
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

127

Manuscript received June 5, 2021
Manuscript revised June 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.6.17

TMUML: A Singular TM Model with UML Use Cases and
Classes

Sabah Al-Fedaghi

Computer Engineering Department, Kuwait University, Kuwait

Summary
In the systems and software modeling field, a conceptual model
involves modeling with concepts to support development and
design. An example of a conceptual model is a description
developed using the Unified Modeling Language (UML). UML
uses a model multiplicity formulation approach, wherein a
number of models are used to represent alternative views. By
contrast, a model singularity approach uses only a single
integrated model. Each of these styles of modeling has its
strengths and weaknesses. This paper introduces a partial solution
to the issue of multiplicity vs. singularity in modeling by adopting
UML use cases and class models into the conceptual thinging
machine (TM) model. To apply use cases, we adopt the
observation that a use-case diagram is a description that shows the
internal structure of the part of the system represented by the use
case in addition to being useful to people outside of the system.
Additionally, the UML class diagram is recast in TM
representation. Accordingly, we develop a TMUML model that
embraces the TM specification of the UML class diagram and the
internal structure extracted from the UML use case. TMUML
modeling introduces some of the advantages that have made UML
a popular modeling language to TM modeling. At the same time,
this approach supplies UML with partial model singularity. The
paper details experimentation with TMUML using examples from
the literature. Our results indicate that mixing UML with other
models could be a viable approach.
Key words:
Conceptual modeling, model multiplicity vs. model singularity,
use case diagram, class diagram, thinging machine model

1. Introduction

In scientific contexts, models are of fundamental
significance. Consequently, a number of different types of
models have been developed in the fields of software and
system engineering. In systems and software modeling, a
conceptual model involves modeling with concepts [1]
used to support development and design. The model acts as
an abstract framework of a phenomenon and of what is
happening within the phenomenon that is to be represented.

1.1 Modeling Approach

In this paper, we adopt the notions that (a) conceptual
models perform representational functions as symbolic
depictions of a selected part of the world [2], and (b)
Craik’s [3] hypothesis that people think by manipulating
models (internal representations) of the world. These ideas
imply that models imitate people’s internal thought

processes, which in turn parallel reality. Mental models (or
knowledge representations) are assumed to have the same
essential features of symbolism (Craik’s [3] term) that
machines have. People translate external situations into
static mental models and external events into mental events.
Thus, external behaviors are mapped to mental behaviors.
The terms “static,” “events,” and “behavior” will be
defined later as elements of our conceptual thinging
machine (TM) model. Fig. 1 clarifies this view, which
involves external reality, a mental model, and TM
modeling.

In software and systems engineering, conceptual
models (e.g., UML or TM) imitate mental models in
structure and events. Typically, a concept is defined as a
thing that is conceived by the mind [4]. We here want to
emphasize that TM modeling also involves processing
(concepting). Later, concept and concepting will be unified
under one notion called a thimac (i.e., a thing/machine).
Craik’s [3] mental modeling can be put in the form of
mental thimacking. That is, we suggest that thimacking is a
mechanism for both mental and conceptual models.

Craik [3] proposed that manipulation of mental models
of (portions) of the world that consist of (to use our
terminology):

1. Mental modeling of some external process into an
internal representation in thimac terms.

2. Deriving other mental models by some sort of
inferential process.

3. Mentally modeling external events in terms of
thimacal (thimacs plus time) events.

A TM model and its corresponding mental model
represent the same underlying reality. TM has a
relationship with reality through that mental model. For
example, a TM model of a student registration system
produces events similar to those that might have occurred
in an actual (i.e., manual) process. In this sense, a TM
model replaces its target system (e.g., a physical
registration system). Because our interest is in software and

External portion
of the world

TM model Mental model

Fig. 1 Difference between mental and conceptual models.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

128

systems engineering, we focus here on the system design
models UML and TM, ignoring the issue of forming mental
models.The representational modeling style is an important
aspect of system design because one can represent the same
subject matter in different ways. According to Teller [5],
“Nature may comprise no ultimate refinement of
structure… the messiness of initial conditions, theoretical
virtues such as simplicity, and other such constraints on
theorizing are what really matters.” The same phenomenon
admits various formulations; hence, one solution is to
characterize the phenomenon in terms of a set of models
taken to apply to the world and parts of the world [5].

