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Abstract
The sustainable management of social–ecological systems (SESs) requires that we 
understand the complex structure of relationships and feedbacks among ecosystem 
components and socioeconomic entities. Therefore, the construction and analysis 
of models integrating ecological and human actors is crucial for describing the 
functioning of SESs, and qualitative modeling represents an ideal tool since it allows 
studying dependencies among variables of diverse types. In particular, the qualitative 
technique of loop analysis yields predictions about how a system’s variables respond 
to stress factors. Different interaction types, scarce information about functional 
relationships among variables, and uncertainties in the values of the parameters are 
the rule rather than exceptions when studying SESs. Accordingly, loop analysis seems 
to be perfectly suitable to investigate them. Here, we introduce the key aspects of 
loop analysis, discuss its applications to SESs, and suggest it enables making the first 
steps toward the integration of the three dimensions of sustainability.

Keywords: complex systems, networks, qualitative modeling, social–ecological 
systems; sustainability

Introduction
Human societies and their well-being depend on the provision of goods and services 
from ecosystems (Haines-Young & Potschin, 2010). Healthy ecosystems respond 
to human needs by maintaining structure and functioning over time (Costanza 
& Mageau, 1999), and the conservation of biodiversity is crucial for preserving 
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stability and productivity of natural systems (Stachowicz et al., 2002; Worm et al., 
2006). However, biodiversity is declining worldwide, a trend that raises concerns on 
the sustainable supply of goods and services from ecosystems (Lotze et al., 2006). 
The increasing level of human-induced impacts (e.g., overexploitation of resources, 
introduction of alien species into native environments, chemical pollution, nutrient 
enrichment, and climate change) threatens biodiversity in both aquatic and 
terrestrial systems and calls for the formulation of effective conservation practices. 
Ecological changes are often associated with social and economic transformations 
that, in turn, reflect their effects back on ecological functions and processes. 
Discovering and bringing to light these interdependencies requires a shift in focus: 
from a “within-domain approach” to a global strategy in which the ecosystem as 
unit of investigation is part of a larger system that embeds socioeconomic dynamics 
(Hilborn, 2007). Long et al. (2015) identified 15 key principles for implementing 
ecosystem-based management (EBM). Among these principles, they included the 
modeling of interconnections between ecological, social, and governance systems, 
which implies that social–ecological systems (SESs) are networks and that EBM 
implementation can benefit from the application of the methodologies that network 
analysis offers.

The network perspective requires that the interactions that link variables belonging 
to the human and ecological domains are concurrently taken into account, so that the 
SES as a whole becomes the unit of management. The challenge is the identification 
of relationships at different hierarchical levels, which occur at various spatial and 
temporal scales. To facilitate integration, Ostrom (2009) proposed a classificatory 
framework that describes the four essential dimensions of SESs: resource users, 
governance system, resource units, and resource system. The relationships among 
these four dimensions occur at various geographical and temporal scales, within the 
rules defined by the SES’s ecological, social, economic, and political settings. 
The choice of the suitable scales and the proper identification of the variables 
that constitute the SES, and their connections, are essential to assess under what 
conditions sustainability can be enhanced. Moreover, the concept of sustainability 
is multidimensional and the spatial heterogeneity of SES variables can cause 
a mismatch between objectives that belong to either the social or ecological domain. 
This complexity is exemplified by the study of small-scale fisheries in the Mexican 
state of Baja California Sur, which showed the lack of association between different 
dimensions of sustainability (Leslie et al., 2015). Policies for the sustainable use of 
ecosystem goods and services require policy-makers to take into account the set 
of interactions linking ecological resilience (i.e., the adaptive capacity to withstand 
recurrent perturbations) to the society, the economy, and the governance rules 
(Hughes et al., 2005). The integration of these dimensions is challenging and this 
difficulty is inflated by the adoption of strictly sectoral approaches. Most studies on 
the social dimension of resources and environmental management focus on social 
dynamics and treat the ecosystem as a black box; in parallel, the ecological approach 
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to sustainability considers the social aspects only at the boundaries of the natural 
system (Binder et al., 2013; Folke, 2006; Partelow et al., 2019). The balanced 
integration of social and ecological variables within the same modeling scheme 
is often precluded by two factors: (1) there are difficulties in the identification of 
the most important interactions linking the variables; and (2) the mathematical 
form of interactions is often unknown. Qualitative modeling represents a possible 
solution to these difficulties. In particular, loop analysis (Levins, 1968, 1974), 
through its simple application requirements (i.e., describing the presence of links 
and their signs), can be used to consider the interactions among variables across 
different domains.

