Research on Note-Taking Apps with Security Features

Myungseo Park!, Soram Kim', and Jongsung Kim!?*

'Dept. of Financial Information Security, Kookmin University, 77 Jeongneung-Ro
Seongbuk-Gu, Seoul, 02707, Korea
{pms91, kimsr2040, jskim} @kookmin.ac.kr
Dept. of Information Security, Cryptology and Mathematics, Kookmin University, 77
Jeongneung-Ro Seongbuk-Gu, Seoul, 02707, Korea
jskim.kookmin.ac.kr

Received: October 7, 2020; Accepted: December 21, 2020; Published: December 31, 2020

Abstract

Smartphone applications (apps) provide users with features to maximize the usefulness of smart-
phones in various categories, such as finance, education, health, life, and entertainment. For these
features, apps store within themselves user data, which are closely related to their user. Such data
can be thus used as key digital forensics clues. However, some apps use their own security features
to protect data against external threats. Security features, which can effectively protect sensitive data,
impose considerable digital forensics challenges that require data decryption to be used as evidence.
Therefore, it is essential to conduct a preliminary study of apps with security features so that foren-
sic investigators can perform their work efficiently. In this paper, we propose a forensic analysis of
the note-taking apps ClevNote and Samsung Notes. Note-taking apps are valuable as evidence in
forensic investigations because notes written by users are stored as app data, but forensic analysis is
difficult as several security features protect app data. We conducted a study on a method to collect the
protected app data in a form usable as evidence. To achieve this purpose, we identified the security
features for target apps and obtained app data by revealing the operation process of security functions
using reverse engineering.

Keywords: Smartphone application, Note-taking application, Access control, Data encryption/de-
cryption

1 Introduction

1.1 Background

Smartphone applications (apps) store various user-related data to provide services. Apps often apply
security features to protect the data, which are their primary target, against external threats. Apps use
cryptographic algorithms as a crucial factor to play the role of security features. Security features are a
powerful means of data protection, but they function as anti-forensics in digital investigations. For inves-
tigators to use app data as evidence, research on the security functions of each app should be conducted.
An analysis for each app is required due to the characteristics of the apps that provide security functions
using a unique scheme. In this paper, we focus on and analyze note-taking apps among the ones that
provide security features. The main reason for this is that notes written by the user are stored as data
thereby making note-taking app valuable as evidence. As first, we categorize the security features that

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), 11 (4):63 Dec. 2020
DOI:10.22667/JOWUA.2020.12.31.063

*Corresponding author: Department of Information Security, Cryptology and Mathematics and Dept. of Financial Informa-
tion Security, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Korea, Tel: +82-2910-4750

63

Note-taking apps with security features Myungseo, Soram, and Jongsung

the note-taking apps can support and generalize the operation process for each security feature. After-
wards, a case study is performed for the forensic analysis by applying the security functions, which is
defined by us, to the note-taking apps ClevNote and Samsung Notes.

1.2 Related Work

Research into smartphone apps with security features has been conducted for several years. Anglano
(2014) analyzed WhatsApp, an instant messenger in the Android operating system [S]. This study ana-
lyzed the artifacts of WhatsApp and experimented with recovering deleted data. Awan (2015) researched
Facebook, Twitter, and LinkedIn on Apple, Android, and Windows operating systems [8]]. The author fo-
cused on artifacts for logical data acquired from each app. Anglano et al. (2016) analyzed ChatSecure, a
secure instant messenger, and discovered the data encryption process based on user-entered password [6]].
Frosch et al. (2016) details the cryptographic algorithms used in the authentication process and other pro-
tocols of the secure instant messenger TextSecure [[13]]. Azhar and Barton (2017) analyzed the security
features for Wickr and Telegram, which are security messengers running on the Android operating sys-
tem [9]. Rathi et al. (2018) conducted a research on the analysis of artifacts and decryption of encrypted
data for the encrypted instant messaging applications Telegram, WhatsApp, Viber, and WeChat [19].
Sudozai et al.classified various events of call and chat related activities by detecting the traffic flow of
the instant messenger IMO on the Android and iOS platforms [22]. Choi et al. (2019) researched the
decryption of encrypted database files for KakaoTalk, NateOn, and QQ messenger in Windows operating
system [[11]. On the other hand, research on Telegram, an instant messenger, has been actively conducted
over the past few years. Satrya et al. (2016) performed a log and packet analysis of normal and secret
chat and artifact analysis, such as users, contacts, and chat content in Telegram on Android [21] [20].
Gregorio et al. (2017) aimed at a forensic analysis of Telegram for the Windows phone, which analyzed
the data structure of Telegram and its major artifacts [[14]. Anglano et al. (2017) revealed the unique
data structure of Telegram and the possibility of recovering deleted chat data [7]. Giyoon et al. (2020)
analyzed Telegram X and BBM Enterprise in mobile and desktop environments [[16], which uncovered
the decryption method for each app, and confirmed the possibility of decryption key recovery through
memory analysis. In addition, studies on various apps, including Kik, Line, TikTok, and BiP, were
conducted [[17] [[1O] [L15] [4]].