1.2 Research Problem

UML is an example of model multiplicity, wherein a
number of models are used to represent alternative views.
According to Lin et al. [6], the model multiplicity
approach utilizes a distinct model for each view.
Comprehending a system requires concurrent references to
the various models and the creation of abstract
associations that link them. Rather than being built into an
integrating method that contains the various models, the
alternative is to place such integration on the shoulder of
the developers.

UML multiplicity [7] is a so-called quantitative
multiplicity in which all objects are instances of a class.
Only spatiality is counted; thus, the objects Mary, John,
and Alice gain their multiplicity through their spatial
differences (e.g., location and bodily features). The objects
are all united as a class (i.e., humans). Singularity of
objects is based on space (a common feature). This
singularity of multiplicity based on spatiality works well
because of the class/subclass mechanism. For example,
cats and dogs are unified as subclasses of animals, thus
achieving consistency. The multiplicities of cats and dogs
are unified by the common features of animals. Of course,
it is possible to have several independent super-classes that
exist beside each other as long as their sets of objects do
not intersect. However, UML also has 14 types of
modeling approaches—examples include special classes,
use cases, sequence models, and activity diagrams. The
multiplicity of objects (instances) of any of these models
also needs an anchor of unity, similar to a class role for
subclasses. All UML diagrams exist in two-dimensional
spaces including the so-called behavior models (e.g., state
diagrams). Because the instances of these models intersect
with each other, the question becomes how to unify their
multiplicity. Suppose a certain activity model and
sequence model are applied repeatedly, producing a
multiplicity of instances for each of them. What is the
super-model for activity and sequence models to guarantee
consistency? UML has none, but some models can be used
as bridges between others.

There is another type of multiplicity that defines
separateness in terms of time. In this case, objects are not

unified based on spatiality but on temporality. An object is
an instance of a class identified by its time of creation. The
same class/subclass relationship is applied to achieve
consistency between objects and subobjects. As we will
see, TM modeling handles this time-related separateness
by shifting instances to different levels of description. The
basic claim here is that the notion of dynamic behavior is
different in kind from the notion of static structure. Thus, a
static structural description cannot be mixed with dynamic
behavioral notions (events) in the same diagram, as is the
practice in UML diagrams. In TM modeling, events are
presented on a higher level than the static descriptions. In
TM, a single model (singularity) is constructed first. Then
it is partitioned into states, and an instance is repeatedly
generated (multiplicity) by activating one partition at a
time.

1.3 Proposed Approach

Software engineering has adopted the notion that
multiple models are needed to represent and understand an
entire system [8]. UML is a venture in this direction, as its
model multiplicity embraces a family of design notations.
In this paper, we attempt to bridge two perspectives on
modeling by accepting some popular UML models, namely
use case and class diagrams, as the bases for constructing a
singular TM model. The resulting TMUML model includes
use cases, class diagrams, and TM modeling.

In TM modeling, a use case is used along with a class
diagram as an initial specification to build the TM model,
as shown in Fig. 2. Thus, we aim to incorporate use cases
as the basic blocks for system specification and provide a
foundation by facilitating the elicitation, collection,
analysis, and documentation of requirements [9] [10].
Additionally, the class diagram is used to model the
structural view of a system that includes the abilities to
carry data and execute actions.

1.2 Outlines

The next section is a brief review of TM modeling (See
[11] and its TM references by the author). Section 3
focuses on use case modeling. Section 4 gives a TMUML
case study.

2. Thinging Machine Modeling

The TM world is a world of thimacs: things that are
simultaneously machines. Bryant [12] says of such a thesis,
“In short, being is an ensemble or assemblage of machines.”
All things are created, processed, and transported (acted on),
and all machines create, process, and transport other things
(act; Fig. 2). Beings in the world have two roles: they can
serve as machines, which act as subjects, and things, which
act as objects. This is what we understand from Aristotle:

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

129

“‘being’ is in one way divided into individual things and is
in another way distinguished in respect of potency” [13].

Thimacs have a dual nature: They are atemporal and
temporal (the classical duality of thing vs. object). The
machine side of a thing includes spatiality and actionality
(generic actions) that embed the potentiality for change.
The machine side of an object is shown in Fig. 3. TM can
be described as the following generic (basic) actions:
Arrive: A thing moves to a machine.
Accept: A thing enters the machine. For simplification,

we assume that all arriving things are accepted;
hence, we can combine the arrive and accept
stages into one stage: the receive stage.

