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Abstract

Automatic detection of first-degree atrioventricular
block (I-AVB) from electrocardiogram (ECG) is of great
importance in prevention of more severe cardiac diseases.
I-AVB is characterized by a prolonged PR interval. How-
ever, due to various artifacts and diversity of ECG mor-
phology, existing ECG delineation algorithms is unable to
provide robust measurement of the PR interval. Deep neu-
ral network is good at extracting high-level feature from
ECG waveform, but merely using waveform as input of
neural network may aggravate overfitting when lack of I-
AVB records. In this paper, we propose a multimodal-input
deep learning method to effectively detect I-AVB from 12-
lead ECG records. We utilize ECG waveform and delin-
eation result as the multimodal input of neural network.
Our neural network, mainly composed of convolutional
neural network and Long Short-term Memory, is well de-
signed to adapt to variable-length ECG. Our method is
evaluated on dataset of CPSC2018, and outperforms the
baseline methods in F1 score.

1. Introduction

The electrocardiogram (ECG), which measures electri-
cal activity of heart, is an important tool for clinical diag-
nosis of multiple cardiac diseases. From the end of the P
wave to the beginning of the QRS complex is called the
PR interval, indicating the pulse conduction time between
the atria and ventricles. AV block (AVB) is a type of heart
block occurring in the transmission between the atria and
ventricles[1]. In terms of severity, AVB is divided into
three degrees. The first-degree AVB (I-AVB) is charac-
terized by a prolonged PR interval, usually greater than
0.2 seconds[1]. Although most patients with I-AVB are
asymptomatic, but I-AVB is associated with more severe
degree of AVB.

The development of I-AVB automatic detection method
can reduce workloads and increase work efficiency for car-
diologists. Automatic measurement of the PR interval is

an explicit way to distinguish I-AVB. Up to now, various
ECG delineation methods are developed. In [2], Martinez
uses discrete wavelet transform (DWT) to enhance ECG
waveform and apply an adaptive threshold to detect ECG
fiducial points. In [3] and [4], some frequency features are
extracted and fed into a Hidden Markov Model (HMM)
to model the transition process between different waves.
However, due to effect of artifacts and diversity of ECG
morphology associated with cardiac diseases, it is not ro-
bust enough to detect I-AVB merely based on the delin-
eation result.

In recent years, utilizing deep learning method to au-
tomatically detect abnormalities from ECG in a end-to-
end manner, has been widely investigated. These meth-
ods directly analyze ECG waveform and output the clas-
sification result. In [5], a Convolutional Neural Network
(CNN) is proposed to classify the single-lead ECG into
multiple kinds of rhythm, and achieved performance com-
parable to the average level of cardiologist. In [6], Yao
proposed an attention-based time-incremental CNN to ad-
dress multi-class arrhythmia detection from 12-lead ECG.
In [7], features from CNN are integrated with some expert
features, and then fed into a XGBoost[8] classifier to iden-
tify multiple abnormalities. Detection of I-AVB needs ac-
curate measurement of the PR interval, merely using ECG
waveform as input of deep neural network may introduce
redundancy information and aggravate overfitting.

In this paper, we propose a multimodal deep learning
method to detect I-AVB from variable-length 12-lead ECG
records. We use [9]’ s algorithm to delineate ECG records,
the delineation result is concatenated with 12-lead ECG
waveform as the input of out neural network. The structure
of our network is composed of CNN and Long Short-term
Memory[10]. Our method can deal with variable-length
ECG without any segmentation or padding process. The
method is evaluated on the dataset of the China Physio-
logical Signal Challenge 2018[11], which contains multi-
ple abnormalities such as Atrial fibrillation and Premature
ventricular contraction. Our method achieves an average
F1-score of 0.889 over 5-fold cross validation, exceeding
state-of-the-art methods.
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Figure 1. The framework of our scheme.

2. Methods

The framework of our scheme is shown in Figure 1. Our
scheme is composed of preprocessing, ECG delineation
and classification by neural network. Each variable-length
12-lead ECG record is preprocessed first. Then ECG de-
lineation algorithm is applied to ECG waveform yielding
locations of P wave, QRS complex and T wave. The de-
lineation result and ECG waveform are combined and fed
into our well-designed neural network for classification.

Figure 2. An example of ECG delineation result of three
characteristic waves.

2.1. ECG preprocessing and delineation

To remove the high-frequency noise and baseline wan-
dering noise, each lead of ECG is processed by a band-
pass Butterworth filter, with a range of 0.5Hz–48Hz. Then,
each ECG recording is delineated by algorithm[9], so as to
obtain the location of ECG fiducial points, including the
onset and offset of the P wave, the onset and offset of the
QRS complex and the offset of the T wave.

The delineation result is transformed into three chan-
nels, each of which represents a kind of characteristic
wave. An example is shown in Figure 2. The three delin-
eation channels are concatenated with 12-lead ECG signal
together, as the multimodal input of our neural network.

