recognition tasks, recent studies in 
digital image tampering detections have employed deep 
learning methods to address the problem of image 
tampering detection and localization.  Salloum et al. [18] 
utilized a multi-task fully convolutional network (MFCN) 
to localize image splicing attacks. MFCN used two learning 
tasks to learn the label of the surface and the boundaries of 
the spliced regions. In [19] an image splicing detection and 
localization approach using illumination maps and CNN is 
proposed. CNN was used to extract discriminative features 
from illumination maps and SVM was used for the 
classification task. Their approach was able to attain an 
accuracy of 95% when evaluated using some publicly 
available splicing datasets. The work of [20] proposed a 
hybrid LSTM and encoder-decoder network for pixel-wise 
manipulation localization using resampling and spatial 
domain features. More recently, in [25], a two-branched 
architecture and a fusion procession model was suggested 
for CMFD. The two branches were used to localize and 
identify copy-move forgeries via CNN and GAN 
respectively. Rao et al [26] proposed a two-branch CNN for 
splicing detection and localization based on SRM and CNN. 
Zhang and Ni [27] proposed a dense Unit with a cross-layer 
intersection for detection and localization of image 
forgeries. They initialized the weights of their network with 
high pass filters used in SRM and used a multi-stage 
training approach to speed up convergence. 

III.  Materials and Methods 

We propose the Deep Residual UNET with stacked dilated 
convolutions, for the task of image tampering detection and 
localization. The proposed model adopts the conventional 
UNET [6] architecture, originally designed for semantic 
segmentation, with modifications in the encoding, decoding, 
and bottleneck paths of the network. The UNET 
architecture overcame the need for a large amount of 
training data by providing a network and training technique 
that heavily depends on the use of data augmentation. 
Moreover, the UNET model was designed to solve the 
training problem of neural networks by allowing high-
resolution features from its encoding path combine with the 
corresponding up-sampled output in the decoding path [29]. 
This design created pathways for information propagation 

between the encoding and decoding path, similar to that of 
the residual unit, thus, allowing signals to propagate easily 
between the encoding and decoding path and hence 
facilitating the network training process. Therefore, we 
adopted UNET as one of the basic architecture of the 
proposed model. To capture global image tampering 
artifacts and reduce the computational burden of the 
proposed method, we enlarge the receptive field size of the 
convolutional kernels by adopting dilated convolutions [7, 
30] in the residual units used in building the encoder and 
decoder blocks of the proposed network.  We introduced the 
residual learning module in the encoder and decoder blocks 
to speed up the training process and facilitate information 
propagation between the lower layers and the higher layers 
which are often difficult to train.  

A. Proposed residual units for the encoder and 
decoder block 

 

 
 
Figure 2. Residual Unit for Encoder Block of the Proposed 
Network. Dconv corresponds to a dilated convolution and F 
represents the number of filters used in the block.  
 

 

 
 
Figure 3. Residual Unit for the Decoder block (D) of the proposed 
network.  

The core unit in the proposed network is proposed based on 
the residual module in ResNet [5] and the dilated 
convolutions in [7]. A limitation of the Conventional UNET 
is that the lowest level of the network has a relatively small 
receptive field [31]. This prevents the network from 
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extracting the necessary image clues or traces needed for 
image recognition applications. Thus, to overcome this, we 
utilized dilated convolution in building the residual units 
that constitute the building blocks of the encoding and 
decoding path of the proposed model and a stacked of 
dilated convolutions in building the bridge/bottleneck that 
connects the encoding and decoding path of the proposed 
network. As shown in Figures 2 and 3, compared to the 
conventional UNET architecture, our design replaces the 
two 3x3 standard convolutions in each block of the 
encoding path with a residual unit built from one standard 
convolution and one dilated convolution, each preceded by 
a Batch Normalization (BN) and ReLU operations. The 2x2 
standard convolution and the two 3x3 standard 
convolutions in each block of the decoding path are 
replaced by one standard convolution and two dilated 
convolutions, each preceded by a BN and ReLU operations. 
The residual learning module and dilated convolutions 
solve the problem of vanishing gradient and encourage 
feature propagations, expands the receptive field size of 
convolution kernels, and save computational resources, 
respectively.  
 