1.3 Our Contribution

In this paper, we provide the forensic analysis results for ClevNote and Samsung Notes, which are note-
taking apps with security features applied. Our contributions are summarized below.

i The security features of the note-taking apps are supported in various forms. Its features may be
provided independently or in combination. We identified the supportable security features of the
note-taking app and generalized the results of our reverse engineering analysis of the operation
principle and process of the security features.

ii We analyzed ClevNote and Samsung Notes based on our generalized security features. Each app
provides access control and data encryption as security features, but the method of providing the
features is different. To clarify these methods, we used reverse engineering to reveal the operation
process for this security feature.

iii Although the security feature analysis is completed, the artifact analysis is essential to use as
evidence. We categorized the significant artifacts of ClevNote and Samsung Notes so that the
analysis results can be used efficiently.

64

Note-taking apps with security features Myungseo, Soram, and Jongsung

We analyzed each app in 5 categories: security features, data extration, password verification, data
decryption, and artifact identification. Table [T|summarizes our analysis results for both apps.

Table 1: Summary of results for ClevNote and Samsung Notes

Category ClevNote Samsung Notes Remark
Security feature Service lock, data encryption Note lock, data encryption Lock password does affect data encryption
. . . Android backup: Extract entire app data
D: r A k S h k .
ata extraction ndroid backup Samsung Smart Switch backup Smart Switch: Extract only the sdoc.db file
Password verification Self-password verification Authenticator verification
Data decryption Decryption base on fixed keys Decryption based on a combination ClevNote: Use hard-coded key

of three DevicelDs in /shared_prefs/NotesDeviceInfo.xml ~ Samsung Notes: Use a private key stored in the Android KeyStore
Artifacts identification ~ Classify artifacts in esmemo.db Classify artifacts in sdoc.db

2 Security Features of a Note-Taking Apps

The note-taking app may be provided with security features to protect memos. These functions can be
provided in various forms but are typically performed based on encryption. Identifying security features
and analyzing the data encryption method are essential to obtain protected memos. In this section, we
describe access control and data encryption, which are the types of security features supported by note-
taking apps. Figure|l|illustrates the security features applied to note-taking apps.

app service area

..

N/

|O
O
o]
O
|O
O

)

T

(@]
o
o
(@]

enter password

|O

< |l
o)

I

I

@: access control [%: data encryption

Figure 1: Security features applied to note-taking apps

Both security features can be applied alone or in duplicate. For example, if only access control is
set, the protected notes can be accessed by password verification. However, the raw data of the notes
remain in plaintext. Conversely, if only data encryption is set, the raw data of the protected notes remain
in ciphertext, but the notes can be accessed without additional verification of the service. Notes can
apply control access and store raw data as ciphertext by overlapping the two security features. In the last
case, a key for encrypting the raw data is generated based on a password for access control. That is, the
password for access control is used to encrypt raw data.

Access control. Access control, which allows only authorized users access to the service, usually
determines whether to provide the service by authenticating the user-entered password. Access control
of the note-taking apps can be provided in the form of a service lock and note lock. A service lock is
activated at the perimeter of the app service to determine whether to provide the service based on the
user-entered password. Similarly, the note lock locks specific notes based on a user-entered password.

65

Note-taking apps with security features Myungseo, Soram, and Jongsung

Password-related data exist as app data to verify external the user-entered password and are stored dif-
ferently depending on the password verification method. Figure [2]represents the verification method for
a user-entered password.

app data

Case 1. Compare

S EEX3
> == < — B
--]

@ Cryptographic algorithm(user-entered password) Encryption data

enter password Compare

P cEEE |

Case 2. Decryption oee]

KDF(user-entered password) Encryption data Authenticator

v
1

Figure 2: Verification methods for user-entered password

Password verification can be divided into two cases: self-password verification and authenticator ver-
ification. Self-password verification stores the correct password converted by a cryptographic algorithm
in the app data. Afterward, this value is compared with the value converted from the user-entered pass-
word using the same cryptographic algorithm to perform verification. Unlike self-password verification,
the authenticator verification does not store the password itself but stores an authenticator that can be
verified based on a password. As an example of authenticator verification, the app converts the authenti-
cator using an encryption key and cryptographic algorithm generated based on the correct password and
stores it in the app data. Afterward, verification is performed by comparing whether the value obtained
by decrypting the authenticator data encrypted with the decryption key generated based on the user-input
password is the same as the authenticator.