Loop analysis was developed to model the equilibrium levels of a system when 
growth rates of specific variables are altered by environmental variability. Loop 
analysis requires that only the sign of the relationship between the variables is 
specified—that is, whether a variable positively or negatively affects another one. 
This simplicity overcomes the lack of quantitative information and simplifies the 
semantic conversion of the concepts related to the processes in which variables take 
part when belonging to different domains. Most of the works on SESs published so 
far have focused on ecosystems and considered the human component a source of 
external perturbations. For example, Bodini et al. (2018) showed how overfishing 
affected the internal dynamics of the Black Sea, but did not consider how 
socioeconomic drivers inflated overfishing. Applications of loop analysis to SESs are 
gaining ground (Dambacher et al., 2007; Martone et al., 2017). Here we show the 
potential of loop analysis for the integrative modeling of SESs. First, we introduce 
the  methodological aspects behind the tool. Second, we discuss merits and 
limitations of loop analysis in studying the dynamical behavior of SESs. Then, we 
compare loop analysis with other qualitative methods that can be applied to SESs. 
Finally, we present ideas of possible developments that could favor the diffusion 
of loop analysis in the context of SESs.

Loop analysis: Methodological aspects
Loop analysis is a qualitative technique for modeling complex systems as signed, 
directed graphs. Interactions are depicted as either positive or negative effects but 
their strength is not specified (Figure 1A). Positive interactions are illustrated by 
arrow-headed links, while negative interactions are visualized with circle-headed 
links. Any signed digraph has a matrix counterpart (interaction matrix) in which 
positive (arrowheads) and negative (circle heads) interactions are represented by 
the coefficients +1 and −1, respectively. Zeroes in the matrix stand for null direct 
relationships between any two variables (Figure 1B). The elements along the main 
diagonal of the interaction matrix are self-effects on the variables and correspond to 
self-links in the graph (i.e., an arrowhead or circle-head link connecting a variable 
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to itself ). Loop analysis allows predictions on how the variables will respond to 
press perturbations that target specific variables. Press perturbations are forces that 
modify parameters in the rate of change of the variables (Bender et al., 1984), such as 
environmental warming that enhances the reproductive rate of jellyfish, or ecolabels 
that increase the rate at which the income of fishing cooperatives is produced. There 
are as many targets of press perturbations as the number of variables in the system 
(i.e., any variable can represent the entry point for press perturbations). The effect 
of press perturbations can be predicted by analyzing the structural properties of the 
graph (Levins, 1974, 1975).

Figure 1. Signed directed graph describing (A) the Black Sea food web and 
(B) the corresponding matrix of interactions.
Note: In the graph, positive interactions are denoted with arrow-headed links while negative interactions 
are visualized with circle-headed links. Names of all variables (i.e., nodes in the graph) are below the 
matrix of interactions. Loop analysis results for the Black Sea in the period 1960–1989 are summarized in 
the table of predictions (C). Additive and multiplicative rules are considered for predictions (the example 
here refers to a theoretical system with three variables) (D).
Source: Bodini et al. (2018).
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The links in signed digraphs carry a direction (e.g., where the arrow and the circle 
point to). By following this direction one can identify paths so that variables that 
stand far apart from one another in the system can be functionally connected. With 
reference to Figure 1A, nutrients (N) are connected to demersal fish (DF) by several 
paths, one of which is: N→EP→EZ→PF→DF. Paths are the routes along which 
effects of press perturbations travel through the system. Each path carries an effect 
that is either positive or negative, depending on the product of the signs of the 
links that compose the path.

