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Abstract 

Cardiac magnetic resonance (CMR) represents the 

gold standard for the diagnosis of cardiovascular 

diseases. We developed a deep learning approach for the 

automatic detection and segmentation of left and right 

ventricles and myocardium (Myo) on short-axis cine 

CMR images, including all clinically relevant slices. A 

dataset of 210 studies (3 pathology groups) was 

considered: Images were acquired and manually 

segmented (gold standard, GS) at Centro Cardiologico 

Monzino (Milan, Italy). Automatic segmentation was 

performed with a U-Net inspired architecture were two 

loss function were used: weighted cross entropy (WCE) 

and its combination with the Dice loss function 

(WCE+Dice). Two experiments were conducted: A) all 

the slices were included; ii) slices where the Myo did not 

completely surrounded the LV were removed. To evaluate 

the clinical relevance of our approach, the predicted 

segmentation was reviewed and corrected by an expert 

physician. The two loss function performed similarly, with 

slightly better results for WCE, resulting in a strong 

correlation with the manually-adjusted segmentation. 
 

 

1. Introduction 

Cardiovascular disease is one the principal causes of 

death in the word. Cardiac imaging is used to estimate 

structural and functional cardiac parameters for both 

diagnosis and disease evaluation. Cardiac Magnetic 

Resonance (CMR) is the reference technique for 

estimating parameters such as left (LV) and right (RV) 

ventricular end-diastolic (EDV) and end-systolic (ESV) 

volumes, stroke volume (SV), ejection fraction (EF), and 

mass [1], as a result of the endocardial and epicardial 

contour segmentation process. Usually, this operation is 

manually performed, resulting in a tedious, time 

consuming and error prone analysis. For this reason, in 

the last decade several approaches to automatize this 

process were investigated, lately with a particular interest 

for machine learning (ML) algorithms, that are emerging 

as the new state of the art [2]. To possibly compare 

different methods in terms of performance, over the past 

years, different databases of CMR images were made 

available through many challenges [3], but generally they 

do not include the most apical and basal slices, or they are 

limited to only one of the two ventricles.  

In this paper we propose a dense fully convolutional 

neural network (FCN) architecture, for semantic 

segmentation of LV, RV and LV myocardium (Myo) on 

short-axis (SAX) cine CMR images, applied to all the 

slices relevant in clinical practice, including the most 

basal and apical ones. 

 

2. Method 

2.1. Patient population 

A retrospectively selected dataset consisting of SAX 

cine (steady-state free-precession) CMR images (size 

512x512 pixels, in-plane pixel resolution 0.59-0.70 mm) 

acquired (GE, 1.5 T) from 210 patients at Centro 

Cardiologico Monzino (Milan, Italy), was analysed. For 

each patient, the gold standard (GS) manual tracings of 

the LV and RV endocardium and epicardium at the end-

diastolic (ED) and end-systolic (ES) frames, obtained by 

an expert cardiologist, were available. The dataset 

includes patients of three medical groups, equally 

distributed, namely: hypertrophic cardiomyopathy 

(HCM), dilated cardiomyopathy (DCM) and ventricular 

arrhythmias (VA). 
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2.2. Network architecture 

The proposed network architecture was inspired from 

U-Net [4], one of the most successful FCN for medical 

segmentation tasks, which has symmetric encoder and 

decoder and skip connections between corresponding 

layers in the encoder and decoder. Each step of the down-

sampling path consists of two 3x3 convolutions with 

batch normalization and rectified linear unit (ReLU) as 

activation function. This sequence is called convolutional 

block (conv block). Each block is followed by a max-

pooling operation with 2x2 size and stride of 2. In this 

paper, the up-sampling path was modified, using 

transposed convolution instead of up-convolution [5] and 

reducing the number of filters in the transposed 

convolution layer, with a number of feature maps equal to 

the number of classes. As reported in [6], the full 

complexity of the up-sampling path is not necessary, with 

benefits in term of learnable parameters reduction. A 

series of 4x4 transposed convolution with stride 2 and 

conv block were repeated at each layer. A final 1x1 

convolution layer with softmax activation function is used 

to generate the final segmentation maps. Each conv block 

had a different number of filters, from 48 (first layer) to 

768 (bottom layer). Skip connections were modified 

incorporating dense blocks [7], to alleviate the semantic 

gap [10] between the up- and down-sampling path. Each 

layer of the dense block consisted of 3x3 convolutions 

with ReLU and batch normalization. Each layer 

concatenated its own features maps with the feature maps 

of all preceding layers and transferred its own feature 

maps to all following, adding and preserving information.  