Data encryption. Data encryption for data protection uses hash functions, such as the MD5 and
SHA series, or block ciphers, such as DES and AES. The hash function, which is a one-way function,
cannot restore the original data using the hash value. Due to the cryptographic characteristics of the hash
function, the hash function can be used for password protection or verification. For example, the app
stores the hash value for the correct password, and password verification can be performed by comparing
the hash value of the externally entered password with the stored hash value. The block cipher encrypts
or decrypts data in combination with the mode of operations, such as electronic codebook (ECB), cipher
block chaining (CBC), cipher feedback (CFB), output feedback (OFB), and Counter (CTR). The block
cipher combined with the mode of operation obtains encrypted data or decrypted data as output accord-
ing to the purpose of encryption or decryption by entering target data, secret key, and IV (if needed, e.g.,
in the CBC or CFB or OFB or CTR mode of operation). The secret key can be obtained using the key
derivation function (KDF) using a hardcoded fixed value or user-entered password as an input parameter.
In the data cryptographic process, secret key generation and cryptographic execution are a flow. There-
fore, to decrypt encrypted data, it is necessary to simultaneously identify the KDF used to generate the
secret key and cryptographic algorithm used to perform the data encryption.

66

Note-taking apps with security features Myungseo, Soram, and Jongsung

3 Analysis of note-taking apps

In this section, we describe the results of our analysis of the note-taking apps ClevNote and Samsung
Notes in the Android operating system. As of December 2020, we analyzed the latest versions of
ClevNote (version 2.21.0) and Samsung Notes (version 4.1.03.1). We identified the security features
of each app and analyzed the method of extracting the app data and decrypting the encrypted data. To
use the app data, it is essential to first extract the data from a smartphone. A typical method of extracting
app data is to access the app data of a rooted smartphone directly. However, in terms of forensics, where
integrity preservation is a significant issue, the technique of extracting data without additional measures,
such as rooting, is most important. The data extraction method for our analysis target app is different, but
data extraction is possible without rooting. We performed reverse engineering to reveal the decryption
method for each app. We performed static and dynamic analyses using various analytical tools. We used
the JEB Decompiler [3] to perform a static analysis of the app file. The app file *.apk contains the byte-
code, library, and resource files. In the bytecode, the names of the Java object, functions, and variables
are obfuscated by replacing them with letters, but the function names called by the library are preserved.
We used IDA Pro [2] to perform a dynamic analysis for debugging to check the changes in the variables
running the app.

3.1 ClevNote

ClevNote, which has more than 5 million downloads based on the Google Play store, is a note-taking
app that manages notes for various purposes, such as bank account numbers, checklists, site IDs, and
plaintext memos. In this section, we describe the results of our analysis of ClevNote.

Security features. ClevNote provides access control to app services and encryption of app data as
security features. Access control of ClevNote is performed by verifying a four-digit password. The user
setting activates this feature, and the number of attempts for password verification has no limit. ClevNote
stores password-related information in the com.dencreak.esmemo_preference.xml file in the shared_prefs
folder when user sets a password. Figure [3|lists the information related to the password for the service
lock on ClevNote. If the value of ‘ispassword’ is true, the service lock is set. Conversely, if the value is
false, the service lock is not set.

i $X T 005N P Y

& ClevNote i I

Enter passcode

<?xml version="1.0" encoding="UTF-8" standalone="true"?>
- <map>
WNCwwNCx3aHlyZWQsMDUsMTg= </string>

M,
<boolean name="ispassword" value="true"/>
<string name="fbconfig and init check continuously">false</string>
<string name="EncryptMainPass">3CYR5qTf+sIkoRUYfVpOOA== </string>
<string name="IARPATZPS_ITHD">ZmFsc2U= </string>

<string name="IGML_and_inter_tmedit_gapmin">1585880348574</string>
<string name="fbconfig_and_rewarded_durationmin">1000</string>
<string name="IAZLASPTS_TPBR">dHJ1ZQ== </string>

<string name="App_Execute_First">1585880329135</string>

<string name="fbconfig_and_menu_forceopenday">7 / 60</string>

7 3 9 <string name="chl_ctadd">2</string>

/shared_prefs/com.dencreak.esmemo_preference.xml

Service lock of ClevNote

Figure 3: Information related to the password for service lock on ClevNote
App data encryption, another security feature of ClevNote, targets the service lock password and note

content. The encrypted service lock password is stored as a value of the attribute “EncryptMainPass,” as
depicted in Figure 3] The note content is stored in the esmemo.db file, and the specific column data for

67

Note-taking apps with security features Myungseo, Soram, and Jongsung

each table are encrypted. Table [2| summarizes the columns in which encrypted notes for ClevNote are
stored.

Table 2: Classification of encrypted column app data on ClevNote

Package name File path Table name Column name
com.dencreak.esmemo databases\esmemo.db accountdatum a_name, a_bank, a_number, a_holder, a_memo, a_protect
birthdaydatum b_name, b_memo, b_protect
cartdatum c_name, c_memo, c_protect
folderdatum f_name, f_protect
siteiddatum s_name, s_address, s_siteid, s_memo, s_protect
textmemodatum t_subject, t_body, t_protect

Data extraction. Regarding data extraction, the app data for ClevNote can be extracted using An-
droid backup [1]]. We confirmed that the value of android:allowBackup, which is a backup-related setting,
is true in the AndroidManifest.xml file that contains various configuration information for ClevNote. The
android:allowBackup value is true or false, and the data extraction using the Android backup is possible
only if the value is true. We extracted the app data for ClevNote by performing an Android backup
through the following adb command.