Next there is feedback, which can be negative or positive. The former is a process 
in which an initial change in a variable is reflected back so that its original value is 
restored. A negative feedback, for example, occurs in agriculture when an increased 
agricultural yield reduces prices: investments are cut, so that yield is reduced. 
A positive feedback occurs when an initial change gives rise to a chain of events that 
amplify the original change. For instance, during the civil war in Colombia the level 
of violence displaced people from their land, and this contributed to further increases 
in the level of violence. Since the feedback is a “return effect,” it originates when 
variables are linked by closed paths (i.e., circuits or loops) and its sign is negative or 
positive depending on the product of the signs of the links that form the loop (see 
Puccia & Levins, 1985 for a rigorous method for computing the feedback sign). 
For example, in Figure 1D the arrow from A to B, and the circle-head link from 
B to A, form a closed path, or loop, with negative feedback, because the product 
of the two links is negative. There can be circuits of different length depending on 
the number of variables linked together in a closed path. With these definitions we 
can express conceptually the algorithm of loop analysis (Puccia & Levins, 1985). 
The sensitivity of a variable to a press perturbation depends on: (1) whether the 
perturbation increases (+ sign) or decreases (− sign) the rate of change of the variable 
through which it enters the system; (2) the sign of the path connecting the variable 
targeted by the press perturbation to the effect variable (the variable one wants to 
predict the response of ); (3) the sign of the feedback of the subsystem that remains 
when all variables on the path are ideally removed from the system (this is called 
complementary feedback); and (4) the overall feedback—that is, the feedback 
of the circuits that connect all the variables in the system. The algorithm can be 
summarized in the following formula:

∂x j

∂c =
∑

∂f i
∂c × p jii,k × Fn�k

Fn

(k) (comp)

in which [∂fi/∂c] expresses whether the rate of change of the target variable xi increases 
or decreases because of the changing parameter c; [pji

(k)] is the pathway from the 
target to the response variable; [Fn−k

(comp)] is the complementary feedback and [Fn] 
is the overall feedback. Summation (∑i,k) occurs along all paths from the target 
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variable xi to the effect variable xj. The complementary feedback can be envisioned 
as a reflecting barrier; if it is negative and strong, the more an impact is reflected 
back to the effect variable. If it is positive, then the effect variable changes in the 
opposite direction from the sign of the path. The overall feedback, the denominator 
of the formula, measures the resistance of the whole system to change. The responses 
predicted can be positive (+, increase), negative (−, decrease), or null (0, no change), 
and are summarized in the table of predictions (Figure 1C). The convention is that 
effects generated by positive perturbations (those increasing the rate of change of 
the target variables) on row variables can be read along the columns. Consequences 
of negative perturbations are obtained by reversing the signs of the predictions. 
Consider a positive press perturbation ([∂fi/∂c] > 0) on node A in Figure 1D: If the 
focus is on the consequences that the press perturbation has on node B, then the 
path is the positive link from A to B and the complementary subsystem is node C 
alone; this latter variable does not form any circuit and the complementary feedback 
is null (i.e., equal to 0). The overall feedback is the feedback produced by the circuit 
that connects all the variables in the system (see Puccia & Levins, 1985 for further 
details). In the digraph of Figure 1D there is one single circuit that starts and ends 
with node A and connects all variables. This circuit includes one positive and two 
negative interactions: A→C–○B–○A; its sign is the product of one positive and two 
negative links and thus it is positive.

In graphs with many variables and interactions, the number of paths between 
variables often increases, which leads to several ambiguous predictions (i.e., the 
positive paths counteract negative paths so that a clear sign of the direction of 
change cannot be identified). To deal with such ambiguities, a simulation approach 
can be adopted based on a random assignment of strength to each and every link 
coefficient. To make simulations possible, the signed digraph is transformed in 
a matrix using +1 to represent positive (arrowhead) links and −1 to indicate negative 
(circle-head) links. During simulations the coefficient intensities are taken from 
a uniform distribution in the interval (0,1]. This means that the +1 and −1 values 
in the matrix are substituted by randomly assigned values between 10-6 (the lower 
boundary equal to 0 is not included) and 1 while the sign is maintained. Not all the 
matrices obtained can be used to compute the predictions but only those that satisfy 
criteria for stability (see Logofet, 1993, for stability conditions matrices must satisfy). 
According to Bender et al. (1984), the net effect that press perturbations targeting 
the row variable xi have on the column variable xj are expressed by the elements of 
the inverse of the matrix that is obtained from the signed digraph (for details see 
Levins, 1975). After n simulations, an overall table of predictions is constructed by 
combining the z matrices that are stable and allow matrix inversion. For each stable 
matrix assembled using simulated interaction strengths, unambiguous responses in 
the table of predictions are generated (i.e., the signs are certain). The overall table of 
predictions is composed of symbols that depend on the percentages of signs from 
the various simulation runs. Hence, if the same entry in the tables of predictions 
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from all z (stable) matrices yields the same sign (+ or −) then the expected direction 
of change is unambiguous. However, during simulations there are cases for which 
divergent predictions are recorded (i.e., depending on the random arrangement of 
interaction strengths, the same element in the table of predictions can show either 
positive or negative sign). The conversion of the outcomes from each simulation run 
to symbols in the overall table of predictions depends on the percentages of positive 
(+) and negative (−) signs. The rules to move from simulations results to the overall 
table of predictions are summarized in Table 1.