Release: A thing is ready for transfer outside the
machine.

Process: A thing is changed, but no new thing results.
Create: A new thing is born in the machine.
Transfer: A thing is input into or output from a machine.

Additionally, the TM model includes memory
organization, which plays the role of storage for each action.
For simplification purposes, one may assume each TM has
a single storage area. Additionally, the TM model includes
the mechanism of triggering (denoted by a dashed arrow in
this study’s figures), which initiates a flow from one
machine to another. Multiple machines can interact with
each other through movement of things or triggering.
Triggering is a transformation from one series of
movements to another.

3. Use Cases

Because we have elaborated on class diagrams in a
previous paper [11], where class diagrams are formulated
in terms of the TM model, this section focuses on use
cases and their incorporation in TM modeling.

3.1 About Use Cases

Use cases are useful to people outside of the system.
They are used to specify system behavior from the user’s
point of view. Applications are conceived in terms of use
cases that explain what the stakeholder expects from the
system by means of describing an interaction with it [14].
Additionally, use cases serve as basic blocks for system
specification in software and systems engineering
processes and facilitate the elicitation, collection, analysis,
and documentation of requirements [9] [10].

Use-case-driven analysis is called the “cornerstone” of
software and systems modeling in UML and SysML. In
software engineering, no other construct as significant as
use cases has been adopted so quickly or so widely among
practitioners because use cases play a role in so many
different aspects of software engineering [15].

In UML 2, “a use case is the specification of a set of
actions performed by a system, which yields an observable
result that is, typically, of value for one or more actors or
other stakeholders of the system” [16]. A use case may be
specified by means of a full description of interactions
using an elaborated textual form with low-level pseudo-
code resulting in well-known problems. An improvement
to this approach is the use of diagrammatic forms to
specify permitted interactions [14].

According to Jacobson [15], the application of use
cases is not limited to software development. They can
help to understand business requirements, analyze existing
business, design new and better business processes, or
exploit the power of IT to transform business. By using
use cases, we can identify the ways in which the systems
will affect a business and which systems are needed to
support it. Use cases are not a uniquely object-oriented
defining characteristic, although they could be used with
practically any software development approach [17]. Many
people think use cases are only applicable to user-intensive
systems, but the original idea for use cases came from
telecom switching systems, which have both human and
machine users. However, use cases are applicable to all
systems that are used [15].

3.2 Use Case as a Sketch of the Modeled System’s
Internal Structure

One objective of conceptual modeling is identifying
the right problem (we might refer to this as “problem
structuring”) as well as understanding the system and its
boundaries [18]. From a designer’s point of view, as
suggested by da Silva [19], a use-case diagram shows the
internal structure and functional decomposition of a model
[10]. Specifically, according to Isoda [10], “actors and a

Use case

Internal structure

Class diagram

TM model

TM model of class diagram

Fig. 2 Overview of our approach.

Fig. 3. A thinging machine.

Create

Receive

Transfer

Release

Process
Accept Arrive

Output Input

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

130

subject that appear in a use-case diagram are also part of
the behavior description because they appear in it… a use-
case diagram represents the internal structure of a use
case’s behavior description.” To illustrate the meaning of
the internal structure that can be extracted from a use case,
Fig. 4 shows an example of a use case given by Dijkman
and Joosten [20]. Fig. 5 shows different regions of the TM
model that correspond to the use case. The solid arrow
denotes communication interactions, as in the use case
given. The dashed arrows denote triggering in the TM
sense.

Fig. 6 shows another example of a use case with a
more complex internal structure, with <include>,
<extend>, and generalization. In the internal structure
shown in Fig. 7, each actor is a region: the customer is
represented by the space on the left and the banking
application system is represented by the space on the right
(Circle 1). The login system is structured as one region
(blue box), containing login (2), which triggers either
verify password (3) or continues in a sequential manner.
The red subregion shows the sequential program (5):
verify password (3) may trigger error (4) or be followed by
receiving a transaction from the customer to trigger check
balance (6), transfer funds (7), or make payment (8).
Verify sufficient funds (9) is performed when checking the
balance and transferring funds. Make payment (10)
involves another interaction with the customer to
determine the type of account (11 and 12).