* adb command: adb backup com.dencreak.esmemo -f backup.esmemo.ab

The Android backup file is packed in its own way, so unpacking is essential to obtain the data. We
unpacked this file using the Android backup extractor developed by Nikolay Elenkov [12]. We use
Android backup to extract all the data in the app package, including databases, settings, and resource
files.

Password verification. Concerning password verification, the service lock provided by ClevNote
uses self-verification performed using an encrypted service lock password stored in the app data. If
the user-input password is the same as the decrypted value of the encrypted service lock password,
verification is completed. The encrypted service lock password is stored as the value of the attribute
“EncryptMainPass” in com.dencreak.esmemo_preference.xml. The decryption method of the encrypted
service lock password is shown in Eq. (I):

P = AES256-CBC-DECRYPT(C,MK,IV). (1)

In Eq. (1), the parameters C, MK, and IV of AES256-CBC-DECRYPT use an encrypted service lock
password, a 32-byte fixed value FKj, and a 16-byte fixed value fIV;, respectively. In addition, F K| and
f1Vy are hardcoded values in the ClevNote source code, which we revealed through the reverse engi-
neering analysis. As a result of this equation, we can obtain the service lock password. The decryption
of the service lock password that is not involved in other data encryption on ClevNote may not be the
main consideration. However, this password, which has the advantage of being relatively easy to obtain,
can be very useful in social engineering aspects in other application environments. For example, this
password could be used by other apps or could be a clue to password recovery.

Data decryption. In this subsection, we describe how to decrypt note content, which is the en-
cryption target of ClevNote. We classified the encrypted notes as presented in Table 2] in the previous
section. The encrypted data are stored in column units, and the column name uses the first letter of the
table as a separator. For example, the column names of the account table are defined as a_name, a_bank,
and a_memo with ‘a_’ as a separator. The encrypted note content is included in the columns, except for
*_protect, among the columns we classified in Table 2] The character * is a separator. The *_protect
column data are used to obtain a decryption key DK to decrypt the encrypted column data in the same
row. We explain the decryption of the encrypted column data using *_protect. The decryption process

68

Note-taking apps with security features Myungseo, Soram, and Jongsung

consists of obtaining the decryption key DK and decrypting the encrypted data. Decrypt *_protect is first
necessary to obtain the decryption key DK. Its decryption is possible using Eq. (I). The parameters C,
MK, and IV of AES256-CBC-DECRYPT use a value of the *_protect column, a 32-byte fixed value F K5,
and a 16 bytes fixed value f1V), respectively. The plaintext P is output as a string in the form dy|d |...|d};
0<i<11,0<d; £99). We separate the integers from this string sequentially and assign them to the
array arr of size 12. Then, we input the array arr in the decryption key acquisition function getKey to
obtain the decryption key DK. Algorithm I|represents the detailed process of the getKey function.

Algorithm 1: ClevNote decryption key acquisition algorithm

1 Function getKey (arr);
Input : Array arr of integers of size 12
Output: Decryption key DK
if arr[3] mod 2 /=0 then
if arr[11] mod 2 == O then
‘ R = arr[6];
else
‘ R = arr[5];
end
else if arr[11] mod 2 == 0 then
‘ R=arr[9];
else
| R=arr[7];
end
EncryptedDK = Base64Decoding(KeyArr[R]);
DK = AES256-CBC-Decrypt(C(=EncryptedDK), MK(=F K3), IV (=f1V}))
Return(DK);

'-T- IR - N Y S I

L <
0N AW N =D

In Algorithm |1} R is determined using a conditional expression with the array arr (0 < R < 99).
Moreover, R indicates the index of a value to be used as a decryption key in the array KeyArr in which
100 encrypted key candidates are stored. In addition, KeyArr|i] is a base64-encoded value of encrypted
decryption key candidates (0 < i < 99). We obtain EncryptedDK, which is the value of base64 decoded
KeyArr[R], and then decrypt it using AES256-CBC-DECRYPT. Except for changing ciphertext C to
EncryptedDK, the parameters of AES256-CBC-DECRYPT are the same as those of the decryption of
*_protect. Finally, we decrypted the encrypted column data of the same row using the obtained decryption
key DK. Table 3] summarizes the decryption methods of the encrypted data on ClevNote.

Table 3: Summary of decryption targets and decryption methods on ClevNote
Decryption target Decryption Algorithm Input parameters Output parameter
C: Decryption target

V=Base64Decoding(V)

The value of EncryptMainPass P=AES256-CBC-DECRYPT(C, MK, IV) MK: FK; P= service lock password
1V . fIV;
V': Decryption target

*_protect column data MK: FK> P= string to find the index R of KeyArr
1V . fIVy
V: Decryption target

KeyArr[R) MK: FK> P= the decryption key DK
1v: fIV,

Encrypted column data in the same row V: Decryption target

s . MK: DK P= decrypted column data
as the corresponding *_protect column data s fIv,

69

Note-taking apps with security features Myungseo, Soram, and Jongsung

Artifact Identification. ClevNote manages memo data in the esmemo.db file, and stores the data
according to the supported memo types such as account, birthday, checklist, site ID, and text memo in
the table units. Encrypted note content is essential to be decrypted for use as digital evidence. Table 4]
categorizes the major artifacts based on the data in the esmemo.db file that we decrypted.