Table 1. Rules to convert differences between percentages of signs obtained 
with simulations (“% of +” – “% of –”) into predictions (i.e., signs in the overall 
table of predictions).

“% of +” – “% of –” Corresponding sign in the table
[−100, −50] −
(−50, -20) ?− (tendency to −)
[−20, 20] 0*
(20, 50) ?+ (tendency to +)
[50, 100] +
0 = 100% 0

Notes: Round brackets indicate that the extremes are excluded. 0* is not a real zero, meaning no 
changes in the biomass/abundance of variables, but represents neutral results due to relatively balanced 
amounts of negative and positive effects. When after the complete set of simulations there are entries for 
which the absence of any effect was always recorded then the symbol in the overall table of predictions 
is 0, indicating proper absence of effect (see the last row of the table: 0 = 100%).
Source: Authors’ summary.

Merits and limitations of loop analysis 
to model SESs
Loop analysis is particularly suitable to investigate SESs. First, interconnections 
extend beyond the single domains of ecology, economy, and society to create 
complex networks. For instance, after the Nile perch invaded Lake Victoria 
a  dramatic restructuring of the ecological community took place, which, in 
turn, cascaded into deep societal and economic changes (Downing et al., 2014). 
To  disentangle drivers and dynamics of change in such a complex scenario, 
Downing and coworkers designed an eco-social qualitative model that traced 
connections across disciplinary boundaries. Second, loop analysis educates intuition 
to cope with complexity. Often, complex systems defy our predictions and effects 
of policies or management interventions are at best ineffective if not damaging 
(Levins, 1995). Failure of policies depends on the feedbacks that are produced by 
the linkages between the variables and that remain hidden to our comprehension 
if complexity does not become our central intellectual issue. Cinner (2011), 
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in discussing problems of reef fishery, emphasizes that the feedback between social 
and ecological variables may create social–ecological traps (e.g., situations when 
feedbacks between social and ecological systems lead toward an undesirable state 
that may be difficult or impossible to reverse). It is extremely interesting to explore 
these phenomena by loop analysis which, by disentangling feedback loops, helps 
make the arcane obvious. This capability, however, cannot be fully exploited if the 
feedback structure of the systems is not adequately represented and the relationships 
between the variables remain mostly unidirectional; the potential may instead 
emerge when social and environmental variables are incorporated in a unique model 
(Dambacher et al., 2007). Third, loop analysis proposes a rigorous approach to 
diagnosis. Diagnostic approaches are more often requested in the analysis of SESs 
to causally understand the multiple outcomes that can arise from the interaction 
of different system attributes (Kittinger et al., 2013). The table of predictions, the 
main outcome of loop analysis, allows the disentangling of causative mechanisms 
by linking correlation patterns, sources of change, and network structure (Bodini & 
Clerici, 2016; Bodini et al., 2018). For any entry point of press perturbation (any 
row in the table of predictions, see Figure 1C), variables are predicted to change, 
so that correlation patterns among them emerge. By comparing such patterns with 
observed changes in the level of the variables, one can identify which component 
is affected by external drivers and find the cause and effect mechanisms responsible 
for those changes due to the linkage structure. Fourth, loop analysis incorporates 
external drivers as inputs to the rate of change of the variables. External drivers, 
both social and biophysical, have been described as playing an important role in 
SES dynamics (Kittinger et al., 2013). For example, in Baja California (Mexico) 
climate-driven hypoxia caused an excess mortality in marine species with limited 
mobility, resulting in declines of stocks targeted by small-scale local fisheries, which, 
in turn, caused small-scale fishers to switch fishing effort toward less-affected species 
(Micheli et al., 2012). Such effect was explored in a scenario analysis using loop 
analysis, which predicted large-scale consequences of this external driver (Martone 
et al., 2017). Fifth, the intuitive visualization of the entities and the interactions 
among them is suitable for accommodating the general framework proposed by 
Ostrom (2009) for analyzing the sustainability of SESs. Each node in the digraph 
can be one of the four elements (i.e., core subsystems: governance system, resource 
users, resource system, and resource units) and either positive or negative links can 
visualize their direct relationships. So far the main focus has been dedicated to the 
visualization of ecological variables and interactions, and the inclusion of social–
economic aspects has been treated as external to the system (Carey et al., 2014; 
Espinoza-Tenorio et al., 2013; Reum et al., 2015). Finally, the simple graphical 
format that constitutes the input for the loop analysis facilitates the participation of 
all stakeholders to model construction. Although most of the current applications 
adopted a top-down approach to embed management strategies in models (i.e., 
literature data were consulted to define the interactions), the study of Espinoza-
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Tenorio et al. (2013) presents a valid alternative. In that work, both quantitative 
and qualitative information regarding the biological and social aspects of fisheries 
dynamics and management were retrieved using structured interviews with fishers, 
participatory research, key informant interviews, and workshops.