2.2. Network architecture

An overview of the proposed network architecture is
shown in Figure 3. Our neural network is composed of
a CNN, a bidirectional LSTM and a fully connected layer.

For each convolutional layer, the kernel size is 15 and
the stride is 1. Additionally, each convolutional layer
is padded with 0 to keep the length of feature map un-
changed. Batch normalization layer is utilized after each
convolutional layer to lessen internal covariate shift and
accelerate training process[12]. ReLU activation function
is adopted to provide nonlinearity for the model. The block
of Conv-BN-ReLU-Conv-BN is repeated for times, and
shortcut connection is adopted to handle degradable prob-
lem in deep neural network[13].

After the CNN, a bidirectional LSTM with hidden size
of 128 is adopted to extract long-term correlation between
features far apart. In typical routine, the inputs are resized
to the same size, and the feature map is averaged globally
along the time dimension before transmitting to the fully
connected layer. In our case, to address variable-length
inputs, each proportion of feature map along the time di-
mension is processed individually by one identical fully
connected layer, and their results are averaged to yields a
final prediction.
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Table 1. F1 score of I-AVB on CPSC2018 dataset.

Methods F1 score
Ours 0.889
VGG-60[6] 0.776
TI-CNN[6] 0.809
ATI-CNN[6] 0.850
Expert+Deep[7] 0.870

2.3. Implementation details

The weights of convolutional layers, LSTM and fully
connected layer are initialized using Xavier initialization
method[14]. Initial hidden state and cell state of LSTM
are initialized with zero. Cross entropy loss is used and
our model is optimized using Adam optimizer[15]. The
total epoch of training is 40. The learning rate is initially
set to 0.001 and multiplied by 0.1 at the 25th epoch.

The L2 regularization with a factor of 0.001 is adopted
to alleviate overfitting. At training phase, each ECG record
is split into 6-second length segments so as to form mini-
batch and accelerate the training process. At test phase, no
segmentation is applied to ECG records.

3. Experiments and Discussions

3.1. Dataset Description

The dataset is from the China Physiological Signal Chal-
lenge 2018[11]. The ECG recordings were collected from
11 hospitals. The dataset is split into training set and test
set, but the labels of test set are unreleased. So our ex-
periment is conducted on the training set. The official
training set contains 6877 12-lead ECG recordings lasting
from 6s to 60s. There are totally 1098 recordings labeled
I-AVB. Apart from I-AVB, some other abnormalities also
exist in the dataset, including atrial fibrillation, left bun-
dle branch block, right bundle branch block, premature
atrial contraction, premature ventricular contraction, ST-
segment depression and ST segment elevated. In our ex-
periment, all recordings without I-AVB label are regarded
as non I-AVB.

3.2. Results

We adopt F1 score as our evaluation metric, which con-
siders both the recall and the precision. It is calculated by
harmonically averaging the recall and precision, as shown
in Equation(1).

F1 score =
2 · precision · recall
precision + recall

(1)

Figure 3. The architecture of our neural network. The
input has 15 channels, including 12-lead ECG waveform
and 3 channels of delineation result. The numbers (64 and
128) represent output channels of convolutional layer and
bidirectional LSTM.

We perform 5-fold cross-validation on the official train-
ing set to evaluate our proposed method, the experimental
results are shown in Table 1. The reference methods are [7]
and [6]. Their experiments are conducted in a multi-class
classification manner, the reported F1 score of I-AVB is
used for comparison. As can be seen from Table 1, on F1
score of I-AVB detection, our method exceeds the baseline
methods with a large margin.

3.3. The Influence of Multimodal Input

I-AVB is clinically recognized by the prolonged PR in-
terval, which is the distance between the onset of the P
wave and the onset of the QRS complex. ECG delineation
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Table 2. Comparison between different inputs.

Methods F1 score
Waveform input 0.881
Multimodal input 0.889

algorithms is able to detect location of multiple kinds of
fiducial points, such as the onset of the P wave. But due to
effect of various artifacts and noise, it is not robust enough
to detect I-AVB only based on the delineation result. Deep
learning method can extract high-level features from sig-
nal. Since I-AVB is only related to the PR interval, end-to-
end learning only using ECG waveform may make model
focus more on the other portion of ECG morphology and
lead to overfitting.

In our method, apart from 12-lead ECG waveform, some
auxiliary channels, which are transformed from the delin-
eation result, are concatenated with the original channels
as the input of network. The experimental results show
that multimodal input yields better performance on 5-fold
cross-validation, as shown in Table 2.

4. Conclusion

In this paper, we propose a novel multimodal deep learn-
ing method to detect I-AVB from 12-lead variable-length
ECG records. Apart from ECG waveform, the delineation
results of ECG are also adopted as part of input of our
neural network. The architecture of our neural network
consists of CNN and LSTM. To cope with variable-length
records, output of all time steps of LSTM are utilized to
compute final predictions. From the experimental results,
the proposed method outperforms other baseline methods
with a large margin. In the future, we plan to expand our
method to multi-class classification problem and apply to
other abnormalities on ECG.
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