Fig. 7 is extracted from the use case except when
introducing the more generalized sub-actor transaction.
This was implied by the use case sharing a group of
functions between the customer and bank, as shown in Fig.
8.

Administrative
worker

Enter Mortgage

Draw up Offer

Check Credit

Fig. 5 Illustration of the internal structure conveyed by a use case.

Fig. 6 A partial use case (from www.programmersought.com).

Fig. 4 Partial sample of a use case (from Dijkman and Joosten [28]).

Customer

Fig. 7 Internal structure inferred from the banking application use case.

Transaction

 Login

 Verify password Display login
error

 Check balance

Transfer funds

 Make payment

 Verify sufficient funds

Banking Application 1

2

3

4

5
6

7

9

Bank

8

10

11

12

From checking account

From saving account

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

131

4. Building a TMUML Model

According to da Silva [19], specifying system
requirements facilitates communication among
stakeholders and supports development processes.
Generating such specifications requires a systematic,
rigorous, and consistent method with a large set of
constructs at different levels of detail and different types of
requirements (e.g., goals, functional requirements,
constraints, and use cases). This “large set of constructs”
in [19] seems to refer to UML-style notations. According
to [19],
 A modeling language such as UML (and SysML at

some extent) is a reasonable foundation for
requirements modeling, but it is incomplete for
modeling requirements because it lacks models that
tie requirements to business value and models that
present the system from an end user’s point of view.

 A way to establish relationships between constructs
defined for different types of diagrams has not been
well defined (e.g., between use cases and classes or
between state machines and use cases).

 UML does not have a standard way of further
classifying its constructs (e.g., neither use cases nor
actors have any further semantics).

Next, da Silva [19] proposed a UML-like requirements
specification language that solely focuses on constructs
that “most related with use cases approaches, i.e., focused
on the following constructs: use cases, actors, data entities,
state machines, and their inherent relationships.” Therefore,
[19]’s UML-like project is actually similar to our venture
in this paper, where UML is adopted partially. We here opt
to compare our approach to such a proposal, and UML in
general, by modeling a problem side-by-side in UML and
TM modeling and letting the reader contrast the
advantages and disadvantages of both methodologies.

According to Aguirre-Urreta and Marakas [21], papers
comparing diagrammatic conceptual models (e.g., entity
relationship and UML/object-oriented modeling
techniques) in the published literature, although “vibrant,”
have “often yielded equivocal findings.” In this context,
Houy et al. [22] claim that model understandability
remains “ambiguous [and] research results on model
understandability are hardly comparable and partly

imprecise.” One way to contrast conceptual models can be
through experimentation. For example, Valaski et al. [23]
used eight professionals and 80 students to evaluate the
expressiveness of UML and OntoUML.

The point here is that it is very difficult to present a
detailed comparison between UML and TM modeling,
especially because the latter is still a mere proposed
approach. Achieving a reasonable level of comparability at
this stage of development involves modeling the same
problem in UML and TM and contrasting the
diagrammatic representations side-by-side in a way that
can be grasped by non-technical persons. After all, the two
approaches may be compatible, a topic that is explored in
this paper.

Following this strategy, Fig. 9 illustrates an example of
a use case of an invoice management system expressed in
TM notations. The purpose of the figure is to contrast the
UML use cases’ diagrammatic form with their TM
diagrammatic representation, not to provide a fair review.

The question is how to represent this use case in TM
modeling. As we mentioned previously, the use case helps
in identifying the internal structure of the system.
Accordingly, the actors are the manager, operator, and
customer. The system is called Manageinvoices (Fig. 10),
as we use the same names given in the use case.
Accordingly, Fig. 10 shows the internal structure
discussed in the previous section in preparation to
construct the TM representation.

In Fig. 10,
 The operator (Circle 1) interacts with the system

to trigger (activate; Circle 2) six machines (3-8).
This interaction involves inputting data and
activating (triggering; dashed arrow) some
methods.

 Check balance

Transfer funds

Make payment

Bank Customer

Fig. 8 Alternative representation of actors sharing use-case functions.

Fig. 9 Use case of invoice management system (partial from [19]).