Limitations of the methodology should be taken into account. Some limitations 
have already been discussed (Justus, 2006) and here we focus on those that matter 
with the use of loop analysis in studying SESs. First, there can be difficulties in 
defining the timing of changing conditions and that of system response to impacts. 
SESs are resilient and cope with continuous exposure to press perturbations 
according to adaptive dynamics principles (Folke, 2006; Hughes et al., 2005). 
The exact moment at which the system responds to a press perturbation cannot 
be detected with precision and the contribution of concomitant perturbations 
may further confound this detection. Second, the variables of SESs (e.g., resources 
and their users) can show asynchronous behavior and heterogeneous geographical 
distribution (Leslie et al., 2015). Their optimization does not necessarily occur at 
the same temporal and spatial scale, an aspect that might remain overlooked when 
constructing graphs. The uneven geographical distribution of the actors might 
be addressed by including in the models different variables for the same type of 
user (e.g., various nodes that indicate the fishers and their interactions in different 
regions). Third, there can be issues in the identification of the variables exposed to 
press perturbations (i.e.,  impacts of overfishing vs climate change). For example, 
while marketing solutions (e.g., the introduction of ecolabels) can be easily targeted 
to specific user groups (e.g., the members of fishing cooperatives; see Martone 
et al., 2017), climate change (e.g., warmer winters) may affect many components 
of the ecological system with different time of response. One possible solution is 
prioritizing, as press perturbation targets the most responsive biological variables 
(e.g., jellyfish have faster blooming rates than expected from the body size; see 
Nival & Gorsky, 2001). Finally, loop analysis is problematic for assessing nonlinear 
relationships. Nonlinearity can emerge by combining the impacts of pathways of 
different lengths. Longer pathways have lower intensity than shorter ones since the 
interaction strengths randomly assigned during the simulations are in the interval 
(0,1] (i.e., the intensity of each pathway is obtained by multiplying the strength of its 
constitutive links that have upper bound equal to 1). To avoid penalizing the impact 
of longer pathways, simulations could be carried out by constraining the lower limit 
from which interaction strengths are randomly drawn during simulations (i.e., by 
setting the lower limits of some “strong” interactions closer to 1). As an alternative, 
one could include nonlinear functions to model those specific interactions that play 
crucial roles for the dynamics of the SES (e.g., by relying on previous literature data 
or results from specific experiments and surveys).
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Comparison of loop analysis with other 
qualitative methods for SESs
SESs form complex networks of linkages and loop analysis is designed to qualitatively 
predict how variables that are embedded in SESs respond to policies and management 
interventions (e.g., introduction of new regulations for the exploitation of resources, 
market-based incentives, and adoption of new marketing solutions; Carey et al., 
2014; Dambacher et al., 2007; Levin et al., 2009). A limited number of applications 
to investigate complex SES have made use of loop analysis, but the interest toward 
the method has taken little ground in the context of fisheries (Anthony et al., 2013; 
Carey et al., 2014; Dambacher et al., 2015; Espinoza-Tenorio et al., 2013; Martone 
et al., 2017). These applications highlight that loop analysis has some potential that 
extends beyond its limitations. For example, predictions are about the equilibrium 
level of the variables (Justus, 2006), but real systems are generally not at the 
equilibrium. However, previous studies have offered evidence that predictions from 
loop analysis apply successfully to changes in average values of the variables (Bodini, 
2000). Average values should be long term, and Bodini et al. (2018) showed that 
averages taken over either 5 or 10 years can be used to grasp variable responses to 
press perturbations. The appropriate time scale for taking averages, however, very 
much depends on the system under investigation.