Let 𝑥௜ be the input of the ith encoder block, the output of the 
encoder block can be formulated as  

  𝑦௜ ൌ     𝑃ሺ𝑥௜ ൅ 𝑓ሺ𝑥௜ሻሻ        

where p(.) denotes the pooling operations and f(.) 
represents the residual learning function.   
 

B. Deep Residual UNET with stacked Dilated 
Convolutions 

Here we present the Deep Residual UNET with Stacked 
Dilated Convolution, a network for image tampering 
detection and localization that uses the conventional UNET 
as a backbone. The proposed network combines the 
advantages of the residual network, UNET, and dilated 
convolution. These combinations lead to the following 
benefits: 1) the identity mapping between the encoding and 
decoding path of the network and within the residual unit 
will help propagates gradients to higher layers which are the 
most difficult to train due to the problem of vanishing 
gradient. Hence speeding up the network training and 
improving its performance; 2) the UNET architecture will 
ease the training of the network as it allows signals to 
transmit easily between the encoding and decoding path and 
does not require a huge amount of data; 3) the dilated 
convolution will expand the receptive field size of the 
network kernels enabling the network to capture more 
image tampering clues even at the lowest level of the 
network.   

   

 
 
 
Figure 4. The architecture of the proposed network for detection 
and localization of image tampering. The details are omitted for 
simplicity.  The encoding path consists of four encoder blocks 
(E1, E2, E3, and E4) and the decoding path has four decoder 

blocks (D1, D2, D3, and D4). The two paths are connected by the 
bridge/ bottleneck which consists of five dilated convolutions. 

 
As shown in Figure 4, the proposed model comprises of 
three parts: 1) the encoding path, responsible for encoding 
the input image into compact form; 2) the decoding or 
expanding part responsible for restoring the size of feature 
maps; 3) the bridge or bottleneck path which connects the 
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encoding and decoding paths. The encoding path consists of 
four encoder blocks (Figure 2), each block of the encoding 
path is a residual unit built from one standard convolution 
and one dilated convolution, each preceded by Batch 
Normalization (BN) and ReLU layers. The four encoder 
blocks in the encoding path E1, E2, E3, and E4 used  32, 64, 
64, 64 filters, respectively to filter and encode the input 
image into compact form. The decoding path consists of 
four decoder blocks, each preceded by an up-sampling layer 
and a concatenation operation for recovering the encoded 
information and combining it to the corresponding 
encoding path respectively. Each block of the decoding path 
is a residual unit constructed from one standard and two 
dilated convolutions, each preceded by BN and ReLu layers. 
The four decoder blocks D1, D2, D3, and D4 used 32, 64, 
64, 64 filters to filter and recover the encoded input image. 
The bottleneck connecting the encoding and decoding path 
comprises five dilated convolutions with 1, 2, 4, 8, 16 
dilation rates respectively. 
 
The encoding path takes input Image X, extracts image 
tampering features, and down-samples the feature maps 
which serve as the input to the bottleneck block. The output 
of every dilated convolution in the bottleneck is added up 
and the resulting feature map serves as input to the decoding 
path, which is responsible for up-sampling the feature maps 
to original image size. After the last layer of the decoding 
path, our network uses a 1x1 convolution layer and a 
softmax layer to map each feature map for the detection and 
localization of image tampering. In total, the proposed 
model uses 26 convolution layers.  

C. Implementation detail  

The proposed model is implemented using Tensor-Flow on 
a machine with NVidia GeForce GTX 1050 GPU and 8GB 
RAM. All input images were first resized to 256 and 
augmented to enlarge the datasets and reduce the imbalance 
between the positive classes and negative classes before 
using them for our experiments.    

The input images and their corresponding ground truth 
masks are used to train the proposed network. He-normal 
initialization was used to initialize the weights of the 
convolution layers. We trained the proposed model end to 
end in each experiment for 100 epochs with a batch of 16 
images for each training iteration to minimize the cross-
entropy loss function (1) using the adam optimizer with a 
learning rate of 0.001 and the default values of the moments 
(β1 = 0.9, β2 = 0.999, and ε = 10-7).  