…

…

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

132

 The manager (9) interacts when receiving the new

invoice (10) by approving/disapproving the
invoice (11).

 The customer (13) interacts by activating the
sendinvoice machine (5), which sends a copy of
the invoice to the customer.

This internal structure of processing an invoice gives a
rough basis for actors and their interaction with the invoice
management system.

We refine Fig. 10 as shown in Fig. 11, which sketches
different flows and types of triggering to and from the
invoice class (machine; Circle 1). First, the actions of the
operator are listed (2), which result in a flow of data (an
attribute value) or triggering an operation (e.g., delete).
The operator or customer may request outputting the
invoice (3) (e.g., to a printer). The manager who receives
the newly created invoice sends back approval/disapproval
as an attribute value in the invoice (4 and 5).

Additionally, da Silva [19] gives the class diagram of the
system as shown partially in Fig. 12. Fig. 13 shows the
corresponding TM diagram, in which we make the
following assumptions to save space:
 Only the class invoice (Circle 1 in Fig. 13) is modeled,

since all classes can be represented in the same way
(e.g., customer class [2]).

 In the invoice class, only the invoice attribute ID (3) is
modeled, since all other invoice attributes (4) are
represented in a similar way.

 Operator

Registration

Sending destination

Create an invoice

Manager

 Customer

Invoice class

Delete an invoice

Update invoice
attribute
Request an invoice

Input/invoice
attribute

Request an invoice

Approval/Disapproval of an invoice

 Notification

3

5 1

2

4

Fig. 11 Sketching different flows and types of triggering to/from the invoice.

 Createinvoice Updateinvoice Deleteinvoice Registerinvoice Printinvoice Sendinvoice

Operator

Customer

Manageinvoices
Manager

1
2

3

7 5

8

6

10

11

Fig. 10 The internal structure of the TM model is provided by the given use case.

Invoices

9

13

SubmitAproval

 Consultinvoice

 Approval

4

Fig. 12 Class diagram of the given example (partial from [19]).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

133

 The approval/disapproval attribute (5) is unique in the

invoice diagram. Its value is set by the manger (6)
who receives the new invoice (7) after creating it (8).

 The value of the ID can be stored (9) and retrieved
(10).

 The instance of the invoice can be deleted (decreated,
the inverse of create; 11) or downloaded (12) to be
sent somewhere, such as a printer.

4.1 Static Model

Fig. 14 shows the static TM model that unifies the use
case and class diagrams of the invoice management system
into a single diagram. The figure shows the static model of
the inventory management system with the following
aspects:

…

1

 ID
Receive Release

Transfer

Release

Approval/Disapp …

Invoice class

Decreate

Create

2

Release Transfer

3

6

4

9

7

Customer class

…

 Name
Receive Release

Transfer

…

Transfer

O
th

er
 a

tt
ri

b
u

te
s

O
th

er
 c

la
ss

es

O
th

er
 a

tt
ri

b
u

te
s

Same flows as ID

Approved
OR

Rejected 5

10

11

12

Transfer

Output
(e.g., to a
printer)

Transfer

Retrieve
(e.g., for

updating)
Store

Manager

Receive Transfer Manager

8

Fig. 13 TM representation of the classes.

Fig. 14 TM model of the invoice management system.

1

 ID
Receive

Operator

Release

Transfer

Release

Process

Transfer

Transfer
Receive

Release

Printer

Registration

Transfer

Sending destination

Transfer

Release

Transfer

Create an invoice

Manager

Approval/Disapp

Release Transfer

 Customer

…

Transfer

Transfer

Invoice class

Deceate

Transfer

Transfer Process

Process

Process

Process

Process

Receive

Receive

Receive

Receive

Receive

Transfer Process Receive

Create

Delete an invoice

Update invoice ID

Request an invoice

Input invoice ID

Request an invoice

Approval/Disapproval of an invoice

2

Transfer

Receive

Transfer Receive Process

Create

Release Transfer

Create

Notification

Receive

Release

Transfer

Transfer

Transfer

3

9

6

4

5

8

7
Customer class

…

 Name
Receive Release

Transfer

…

Transfer

O
th

er
 a

tt
ri

b
u

te
s

O
th

er
 c

la
ss

es

O
th

er
 a

tt
ri

b
u

te
s

Same flows as ID

Create

Transfer

Receive
Approved

OR

Rejected

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

30 31

32 33 34

35

36

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

134

The figure features classes, which allow the creation
(Circle 1) of the invoice class (2) with two attributes: ID
(3) and approval/disapproval (4). Other attributes can be
added (5) and treated in a similar way as ID. Other classes
(6) – for example, the customer class (7) – can also be
modeled in a way similar to the invoice class. The
relationships among classes are not introduced in this
paper.
 Creating an instance of invoice starts with a request