Other qualitative modeling approaches can be used to study SESs. Fuzzy cognitive 
maps (FCMs) is one of these. It makes the magnitude of links explicit through 
a  semi-quantification of the relationships that link variables (Kok, 2009; Özesmi 
& Özesmi, 2004). The semi-quantification of the links may resolve the ambiguities 
typical of loop analysis about the net effect generated by the combination of 
contrasting pathways. Also, FCMs can make predictions about multiple simultaneous 
perturbations. Both the state of the variables (“concepts,” in the technical language 
of FCMs) and the strength of the links (edges between the concepts) are quantified 
by assigning standardized values in the range [0,1] for states and [-1,1] for links. 
Although these are relative values (i.e., each of them is assigned in relation to the 
others), some criteria for the quantification must be identified. These criteria must 
be supported by some knowledge about the level of the variables and interactions in 
the system, and in particular the use of FCMs seems appropriate when the estimates of 
variable state and link strength are the outcomes of either a combination of multiple 
FCMs from individual stakeholders or a set of values defined through participatory 
workshops. The quantification of variables and interactions requires a certain level 
of knowledge about the system and it automatically selects the working groups 
among stakeholders that possess some previous understanding of the system under 
investigation. It follows that FCMs cannot be public, reproducible, and intelligible 
in the way that loop analysis is. Kok (2009) posits that vague or complex concepts 
such as “consumer behavior” must not be taken into account when applying FCMs 
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because guessing about their magnitude is inherently difficult. On the other hand, 
loop analysis allows including “awareness” in a malaria model (Yasuoka et al., 2014), 
“environmental attractiveness” in a tourism model (Bodini et al., 2000), and the “role 
of the unions” in a model on diabetes (Lewontin & Levins, 2007). In these aspects 
it seems that FCMs share one limitation with quantitative models: the tendency 
to exclude from the analysis factors that are difficult or impossible to measure, no 
matter if they play a role in the dynamics of the system. The connections among 
the variables in FCMs are designed on the basis of fuzzy conditional statements 
(“if … then”) that are of the type “if the level of variable A is high, that of variable 
B is low.” Thus, connections are deduced from correlations between the variables 
derived from observing the system (Stylios & Groumpos, 1999). However, Levins 
and Puccia (1988) point out that patterns of correlation depend on the network 
structure and the entry point of the perturbation. For example, any two variables may 
show positive correlation in response to a specific press perturbation but opposite 
correlation (or no correlation) in response to other press perturbations. It follows 
that defining interactions between variables on the basis of their correlations may be 
misleading. In loop analysis, perturbations are variations in parameters that govern 
the rate of change of variables. For example, a pollutant triggering an increase in the 
mortality rate of a population. FCMs instead consider the changes in the level of 
the variables as perturbations. To predict, say, the impacts of a pollutant that affects 
a population, FCMs consider the reduced abundance induced by the pollutant as 
the initial event (i.e., the perturbation), on the logical assumption that a toxin, by 
increasing the mortality of a species, automatically reduces its abundance. Thus, 
the initial event is deduced from a more or less plausible linear sequence of steps. 
This series of events overlooks the fact that the response of the target population 
to the increased mortality is also mediated by the network of interactions with the 
other variables and that, accordingly, often does not follow commonsense linear 
expectations. Such assumption leads to the circular argument that FCMs predict 
the effects given a cause that is in turn an effect that FCMs should predict. On the 
other hand, we can be confident that the pollutant increases the mortality rate of the 
target population, which is the initial event in loop analysis. Loop analysis considers 
the role of the environmental variability in changing the parameters that govern the 
growth rates of the variables, and does not interpret it solely as the cause of variable 
fluctuations like FCMs do.