Table 4: Artifacts in esmemo.db of ClevNote

Table Column Content
accountdatum a_name Account name
a_bank Bank name
a_number Account number
a_holder Account holder
a_memo Account related notes
birthdaydatum b_name Birthday person’s name
b_memo Birthday related notes
cartdatum c_name Checklist item
c_status Checklist status (true or false)
c_memo Checklist related notes
siteiddatum s_name Site name
s_address Site address
s_siteid Site ID
S_memo Site ID related notes
textmemodatum t_subject Title for the note
t_body Note content
t_edttime Note-taking time

3.2 Samsung Notes

Samsung Notes can save available text, pictures, drawings, voice records, and files. It manages the notes
with each directory made by the user. It can also synchronize with other devices and share through SNS
applications. The latest version is 4.1.03.1, and the number of downloads is over 500 million based on
the Google Play store.

Security features. Samsung Notes provides a note lock as shown in Figure 4, and the data are
encrypted. The lock is available only if logging in using a Samsung account. A password for the lock
can be 4 to 16 digits long and include numbers, letters, and special characters. The password is only used
to verify a user and is not related to data encryption.

We identified whether the memo is locked or not through the flag as shown in Figure[5] The flag is
saved in the isLock and the ContentSecureVersion column of the sdoc table in sdoc.db. If the flag is set
to 1, the memo is locked. When the flag is set to 0, the memo is unlocked.

Table [5 summarizes the columns in which encrypted notes for Samsung Notes are stored. Samsung
Notes encrypts data in the content, strippedContent, and displayContent columns of the sdoc table in the
sdoc.db file.

Data extraction. Unlike ClevNote, Samsung Notes cannot extract app data using Android backup
because the android:allowBackup value is false. If data extraction using Android backup is not possible,
the only way to directly access app data located in the data partition is to obtain administrator permission
through rooting. Compared to rooting, which cannot avoid data tampering, extracting data from unrooted

70

Note-taking apps with security features

Create password

Myungseo, Soram, and Jongsung

1 selected All notes
Enter a password with at least 4
characters to protect your notes.
o = Q
All
)
Hello Hello
o
Unlock Create password Lock
Can't enter more than 16 characters.
= a < il c
Move Lock Share Delete
| @] < i (@] <

Figure 4: Information related to the password for service lock on Samsung Notes

isLock | isSaving | contentSecureVersion
EEIN EE e
1 0) 1
0f 0) 1)

Figure 5: Lock flag depending on whether lock or not

EIOIE(T): | sdoc v & u & I 2= =WAM EED

B e B
-id UUID accountName title content displayContent strippedContent
|EE EE] ER ER
1 1 469761+ ksl€ Hello

6 ®

createdAt lastModifiedAt

el [Zel

EE =

filePath

EENEE]

1607514+ 1607514931876 /data/user/0/--
1607584+ 1607584290289 /data/user/0/

2 2469761 kslt Hello_unlockjabcd abcd

Table 5: Classification of encrypted column app data on Samsung Notes
Package name File path Table name Column name
com.samsung.android.app.note databases\sdoc.db sdoc content, strippedContent, displayContent

Android devices is more forensically effective. For this reason, we used Samsung Smart Switch as an
app data extraction method. Samsung Smart Switch is a dedicated program for data backup of Samsung
smartphone. Samsung Smart Switch back up contacts, text messages, call logs, multimedia data, settings,
and app data as well as Samsung Notes as separate item. Backup items excluding multimedia data are
encrypted, but we were able to decrypt them using the tool developed in our previous study [18]. This
method cannot extract all data in the app package like Android backup, but it is possible to extract the
sdoc.db file containing the notes.

Password Verification. The password is required when the user locks the notes, and it is used to
determine the access authentication. It is unique and applies to all notes. When creating a password, the
encrypted password and salt are stored in com.samsung.android.app.notes_preferences.xml and User-
AuthInfo.xml in the shared_prefs as shown in Figure [6] The encrypted password is saved as element
contents with the element name NotesPasswordHash _enc, and the encrypted salt is saved as element
contents with the element name NotesPasswordSalt_enc.