from the operator (8) that is received and processed by
the system (9) to trigger create in the invoice structure
(1). This create action may trigger inputting values for
attributes, as in an updated invoice ID that will be
specified next. Or, create might put nulls as initial
values for a class instance, as when creating an object
in object-oriented languages.

 Input invoice ID (10) facilitates the operator inputting
values for attributes (11 and 12). It can be used for all
attributes of the invoice to realize the creation of an
invoice. It can also be realized at the operator
interface level by filling in all values at once (e.g.,
filling the interface page). The details of how to fill
the values of an invoice can be added to the TM
model.

 Update invoice ID (13) can be used to change a
current attribute value that is received (14). We
assume that this process requires retrieving the current
value of an attribute (15), comparing the two values
(16), creating a new value (17), and depositing this
new value in the attribute (12).

 Request an invoice (18) provides the operator with an
instance of an invoice. This process requires the
retrieval of an invoice instance (19) from the system
and transfers it (20) to its destination (21, 22, and 23).

 Request a copy of the invoice (24 and 25) in the
customer region is similar to the previous item.

 Delete an invoice (26 and 27) is similar to the create
an invoice process. It is a reversed version of creation,
so it is labeled decreate (28).

 Approval/disapproval of the invoice (after being
created) requires sending (30) the invoice instance to
be examined (31) by the manager, who then inputs the
value approved or disapproved into the invoice
instance (32, 33 and 34). Additionally, the manager
sends a notification (35) about his or her decision to
the operator (36).

Note that the static model of Fig. 14 follows the internal
structure of the use case structure (Fig. 10). In this paper,
the modeling process involves moving from a traditional
use case diagram to extract the internal structure of the
system, then moving to modeling using TM notations.
Therefore, practically speaking, the use case and class
diagrams are used as a first step to develop the TM
diagram (in agreement with Fig. 2 in Section 2).
Additionally, note that the attributes and methods of the

class in Fig. 14 are spread throughout the TM diagram.
However, the methods are integrated in the TM diagram at
a higher level of description (i.e., over Fig. 14), as will be
shown next in the dynamic model.

4.2 The Events and Behavior Model

An event in a TM can be represented by its region.
Accordingly, the static model of the invoice management
system can be partitioned into regions of events E1, …, E21

as shown in Fig. 15.
E1: The operator requests the creation of a new invoice
(instance) that is received and processed by the system.
E2: The system creates an invoice.
E3: The operator requests the deletion of an invoice
(instance) that is received and processed by the system.
E4: The system deletes an invoice (decreate is a version of
create that reverses the create action).
E5: The operator inputs attribute ID values that are

received by the system.
E6: The ID attribute value is stored.
E7: Invoice ID is to be updated (e.g., error in the current

value).
E8: The current ID value is retrieved.
E9: The input and current ID values are processed, and a

new value is created.
E10: The operator requests that an invoice be sent.
E11: The invoice is retrieved.
E12: The invoice is sent to a destination.
E13: The invoice is sent for registration.
E14: The invoice is sent to the printer.
E15: The customer requests an invoice, and the system

sends that invoice to the customer.
E16: The invoice flows to the manager.
E17: The manager approves or disapproves the invoice.
E18: The approval or disapproval value flows to the system

to be stored.
E19: The manager sends an approval/disapproval

notification to the operator.

For the sake of completeness, we add the following events:
E: The event of the system being active and beginning
interaction with different users.
EO: The event of the operator interaction session.
EC: The event of the customer interaction session.
EM: The event of the manager interaction session.

Accordingly, Fig. 16 shows the behavior model of the
invoice management system. The methods specified in
[19]’s class diagram (Fig. 12) can be defined as follows.