Let 𝑊 be the parameter vector associated with the image 
tampering localization task, the cross-entropy loss can be 
formulated as:  
 

 

𝐿ሺ𝑊ሻ ൌ
െ1
𝑀

෍ ෍ 1ሺ𝑦௠ ൌ 𝑛ሻlog ሺ𝑦௠ ൌ 𝑛|𝑦௠ 𝑊ሻ

ே

௡

ெ

௠

   ሺ2ሻ 

Where M and N represent the total number of pixels and the 
number of class, y denote the input pixels and 1(.) is an 
indicator function which equals 1 if m = n, otherwise 0.  

We minimizing the cross-entropy loss using the Adam 
optimizer with all the training samples to learn the 
network’s optimal set of parameters. Using these learned 
parameters, the network can predict whether a given image 
is tampered with or not from the test samples. 
 

D. Datasets  

We validate the proposed method with current methods 
from the literature on Casia v2.0 [32-33], Columbia 
uncompressed [34], Nist Nimble 2016 [35], and MICC 
F2000 [36] image forensics datasets. For each dataset, we 
first split the whole images into three subsets; training, 
testing, and validation subsets before data augmentation to 
enlarge the number of samples. 
 

TABLE I.   
SHOWING THE TRAIN/TEST/VALIDATION SPLIT BEFORE AND AFTER 

AUGMENTATION 

Datasets Training Testing Validation
Casia v2.0    
Before 
Augmentation 

1146 359 287 

After 
Augmentation 

5393 1543 876 

Columbia    
Before 
Augmentation 

215 69 54 

After 
Augmentation 

971 337 243 

Nist Nimble 
2016 

   

Before 
Augmentation 

755 236 189 

After 
Augmentation 

3971 994 876 

MICC F2000    
Before 
Augmentation 

1210 379 303 

After 
Augmentation 

5261 1497 1317 
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E. Performance Evaluation Metrics  

After training the proposed model, its performance was 
evaluated using three standard evaluation metrics. Pixel-
wise f1-score and AUC score were used to evaluate the 
model’s localization performance and the pixel-wise 
accuracy is used to evaluate the model’s performance for 
detecting image splicing, copy-move, and object removal. 
These metrics were also utilized by the baseline models 
[18][21][27] and many states of the art techniques for 
detecting and localization of image forgeries [20, 26] hence, 
we also used them to easily compare the performance of the 
proposed method with the existing methods from the 
literature. For each dataset used in our experiments, we 
report the detection performance of the proposed model in 
terms of accuracy and the localization performance in terms 
of f1-score and AUC score as shown in Table II.   

IV. Results and Discussions  

Table II summarises the localization and detection 
results obtained by the proposed method on four image 
forensics datasets. From the table of results, we can observe 
that our method achieves high detection performance (99.39% 
in MICC-F2000 and 97.47% in casiav2.0) and high 
localization performance with an average F1-score and 
AUC score respectively more than 0.70 and 0.888 on the 
four benchmark image forensics datasets.  

 
TABLE II.   

PROPOSED METHOD EXPERIMENTAL RESULTS ON FOUR BENCHMARK 
DATASETS 

Datasets F1 score AUC Accuracy
CasiaV2.0 0.7033 0.8886 97.47% 
Columbia 0.7540 0.9228 91.33% 
MICC F2000 0.8239 0.9358 99.39% 
Nist Nimble 2016 0.7526 0.9279 95.07% 

 
To further validate the performance of the proposed model, 
we compare its results with that of the existing state-of-the-
art methods which include [18] [21] [27] [37], and [38]. The 
results of these methods are replicated from the original 
papers as we could not access and run their codes. The 
results of the proposed method in comparison with previous 
methods from the literature are presented in Table III. The 
numbers highlighted in bold show the best result obtained 
for that given dataset.  The “–“ sign indicates the given 
method did not use those metrics in evaluating their model. 
As shown in Table III, it can be observed that the proposed 
method outperformed the conventional approaches like [37] 
and [38] that relied on handcrafted features by far in terms 
of f1-score and AUC score on all three datasets. This is 
because it can automatically learn and extract image 
manipulation fingerprints directly from the input images 
without the need for complex preprocessing steps and hand 
design features that may introduce noise, which may 

interfere with image tampering artifacts. Moreover, the 
methods in [37] and [38] are tailored toward detecting a 
specific type of tampering operation, hence they may not 
have the necessary image clues needed for localization, thus, 
limiting their performance.  