The iteration count for PBKDF2withHMACSHAI1 is 4,000, and the key length is 256 bytes. The
Android KeyStore manages the key for RSA/ECB/OAEPWithSHA-256 AndMGF1Padding. Each value

71

Note-taking apps with security features Myungseo, Soram, and Jongsung

<?xml version="1.0" encoding="UTF-8" standalone="true"?>
- <map>
<int name="UNLOCK_TRY_COUNT" value="0"/>
<string

e -I"PrefPasswordEnc:xetedHashBacku2'|>06355d61391393dfb4abce9dc578b26
<boolean name="Availablelris value= true/>

<string name="local_password_owner">rcgqq4iqdg</string>

<string name="PrefPasswordOwnerBackup">rcgqq4igdg</string>
<string name="PrefPasswordSaltBackup"/>

<string name="DEVICE_BUILD_MANUFACTURER">Samsung</string>
<long name="BlockEndTime" value="0"/>

<string

—aeaae—l'PrefPasswordEncryptedSaltBackup"14fed86965690fe4c7cc4baeb502f73229
<long name= 1iometricMetho ockEndTime" value="0"/>

<boolean name="AvailableFingerprint_SEC" value="true"/>
<string name="PrefPasswordHadhBackup"/>
</map=>

/shared_prefs/com.samsung.android.app.notes_preferences.xml

<?xml version="1.0" encoding="UTF-8" standalone="true"?>
<map>
<string

r.umg—ll NotesPasswordHash end’>06355d61391393dfb4abce9dc578b26'

<string

'NotesPasswordSalt_enc"} 4fed86965690fe4c7cc4baeb502f73229

</map>

/shared_prefs/UserAuthinfo.xml

Figure 6: The factors for password verification

saved in the XML file is derived as shown in Eq.(2):

PBEkey = PBKDF2withHMACSHA 1 (password, salt, iteration, keylength),
NotesPasswordHash_enc = RSA/JECB/OAEPWithSHA-256 AndMGF1Padding(key, PBEkey), (2)
NotesPasswordSalt_enc = RSA/ECB/OAEPWithSHA-256 AndMGF1Padding(key, salt).

The app uses the information above to verify the password when the user accesses the note. The first
step is decrypting NotesPasswordHash_enc and NotesPasswordSalt_enc to obtain NotesPasswordHash
and NotesPasswordSalt. The next step is deriving the PBEkey with the user-enter password and Notes-
PasswordSalt. Finally, if NotesPasswordSalt and PBEkey are equal, verification is successful, and it is
available to access the note.

Data decryption. The decryption method for encrypted note data is the same as Eq. (I)) used in
ClevNote. The IV is 16 bytes and is fixed at 0. The 32-byte MK for data decryption can be derived the
three items of information in NotesDevicelnfo.xml in /shared_prefs/ folder. Each piece of information is
described in Figure

<?xml version="1.0" encoding="UTF-8" standalone="true"?>
- <map>
<string names
<string names
<string names3
</map>

"NotesDeviceID#3">epv7uk2m530ebezt<|string>
8990-f726e60a59a0 4/string>
>47999d7a8c1b063c<|string>

"NotesDeviceID#2"

/shared_prefs/NotesDevicelnfo.xml

Figure 7: Information for generating encryption key

This information is set up when the user creates a note for the first time. NotesDevicelD#1 is a
randomly chosen UUID. NotesDevicelD#2 is an Android ID. NotesDeviceID#3 is a randomly chosen

72

Note-taking apps with security features Myungseo, Soram, and Jongsung

16-byte string. This decryption method can decrypt the encrypted column data that we identified in
Table [5] Table [6] summarizes the information in which the encrypted notes and password for Samsung
Notes are stored.

Table 6: Summary of decryption targets and decryption methods on Samsung Notes

Decryption target Decryption Algorithm Input parameters Output parameter
C: Decryption target _ .
content, strippedContent P=AES256-CBC-DECRYPT(C, MK, IV) MK: key P=Note data

V-0 (String, excluded new line characters)

displayContent . P=Note da.ta
(BLOB, included new line characters)
C=Decryption target
MK=KeyStore privatekey
C=Decryption target

MK=KeyStore privatekey

NotesPasswordHash_enc, P=RSA/ECB/OAEPwithSHA-256andMGF1(C,MK) P = NotesPassworHash

NotessPasswordSalt_enc ~ P=RSA/ECB/OAEPwithSHA-256andMGF1(C,MK) P = NotesPasswordSalt

Artifact Identification. Table[7]lists the artifacts in sdoc.db of Samsung Notes. Most of the data are
contained in sdoc and the category_tree table. When a note is locked, only the content is encrypted, not
the title. The content is saved in the content, displayContent, and stippedContent columns. The content
and strippedContent columns the save same data and consist of a string excluding a new line character.
The displayContent is configured as Binary large object (BLOB) including a new line character. The
contentUUID is filled if the memo contains image, voice recordings, or audio files. The notes can be
classified by creating categories. The UUID per category is saved in the categoryUUID column in the
sdoc table and the UUID column in the category_tree table. The category name is saved in UUID column
in the category_tree table. Therefore, we can determine the category name in the displayName column
in the category_tree by matching the UUID and categoryUUID columns. The isDeleted column contains
the flag concerning whether the note is deleted. Even if the note is deleted, only the flag changes, and the
data appear in the database. The flag in the sdoc table is set to 1 when the note is deleted, but the flag in
the category_tree is set to 2 when the category is deleted. The create time and last modified time of the
note and category are saved in the creatAt and lastModifiedAt columns, respectively.