Createinvoice: E1→ E2
Updateinvoice: E5→ E6 (for all attributes of the class)
Sendinvoice: E10→ E11→ E12
Printinvoice: E10→ E11→ E13
Registerinvoice: E10→ E11→ E14
Deleteinvoice: E3→ E4

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

135

4.3 State Diagram

Last, da Silva [19] introduces a state diagram for the
invoice system. Apparently, something is still missing in
the model that must be supplemented by a state diagram to
specify the invoice’s behavior given in Fig. 17. Other
classes/objects also need such behavior specifications. The
figure shows the specification of the invoice’s behavior
through the definition of its respective state machine. Fig.
5 depicts the equivalent “UML-like” representation for the
example. As described by [19], “This state machine
includes six states: Initial, Pending, Approved, Rejected,
Paid and Deleted. Initial is an initial state, while Paid and
Deleted are final states.” In TM modeling, such a
description of behavior is not necessary because we
already specified the behavior in Fig. 16.

E11

E9

 E10

 E7

E6

 ID
Receive

Operator

Release

Transfer

Release

Process

Transfer

Transfer
Receive

Release

Printer

Registration

Transfer

Sending destination

Transfer

Release

Transfer

Create an invoice

Manager

Approval/Disapp

Release Transfer

 Customer

…

Transfer

Transfer

Invoice class

Transfer

Transfer Process

Process

Process

Process

Process

Receive

Receive

Receive

Receive

Receive

Transfer Process Receive Delete an invoice

Update invoice ID

Request an invoice

Input invoice ID

Request an invoice

Approval/Disapproval of an invoice

Transfer

Receive

Transfer Receive Process

Create

Transfer

Create

Notification

Receive

Release

Transfer

Transfer

Transfer

Customer class

…

 Name
Receive Release

Transfer

…

Transfer

O
th

er
 a

tt
ri

b
u

te
s

O
th

er
 c

la
ss

es

O
th

er
 a

tt
ri

b
u

te
s

Same flows as ID

Create

Transfer

Receive

Fig. 15 Event model of the invoice management system.

E3

E5

E18

E15 E13

E12

E17

E8

E14

E1

E19

Approved
OR

Rejected

Create

E2

Decreate
E4

Release
E16

…
Fig. 17 State diagram (adapted from [19]).

Fig. 16 Behavioral model of the invoice management system.

E5 E6

E2

E8

E3 E4

E1

E9 E7

E10 E11
E12

E13

E14

E0

EC E15

E16

E17 E18

E19

Delete

Create

Input data

Update data

Send

Customer requests a
copy

Operator

Send to
manager

Approval/
disapproval

Notification

EM
Store Approval/

disapproval

E0

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

136

 8. Conclusion

This paper presents a possible solution to researchers who
are still not satisfied with all UML apparatuses but who
also view use cases as basic blocks for system
specification. We provide a foundation by facilitating the
elicitation, collection, analysis, and documentation of
requirements. Furthermore, we consider the structurability
of a UML class diagram a foundation for further software
system development (e.g., design phase). We propose the
singular TM model based on use cases and class diagrams
(Fig. 18). This venture is an interesting experiment in
mixing parts of UML with other models. This is an
application of UML philosophy, because it is not
necessary to utilize all models in UML. The result of
applying the proposed approach seems promising. Further
research would clarify related issues, such as class
relations.

References
[1] Thalheim, B.: Conceptual Model Notions—A Matter of

Controversy: Conceptual Modeling and its Lacunas.
EMISA Int J Concept Model., Vol. 3, 9–27 (2018). DOI:
https://doi.org/10.18417/emisa.si.hcm.1

[2] Hartmann, S., Frigg, R.: Scientific Models. In: Sahotra, S.
(ed.), The Philosophy of Science: An Encyclopedia, vol. 2.
Routledge (2005)

[3] Craik, K.: (1943). The Nature of Explanation. Cambridge
University Press

[4] Spitzer, D.R.: What Is a Concept? Educational Technology
15(7), 36–39 (July 1975)

[5] Teller, P.: Twilight of the Perfect Model. Erkenntnis 55,
393–415 (2001)

[6] Lin K.-P., Shen, C.-Y. Chao, W.S.: Enriching UML from
Model Multiplicity to Model Singularity with Structure-
Behavior Coalescence. In: 2018 IEEE International
Conference on Systems, Man, and Cybernetics (2018). DOI:
10.1109/SMC.2018.00340