Causal loop diagrams (CLDs; Hanspach et al., 2014; Tenza et al., 2017) and 
Bayesian belief networks (BBNs; Borsuk et al., 2004; Pollino et al., 2007) have also 
been applied for analyzing SESs. CLDs make predictions by logically reconstructing 
the chains of causes and effects between variables on the basis of link polarities 
(e.g., the signs of the directed links, i.e., the effects of one variable over the other). 
Predicting the behavior of complex networks by identifying the feedback effects 
using link polarity (i.e., the effect associated to the link, positive or negative) is 
difficult and can lead to misleading interpretations (Lane, 2008; Richardson, 1997). 
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Most problems originate from polarities. Consider, for example, the case in which 
the level of violence displaces people from rural areas and forces them to move to the 
cities (Colombia is a paradigmatic example; see Ibáñez & Vélez, 2008). The causal 
connections are that level of violence increases the migration rate (positive link) 
which, in turn, increases the population level in the city (positive link). Therefore, 
the expected trend is: the higher the level of violence the greater the increase of urban 
population. However, if the level of violence gets lower, the migration rate is reduced 
but this does not reduce the population in the city as it continues to increase unless 
an opposite migratory flux occurs. Hence, the articulation of causal pathways gets 
difficult because variables can be both standing stocks and rates of change (Sweeney 
& Sterman, 2007). Similarly, specifying the relevant conditional probabilities as 
required by BBNs can be a laborious and time-consuming process (Marcot et al., 
2001; Ticehurst et al., 2007). Moreover, to include feedback mechanisms via 
cyclic network structures requires dynamic time-explicit BBNs, which depend on 
extensive parameterization. Similar to FCMs, combining BBNs with loop analysis 
has great potential for improving predictions and model validation (Anthony et al., 
2013; Melbourne-Thomas et al., 2012; Raoux et al., 2018). However, it must be 
emphasized that these applications of BBNs are based on the signs derived from 
the analysis of the loop models. As such, their outcomes are contingent on the 
assumptions and limitations of signed diagraph models.

Central for the understanding of the complex causality in SESs is our ability to 
individuate what the relevant components of the SESs are and diagram their 
relationships. The nature of the linkages among these components determines 
the spreading of the effects through the system and the overall composition of the 
linkages generates the feedbacks that amplify or buffer such effects. There is no 
recipe for modeling development but great effort must be devoted to assimilation of 
facts, observations, and hypotheses. Increasing the reliability of predictions can be 
possible by designing alternative graphs. This iterative procedure allows addressing 
uncertainty about the system structure and determining which differences matter. 
Robust outcomes may be the effect of a core structure common to all models upon 
which few links added or removed cannot change radically the predictions. The core 
structure represents the fundamental backbone composed of more certain variables 
and interactions. Disagreements among stakeholders, scientists, or managers do not 
limit the application of loop analysis; rather, they offer the opportunity to involve 
stakeholders in a participatory model construction (Anthony et al., 2013) where 
different types of system knowledge can be used to determine variables and links 
that may be important to examine further (Stier et al., 2017). The adoption of such 
a comprehensive, system-wide approach aims to formulate management strategies 
that reconcile ecological integrity and intergenerational equity, key dimensions 
of the sustainable development paradigm.