4 Discussion and Research Challenges

In this paper, we generalized the security features of note-taking apps and performed digital forensic
analysis of ClevNote and Samsung Notes as a case study. Note-taking apps implement security features
such as access control and data encryption into their own scheme. Since security features interfere with
the use of app data in digital forensic, detailed analysis of security schemes for each app is required.
Even if the app analysis is sufficient, it may not be practically utilized in digital forensics unless data
collection is preceded. Therefore, we considered extraction and analysis for each app. ClevNote can
extract all app data using Android backup. This means that our app analysis results can be sufficiently
utilized. For example, among the extracted files, com.dencreak.esmemo_preference.xml can be used
for service lock password recovery. On the other hand, since Samsung Notes cannot extract data using
Android backup, there are restrictions on using the results of our app analysis. Samsung Smart Switch
extracts only the sdoc.db file containing crucial artifacts from the Samsung Notes app data. This means
that the NotesDevicelnfo.xml file, which is essential for decryption of encrypted locked notes, cannot
be obtained. Although the analysis results of Samsung Notes may not be able to be used for normal
smartphones, there is a possibility of using them in digital forensic investigations that can face various
situations. For example, a rooted smartphone that can access app data can extract data necessary for
analysis from the app data of Samsung Note. However, these samples are only a few. Therefore, research

73

Note-taking apps with security features Myungseo, Soram, and Jongsung

Table 7: Artifacts in sdoc.db of Samsung Notes

Table Column Content
sdoc accountName Samsung account ID
UUID UUID per note
categoryUUID UUID per Category
title Note title(String)
displayTitle Note title(BLOB data)
content Note content(String)
strippedContent Note content(String)
displayContent Note content(BLOB data)
size Size of note
create At Note created time
lastModified At: Last Note modified time
isLock Flag (Lock: 1, Unlock: 0)
ContentSecureVersion Flag (Lock: 1, Unlock: 0)
isDeleted Flag (Deleted: 2, Not deleted: 0)
recycle_time_bin_moved Note deleted time
category_tree UUID UUID per directory
displayName Directory name
create At Category created time
lastModified At Category last modified time
isDeleted Flag (Deleted: 1, Not deleted: 0)

on data extraction from normal smartphones is indispensable in order to more effectively use digital
forensics for apps that cannot use Android backup, such as Samsung Note.

5 Conclusion

Smartphone apps are important in digital forensic investigations because they can be used to obtain
critical evidence. However, some apps apply security features to protect their data. Therefore, it is
necessary to analyze various apps to which security features are applied for digital forensic investigation.
In this paper, we generalized the security features for note-taking apps and analyzed the latest versions
of ClevNote and Samsung Notes as a case study. We believe that our work enables efficient analysis of
smartphone backup data and will significantly affect future forensic investigations.

Acknowledgments

This work was supported by Institute for Information & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIT) (No.2017-0-00520, Development of SCR-Friendly Sym-
metric Key Cryptosystem and Its Application Modes).

References

[1] Android backup manager. https://developer.android.com/reference/android/app/backup/
BackupManager,[Online; Accessed on December 1, 2020].

[2] IDA pro. https://www.hex-rays.com/products/ida/index.shtml [Online; Accessed on December
1, 2020].

74

https://developer.android.com/reference/android/app/backup/BackupManager
https://developer.android.com/reference/android/app/backup/BackupManager
https://www.hex-rays.com/products/ida/index.shtml

Note-taking apps with security features Myungseo, Soram, and Jongsung

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Jeb decompiler by pnf software. https://www.pnfsoftware.com [Online; Accessed on December 1,
2020].

E. Akbal, I. Baloglu, T. Tuncer, and S. Dogan. Forensic analysis of bip messenger on android smartphones.
Australian Journal of Forensic Sciences, 52(5):590-609, September 2020.

Anglano and Cosimo. Forensic analysis of whatsapp messenger on android smartphones. Digital Investiga-
tion, 11(3):201-213, September 2014.

C. Anglano, M. Canonico, and M. Guazzone. Forensic analysis of the chatsecure instant messaging applica-
tion on android smartphones. Digital investigation, 19:44-59, December 2016.

C. Anglano, M. Canonico, and M. Guazzone. Forensic analysis of telegram messenger on android smart-
phones. Digital Investigation, 23:31-49, December 2017.

Awan and F. Ali. Forensic examination of social networking applications on smartphones. In Proc. of the

2015 Conference on information assurance and cyber security (CIACS’15), Rawalpindi, Pakistan, pages
36-43. IEEE, December 2015.

M. B. Azhar and T. E. A. Barton. Forensic analysis of secure ephemeral messaging applications on an-
droid platforms. In Proc. of the 11th International Conference on Global Security, Safety and Sustainability
(IGCS3’17), London, UK, volume 630 of Communications in Computer and Information Science, pages
27-41. Springer, Cham, January 2017.

M. S. Chang and C. Y. Chang. Forensic analysis of line messenger on android. Journal of Computers,
29(1):11-20, February 2018.