TABLE III.   
COMPARISON OF FI SCORE AND AUC SCORE ON THREE DATASETS WITH 

THE STATE OF THE ART METHODS 

Datasets Methods F1 score AUC 
CasiaV2.0 ELA[38] 0.2140 0.6130
 CFA[37] 0.2070 0.5220
 MFCN[18] 0.5410 - 
 Zhou[21] 0.4080 0.7950
 Zhang[27] 0.6830 - 
 Proposed  0.7033 0.8886
Columbia  ELA[38] 0.4700 0.5810
 CFA[37] 0.4670 0.7200
 MFCN[18] 0.6120 - 
 Zhou[21] 0.6970 0.8580
 Zhang[27] 0.9307 - 
 Proposed  0.7540 0.9228
Nist Nimble 16 ELA[38] 0.2360 0.4290
 CFA[37] 0.1740 0.5010
 MFCN[18] 0.5710 - 
 Zhou[21] 0.7220 0.9370
 Zhang[27] 0.5240 - 
 Proposed  0.7526 0.9279

 
We also compared our results with recent deep learning 
methods from the literature. The proposed method 
outperforms the method of Zhou[21], MFCN[18], and  
Zhang[27] on casiav2.0 datasets and obtained the highest 
f1-score and AUC score respectively on the Nist Nimble 
and Columbia datasets as shown in Table III, which 
indicates the robustness of the proposed method. The 
proposed method achieved better performance than the 
other deep learning methods due to the use of a larger 
receptive field size which allows the network to capture 
more image manipulation clues than the other methods. In 
the proposed network, the residual blocks used in both the 
encoding and decoding path of the network were 
constructed from dilated convolutions. This has increased 
the receptive field size of the proposed network at the same 
time reducing computation burden and hence facilitating 
convergence. Moreover, the residual unit has aided in 
propagating image manipulation signals from lower layers 
to higher layers which are the most difficult to train, thus, 
speeding up the network training process and improving 
performance.  
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A. Qualitative Evaluation 
We illustrate some qualitative results (proposed network 
sample output) obtained from our network on casiav2.0, 
Columbia, and Nist Nimble datasets respectively in Figures. 
5, 6,  and 7.  Figures. 5 and 6  show the performance of the 
model in detecting either splicing or copy-move while 
Figure. 7 demonstrates the performance of the model in 
detecting copy-move, splicing, and removal. As shown in 
the visualization results, the predicted masks of the 
proposed network could perfectly locate the tampered 
region within the tampered images in all three datasets. This 
indicates the effectiveness of our method in localizing 
splicing, copy-move, and object removal image 
manipulations.   

 
 

 

 

Figure 5.   Visualization results on  casiav2.0 dataset. The first and 
second columns are the input image and ground truth mask, while the 
third column is the network output Row 1 and 2 show the results when 

the input images have been tampered with, while row 3 shows the result 
for untampered image 

 

 

Figure 6.   Visualization results for the Columbia dataset. The first and 
second columns are the input image and ground truth mask, while the 

third column is the network output. Row 1 and 2 show the results when 
the input images have been tampered with, while row 3 shows the result 

for untampered image 

 

 

 

Figure 7.   Visualization results for NIST nimble dataset. The first and 
second columns are the input image and ground truth mask, while the 
third column is the network output. Row 1 and 2 show the results for 
splicing and copy-move tampering, while row 3 shows the result for 

object removal tampering. 

V.   Conclusions  

 
In this paper, we have proposed a novel method for 

image tampering detection and localization based on dilated 
convolution, residual network, and UNET architecture. The 
proposed method combines the benefits of dilated 
convolution, residual network, and UNET architecture. we 
enlarge the receptive field size of the convolutional kernel 
of the proposed network by adopting dilated convolutions 
in the residual units used in building the encoding and 
decoding paths of the network enabling it to capture global 
image tampering clues. These features allow us to build a 
simple, yet powerful network that can detect and localize 
different types of image tampering. In contrast to existing 
deep learning methods, having a large number of layers and 
many network parameters, which are often difficult to train, 
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the proposed method can achieve excellent performance 
with fewer layers and less computational cost. 
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