Understanding Social–Ecological Systems using Loop Analysis

51

Possible developments for the application 
of loop analysis to SESs
Making predictions is difficult, especially when we face the uncertainty associated 
with new, unknown events, changing dynamics, and lack of quantitative data. This 
is the case, for example, with climate change, which produces completely new 
phenomena and dynamics. In such context, an adaptive management that allows 
for continually assessing new evidence has been called for. We believe that in the 
new scenarios we are facing, the method of loop analysis can be helpful. It has 
the necessary adaptability to be used in changing contexts: When in doubt about 
critical linkages and dynamic features, alternative models can be developed to find 
out which differences matter and to reach robust conclusions. It is also flexible, as 
it allows including and discarding variables easily, and above all it permits working 
with variables and links that are not readily measurable, even though their effects are 
crucial. However, its suitability to investigate SESs can be improved in several ways. 
The intricacy of the feedbacks can be better resolved if a specific tool for pathways 
analysis is developed. Returning the total number of pathways, and their strength, 
between any pair of variables can show how single pathways contribute to specific 
effects, and which ones are more important in mediating the press perturbations. 
The question of link strength deserves attention. We specified in the methodological 
aspects section that link strength is randomly assigned to interaction links during 
simulations. But this does not contradict the qualitative nature of the method; it 
only serves to assign certainty to paths and feedbacks in order to get unambiguous 
predictions, which remain qualitative in nature as only the direction of change for 
the variables is predicted. Pathway anatomy would help selecting those causal chains 
that mostly affect system dynamics. Other relevant features that would improve the 
suitability of loop analysis for modeling SESs include: (1) considering multiple, 
simultaneous press perturbations; and (2) delimiting upper and lower limits for 
the strength of interactions. The first point is related to the fact that SESs are often 
exposed to different types of disturbances whose interplay gives rise to net cumulative 
responses that would be useful to disentangle (e.g., through the identification of the 
specific causative chains). Considering multiple press perturbations would greatly 
contribute to building up an effective diagnostic approach (Kittinger et al., 2013). 
For example, by loop analysis Bodini et al. (2018) diagnosed that multiple press 
perturbations, not only overfishing of small and medium pelagic species, were 
responsible for the restructuring of the Black Sea community during the period 
1960–1989. Moreover, socioeconomic drivers amplify the impacts that are triggered 
by natural processes: for instance, both hypoxia and fisheries management affected 
abalone stock in the Baja California SES (Martone et al., 2017). The second line of 
development is conceived to extend loop analysis in a semi-quantitative direction. 
So far the simulations are performed by randomly sampling interaction strength in 
the uniform interval (0,1]. There are however cases when some interactions are known 
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to be either strong or weak; in such cases, varying the strength of these linkages in the 
whole interval (0,1] does not make sense. However, it is difficult to translate fuzzy 
concepts such as strong and weak into numbers so that boundaries for the links can 
be set. In this respect, sensitivity analysis may help. Either the upper (i.e., 1) or the 
lower (i.e., 10-6) limit of the link magnitude could be iteratively changed so that actual 
boundaries for certain linkages can be identified through a consistency assessment 
of the outcomes produced. For example, performing the sensitivity analysis for the 
strength of specific interactions might help modeling competitive advantages in the 
ecological domain (e.g., Noctiluca scintillans vs zooplankton in the Black Sea; Bodini 
et al., 2018) and power or information asymmetries between socioeconomic actors 
(Bousquet et al., 2015). Therefore, exploring alternative scenarios by constraining 
the strength of some interactions would be of great benefit for modeling SESs. 
It should also be noticed that a uniform distribution is considered by default for 
randomly sampling the strength, but it could be substituted by either normal or 
skewed (e.g., Poisson) distributions.

Concluding remarks
The central issue in the study of SESs is to understand interdependencies that 
cross the boundaries of the classical domains in which scientific and operational 
knowledge have been settled. Contributions in this respect are expected from tools 
that allow reconstructing the causal chains that give rise to such interdependencies 
and that involve variables or components of different nature. For such reconstruction 
to be effective, tools must overcome the barriers that make communication between 
domains difficult: (1) the simpler the language used to describe the phenomena and 
the interactions, the better it is; (2) a lower level of technicality in the algorithms 
facilitates understanding the outcomes; and (3) flexibility widens the range of 
applicability to different contexts. Loop analysis shares most of these features: (1) by 
classifying the interactions in only two categories, positive and negative, it facilitates 
creating connections between variables that differ dramatically in physical form; 
(2) the ease by which a model can be constructed as a graph allows keeping up with 
rapidly changing conditions (i.e., variables and/or links disappear and others become 
important); (3) the algorithm for predictions refers directly to structural features of 
the graph and can be visualized, thus making the outcomes easier to understand; and 
(4) it is also characterized by a wide applicability (often the question of interest is not 
a particular system but a whole class of systems with some similarity of structure). 
Furthermore, loop analysis emphasizes the understanding of mechanisms, which 
is a prime objective when an intellectual and operative framework is taking shape, 
as in the case of SESs.
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