J. Choi, J. Yu, S. Hyun, and H. Kim. Digital forensic analysis of encrypted database files in instant messaging
applications on windows operating systems: Case study with kakaotalk, nateon and qq messenger. Digital
Investigation, 28:50-59, April 2019.

N. Elenkov. Android backup extractor. https://github.com/nelenkov/android-backup-extractor
[Online; Accessed on December 1, 2020].

T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk, and T. Holz. How secure is textsecure? In Proc. of
the 2016 IEEE European Symposium on Security and Privacy (EuroS&P’16), Saarbrucken, Germany, pages
457-472. IEEE, March 2016.

J. Gregorio, A. Gardel, and B. Alarcos. Forensic analysis of telegram messenger for windows phone. Digital
Investigation, 22:88-106, September 2017.

N. H. Khoa, P. T. Duy, H. Do Hoang, V.-H. Pham, et al. Forensic analysis of tiktok application to seek
digital artifacts on android smartphone. In Proc. of the RIVF International Conference on Computing and
Communication Technologies (RIVF’20), Ho Chi Minh, Vietnam, pages 1-5. IEEE, July 2020.

G. Kim, M. Park, S. Lee, Y. Park, I. Lee, and J. Kim. A study on the decryption methods of telegram x and
bbm-enterprise databases in mobile and pc. Forensic Science International: Digital Investigation, 35:1-12,
December 2020.

K. M. Ovens and G. Morison. Forensic analysis of kik messenger on ios devices. Digital Investigation,
17:40-52, June 2016.

M. Park, O. Yi, and J. Kim. A methodology for the decryption of encrypted smartphone backup data on
android platform: A case study on the latest samsung smartphone backup system. Forensic Science Interna-
tional: Digital Investigation, 35, December 2020.

K. Rathi, U. Karabiyik, T. Aderibigbe, and H. Chi. Forensic analysis of encrypted instant messaging applica-
tions on android. In Proc. of the 6th International Symposium on Digital Forensic and Security (ISDFS’18),
Antalya, Turkey, pages 1-6. IEEE, May 2018.

G. B. Satrya, P. T. Daely, and M. A. Nugroho. Digital forensic analysis of telegram messenger on android
devices. In Proc. of the 2016 International Conference on Information and Communication Technology and
Systems (ICTS’16), Surabaya, Indonesia, pages 1-7. IEEE, October 2016.

G. B. Satrya, P. T. Daely, and S. Y. Shin. Android forensics analysis: Private chat on social messenger. In
Proc. of the 8th International Conference on Ubiquitous and Future Networks (ICUFN’16), Vienna, Austria,
pages 430—-435. IEEE, July 2016.

M. Sudozai, S. Saleem, W. J. Buchanan, N. Habib, and H. Zia. Forensic study of imo call and chat app.
Digital investigation, 25:5-23, June 2018.

75

https://www.pnfsoftware.com
https://github.com/nelenkov/android-backup-extractor

Note-taking apps with security features Myungseo, Soram, and Jongsung

Author Biography

Myungseo Park received his Bachelor degree in Mathematics and his Master de-
gree in Financial Information Security from Kookmin university, Korea in 2013 and
2015, respectively. He had been a Researcher of National Security Research Institute
(NSR), Korea, from December 2014 till February 2017, He has been a PhD candi-
date of Dept. of Financial Information Security at Kookmin University, Korea, since
March 2017. His research interests are symmetric cryptography and digital foren-
sic.

Soram Kim received her Bachelor degree in Mathematics and Master degrees in Fi-
nancial Information Security from Kookmin university, Korea in 2016 and 2018, re-
spectively. She is currently studying for Doctor’s degree in Dept. of Financial Infor-
mation Security at Kookmin University, Korea, since March 2018. She is a researcher
in the DF&C (Digital Forensic & Cryptanalysis) Laboratory. Her research interests

b include information security and digital forensics.

Jongsung Kim received his Bachelor and Master degrees in Mathematics from Korea
university, Korea in 2000 and 2002, respectively. He received double Doctoral de-
grees completed in November 2006 and February 2007 at the ESAT/COSIC group of
Katholieke Universiteit Leuven and at Engineering in Information Security of Korea
University, respectively. He had been a Research Professor of Center for Informa-
tion Security Technologies (CIST) at Korea University, Korea, from March 2007 till
August 2009, and an assistant professor of department of e-business at Kyungnam

University, Korea, from September 2009 till February 2013. Dr. Kim has been an associate professor of
Dept. of Information Security, Cryptology, and Mathematics / Dept. of Financial Information Security at
Kookmin University, Korea, from March 2013 till August 2020. He has been a full professor at the same
departments since September 2020. Dr. Kim has published more than 60 research papers in international
journals, conferences and books. His research interests include security issues, cryptography, and digital

forensics.

76

	Introduction
	Background
	Related Work
	Our Contribution

	Security Features of a Note-Taking Apps
	Analysis of note-taking apps
	ClevNote
	Samsung Notes

	Discussion and Research Challenges
	Conclusion