 

2.3. Pre-processing and network setting   

    Images were cropped and rescaled to 176x176 pixels 

size, voxel were normalized in the [0, 1] range. In 

addition, images were rotated. In cine CMR images, 

anatomical structures of interest are generally highly 

imbalanced, posing challenges for FCN training. To 

overcome this problem, two different loss functions were 

tested: the weighted cross-entropy [4], (WCE) to manage 

the class imbalance between the background and the 

foreground classes, and a combination of WCE with 𝐷𝑖𝑐𝑒 

loss (WCE+Dice). The 𝐷𝑖𝑐𝑒 loss can be calculated as: 

𝐷𝑖𝑐𝑒 𝑙𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒 (1) 

where the 𝐷𝑖𝑐𝑒 calculates the overlap between 

foreground regions: 

𝐷𝑖𝑐𝑒 =
2 ∑ 𝑝ℎ,𝑤𝑡ℎ,𝑤

∑ 𝑝ℎ,𝑤+ ∑ 𝑡ℎ,𝑤
  (2) 

where ℎ is the number of classes of the foreground, 𝑤 is  

 

Figure 1. Example segmentation using the proposed FCN 

compared to the gold standard (RV endocardium: 
yellow; LV endocardium: red; LV epicardium: green). 
 

the number of pixels, 𝑡 is the ground truth label per 

location and 𝑝 is prediction of the sigmoid function. 

Therefore, the WCE+Dice loss was: 

𝑙𝑜𝑠𝑠 = WCE + 0.2 𝐷𝑖𝑐𝑒 𝑙𝑜𝑠𝑠 (3) 

Online data augmentation was implemented using 

gamma correction, blurring, and random rotation in [-15°, 

15°] range. The dataset was randomly split into training 

(70%), validation (15%) and testing sets (15%). The best 

model among epochs was selected as the one with the 

highest 𝐷𝑖𝑐𝑒 score on the validation set. 

 

2.4. Experimental protocol 

Performance of the FCN was measured using 

sensitivity (Se), Dice and the Hausdorff distance (HD) [8] 

compared to the ground-truth mask. To assess the 

influence of the basal slice, the network was trained: 1) 

using all the slices including basal slices according to 

guidelines [9]; 2) removing slices where the Myo did not 

completely surrounded the LV. Network performance 

was evaluated considering the two different loss functions 

(WCE, WCE+Dice). To evaluate a real clinical scenario, 

a physician reviewed the prediction on the test set, 

correcting manually when needed the contours. The 

adjusted segmentations and the automated results were 

compared respect to the ground-truth, in term of actual 

LV and RV volumes (in ml) and LV mass (in g). 

Correlation and Bland-Altman analyses were reported. 

 

3. Results 

Table 1 reports the performance of the FCN 

segmentation of LV, RV and Myo for the two defined 

criteria. Performance of the two loss function were 

compared: WCE reached slightly better results than  
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Table 1. Segmentation results of the proposed FCN using 

two different loss function, measured as Sensitivity (Se), 

Dice coefficient, and Hausdorff distance (HD). Se and 

Dice are reported as mean, while HD is reported as 

median. 

 

Basal slices (≥50% Myo around the LV) 

 LV 

 Dice HD [mm] Se 

WCE 

WCE+Dice 

0.944 

0.942 

7.2 

7.4 

0.948 

0.966 

 RV 

 Dice HD [mm] Se 

WCE 

WCE+Dice 

0.908 

0.892 

7.3 

9.3 

0.881 

0.844 

 Myo  

 Dice HD [mm] Se 

WCE 

WCE+Dice 

0.851 

0.849 

5.9 

5.8 

0.828 

0.815 

Only basal slices with 100% Myo around the LV 

 LV  

 Dice HD [mm] Se 

WCE 

WCE+Dice 

0.946 

0.944 

6.2 

6.5 

0.950 

0.969 

 RV  

 Dice HD [mm] Se 

WCE 

WCE+Dice 

0.909 

0.897 

7.1 

8.2 

0.882 

0.853 

 Myo  

 Dice HD [mm] Se 

WCE 

WCE+Dice 

0.853 

0.851 

5.4 

5.5 

0.831 

0.817 

 

WCE+Dice loss. Considering cumulatively all the slices, 

no significant differences between the two basal selection 

criteria were observed. Further analyses were conducted 

using WCE loss function only. 

In Table 2, results of the FCN before and after manual 

correction, at the basal level according to the two defined 

selection criteria. No significant differences were found,  

highlighting the high inter-observer variability for basal 

contours.  

Table 3 reports the correlation and the Bland-Altman 

analysis of clinical parameters, for the predicted and the 

manually adjusted segmentation, compared to the GS. For 

LV ED and ES volumes, as well as for RV ED the FCN 

resulted in a strong correlation with no bias and narrow 

limits of confidence, both with and without correction, 

while a slight overestimation measured for RV ES 

compared to the GS was observed. For Myo, mass a very 

good correlation was visible, with a slight overestimation 

of both the FCN and the following correction compared 

to the GS, and wider (but still acceptable) limits of 

agreement. In Figure 1, some examples of the predicted 

contours compared with the corresponding GS are shown. 