[7] Dori, D.: Model-Based Systems Engineering with OPM and
SysML. Springer, New York (2016)

[8] Egyed, A., Medvidovic, N.: A Formal Approach to
Heterogeneous Software Modeling. In: Proc. of Formal
Aspects of Software Engineering (FASE’00), pp. 178–192
(2000)

[9] Schütz, J., Uslar, M., Meister, J.: A Case Study Research on
Interoperability Improvement in Smart Grids: State of the
Art and Further Opportunities. Open Research Europe
(1)33, (2021). DOI: 10.12688/openreseurope.13313.1

[10] Isoda, S.: On UML2.0’s Abandonment of the Actors-Call-
Use-Cases Conjecture. Journal of Object Technology 4(6),
69–80 (2005). DOI: 10.5381/jot.2005.4.6.a6

[11] Al-Fedaghi, S: Classes in Object-Oriented Modeling
(UML): Further Understanding and Abstraction.

International Journal of Computer Science and Network
Security (IJCSNS) 21(5), pp. 139–150 (2021)

[12] Bryant, L.R.: Onto-Cartography: An Ontology of Machines
and Media. Edinburgh University Press (2014)

[13] Aristotle (Trans. Ross, W.D.): Metaphysics, Book IX.
http://classics.mit.edu/Aristotle/metaphysics.9.ix.html

[14] Génova, G., Llorens, J.: The Emperor’s New Use Case.
Journal of Object Technology 4(6), 81–94 (2005)

[15] Jacobson, I., Spence, I., Bittner, K.: USE-CASE 2.0: The
Guide to Succeeding with Use Cases. Ivar Jacobson
International (2011).
https://www.ivarjacobson.com/sites/default/files/field_iji_fil
e/article/use-case_2_0_jan11.pdf

[16] ISO/IEC: ISO/IEC 19505-2:2012 Information Technology
— Object Management Group Unified Modeling Language
(OMG UML) — Part 2: Superstructure. ISO/IEC (2012)

[17] Berard, E.V.: Be Careful With “Use Cases.” Unpublished
document (1996). Accessed 26 May 2021.
https://2e0lj12n8kh11jepat23jcv8-wpengine.netdna-
ssl.com/wp-
content/uploads/2016/03/BeCarefulWithUseCases.pdf

[18] Robinson, S.: The Future’s Bright, the
Future’s…Conceptual Modelling for Simulation! Journal of
Simulation 1(3), 149–152 (2007).
https://doi.org/10.1057/palgrave.jos.4250026.

[19] da Silva, A.R.: Rigorous Specification of Use Cases with the
RSL Language. In Siarheyeva, A., Barry, C., Lang, M.,
Linger, H., Schneider, C. (eds.) Information Systems
Development: Information Systems Beyond 2020 (ISD2019
Proceedings). Toulon, France: ISEN Yncréa Méditerranée
(2019)

[20] Dijkman, R.M., Joosten, S.M.M.: An Algorithm to Derive
Use Case Diagrams from Business Process Models. In: Proc.
of the 6th International Conference on Software Engineering
and Applications (SEA), pp. 679–684 (2002)

[21] Aguirre-Urreta, M.I., Marakas, G.M.: The Empirical
Literature Comparing Entity Relationship and Object-
Oriented Modeling Techniques, While Vibrant, Has Often
Yielded Equivocal Findings. ACM SIGMIS Database:
39(2), 9-32 (2008).
https://doi.org/10.1145/1364636.1364640

[22] Houy, C., Fettke, P., Loos, P.: Understanding
Understandability of Conceptual Models—What Are We
Actually Talking About? In: Atzeni, P., Cheung, D., Ram, S.
(eds.) Conceptual Modeling. ER 2012. Lecture Notes in
Computer Science, vol 7532, pp 64-77. Berlin, Springer
(2012). https://doi.org/10.1007/978-3-642-34002-4_5

[23] Valaski, J., Reinehr, S., Malucelli, A.: Evaluating the
Expressiveness of a Conceptual Model Represented in
OntoUML and UML. In: Proc. of the 19th International
Conference on Enterprise Information Systems (ICEIS), vol.
2, pp. 263–270 (2017)

Use cases Classes

TM

Fig. 18 General view of the proposed approach.