When the Myo did not completely surround the LV, the 

predicted segmentation sometimes failed including the 

aortic root in the LV. Similarly, for the RV, sometimes 

the right atrium was included in the ventricular 

segmentation. These errors on the basal slices did not 

significantly affect the cumulative performance.  

 

Table 2: Segmentation performance measured as Dice 
coefficient, and Hausdorff distance (HD) reported as 
median, before and after manual correction at the basal 

level. 

 

Basal (≥50% Myo around the LV) 

 LV Myo 

 Dice HD [mm] Dice HD [mm] 

FCN+corr 

FCN 

0.927 

0.909 

7.5 

9.7 

0.811 

0.808 

13.5 

13.0 

Basal (100% Myo around the LV) 

 LV Myo 

 Dice HD [mm] Dice HD [mm] 

FCN+corr 

FCN 

0.958 

0.959 

4.7 

5.0 

0.874 

0.873 

4.5 

4.5 

 

Table 3: Clinical metrics before and after manual 

correction reported in term of Correlation (R2) and bias ± 

2*standard deviation (Bias ± 2σ). Results considering all 

the slices. EDV: End diastolic volume; ESV: End systolic 

volume. 

 

 LV EDV (ESV) 

 R2 Bias ± 2σ [ml] 

FCN+corr 0.99 (0.98) -2±13 (-2±14) 

FCN 0.99 (0.98) -1±12 (-1±14) 

 RV EDV (ESV) 

 R2 Bias ± 2σ [ml] 

FCN+corr 0.98 (0.96) 4±14 (7±12) 

FCN 0.99 (0.95) 6±12 (6±14) 

 Myo ED Mass ( ES Mass) 

 R2 Bias ± 2σ [ml] 

FCN+corr 0.92 (0.91) 7±26 (6±28) 

FCN 0.92 (0.92) 6±26 (5±26) 

 

4. Discussion  

We presented a FCN for the automated segmentations 

of LV, RV and Myo on cardiac SAX cine-MRI images. 

The network was based on a U-Net with dense skip 

connections, in order to improve its performance. Skip 

connections are known to be effective in recovering 

information lost during the down-sampling path. Directly 

concatenating semantically different feature maps, from 

the down-sampling to the up-sampling, it might generate 

a semantic gap which could negatively affect the 

segmentation accuracy [10]. To deal with this problem, 

we took advantage from dense skip connections with 
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benefit even on the optimization of the network. The two 

compared loss functions performed similarly, with the 

WCE able to reach a slightly better performance in terms 

of mean Dice and HD. We limited the impact of the Dice 

loss because even if it can consider global loss 

information, WCE presents better differentiable 

properties which results in an easier optimization process. 

Further analysis considering different weighting strategies 

between Dice and WCE loss are needed to evaluate more 

in depth their potential contribution to the optimal results. 

During the past years different CMR datasets based on 

SAX cine images were made accessible in different 

challenges for testing segmentation algorithms, but 

generally they do not include the most apical and basal 

slices, they are limited to only one of the two ventricles, 

or refer to specific clinical conditions. This affects the 

representation of real clinical scenario, limiting the 

potential of deep learning (DL) algorithms that are 

developed, trained and tested on such CMR datasets. The 

database of images used in this study represents a step 

forward towards a more realistic training and testing of 

the DL algorithm for clinical applicability.  

To evaluate the impact of the inclusion criteria of the 

basal slice, performance needs to be reported separately 

for those slices, while considering all slices it does not 

significantly affect the global results. Accordingly, for a 

better comparison of performance of different 

segmentation algorithms, inclusion criteria for basal slices 

should be always reported, as well as the corresponding 

specific results. As expected the segmentation for basal 

slices is tedious due to the presence of valves and outflow 

tract, which contribute to increase the variability, with 

consequences on the stability of the training phase. 

Despite these complications, performance of our FCN on 

basal slices revealed to be good. The segmentation of the 

RV resulted more complicated than for the LV, as 

indicated by the lower Dice and higher HD, probably due 

to the more complicated geometry, higher variability 

from the base to the apical section and a general lower 

contrast of the RV. Myo was also segmented, with 

appreciable results, but a general greater difficult when 

compared to the LV and RV. When considering the 

correlation and Bland-Altman in the computed clinical 

parameters from the automated FCN contours, and after 

manual supervision and correction when needed, the 

results showed a strong agreement, with minimal 

contribution of the correction to the final results, thus 

highlighting the potential of the developed method in 

generating results comparable with an expert operator 

variability. 

 

5. Conclusions 

We presented a FCN for semantic segmentation of LV, 

RV and Myo in CMR images, reaching high correlation 

and volumes estimation with manual gold standard, able 

to manage the high real world variability and complexity 

of cardiac chambers morphology, even when basal slices 

were considered according to clinical analysis guidelines. 

These results demonstrate the potential of the DL for 

accurate and fast cardiac segmentation in real clinical 

applications.  
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