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Abstract: The Discrete Cosine Transform (DCT) is a basic transform block used in Adaptive Multicore Transform 

(AMT), which is a core of High Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC) standards. 

AMT uses artificial intelligence technique to decide on the transform output. The suggested One-Dimensional DCT 

architecture is conceived by 8-point structure Loeffler-DCT technique and synthesized using a floating-point 

Arithmetic. By preserving the structural regularity as the Loeffler-based design, the optimized floating-point 

architecture consumes optimum space and delay thereby increasing the precision. The work focuses on obtaining high 

precision output without compromising on ADP (Area-Delay-Product). Due to the fact that the floating-point 

multiplier unit is developed using shift-add operations, the results reveal the accomplishment of better resolution output 

while maintaining Root Mean Square deviation as low as 0.0062. A total of 117 additions, 66 shifts are employed in 

the suggested architecture. The proposed 1D-DCT is used as a sub-block in developing the architecture of 2D-DCT 

using only 50% of the 1D-DCT subblocks that is needed for the conventional technique. The 8 X 8 2-D DCT, is 

computed using only 8 1-D DCT's and additions, instead of using 16 1-D DCT's, as in the traditional row-column 

method. The model is tested with standard images, which resulted in better PSNR and MSE compared to the standard 

method. In comparison to the state-of-the-art on DCT, the proposed method obtains a root mean square error that is 

negligible up to three decimal places resulting in improvement of PSNR by 17%, with a maximum clock frequency of 

496MHz has been achieved. The proposed design strikes a balance between trade-off parameters such as area, speed, 

and precision. 

Keywords: Discrete cosine transform (DCT), Floating point multiplier (FPM), Field programmable gate array. 

 

 

1. Introduction 

Digital signal processors are one of the most 

rapidly increasing technologies in the coming 

decades due to their diverse applications in numerous 

fields, such as digital speech processing, image 

analysis, and Artificial Intelligence and Machine 

Learning. It is possible to establish the extent to 

which two images are identical in image processing 

by comparing their hues, grey-scales, and depth. 

Hence, digital signal processors are utilised in 

numerous applications. Like other processors, a good 

DSP processor should have the fastest speed, the 

highest code density, and the lowest power 

requirement. Several DSP application-specific 

processors prioritise speed over other relevant criteria 

like space and energy. Owing to the computationally 

intensive nature of DSP algorithms, techniques that 

improve the DSP system's performance are required. 

VLSI architectures for DSP functions offer 

optimization potential. Multiplication is a crucial 

computational operation in DSP functions like the 

FFT, DCT, FIR Filters, etc. In today's technologically 

advanced society, the ability to manage data is 

essential. So, the implementation of a high-end 

architectural design has the potential to have a 

significant impact on the Signal processing [1, 4]. 

The authors conducted a preliminary 

experimental analysis on various transforms to 

analyse the error introduced when an input sample 

with varied sizes is fed into the forward transform 

followed by the inverse transform. Fig. 1 shows the  
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Figure. 1 Comparative analysis of various transforms on 

Mean square error with amount of coefficient retained for 

reconstruction 

 

analysis of various transforms where the mean square 

error is plotted across the size of the input samples. 

The DCT and KL transforms resulted in the least 

mean square error for a higher number of samples. 

KLT is input-dependent, unlike DCT, making DCT 

the superior option. 

The paper focuses on implementing 1D-DCT on 

FPGA using efficient computational techniques and 

to integrate the developed 1D-DCT to implement 2D-

DCT. Existing models discussed in the literature 

focus primarily on enhancing area, delay, power, and 

accuracy. Due to the trade-off between these metrics, 

the design must make concessions in one or more of 

them. The advantage of the proposed design is that it 

achieves high precision through optimal resource 

utilization and accomplishes a balance in the metrics 

considered. Several VLSI architectures for DCT are 

proposed in the literature that use effective 

computational techniques to improve speed, area, 

power, and accuracy [2, 3]. 

The paper's contributions are architectural 

improvisations at the macro and micro levels.  Macro 

level Optimization: The suggested work employs an 

efficient loeffler technique that employs the 

theoretically fewest multiplier blocks within it, which 

are substituted with floating point multiplier blocks 

to produce high precision output. Micro level 

optimization: The floating-point multiplier uses add-

shift blocks, resulting in multiplier-less 

multiplication. These improvements result in optimal 

hardware resource efficiency, optimal speed, low 

mean square error, good PSNR, and accomplishes a 

balance in the metrics considered. 

The structure of the paper is as follows: The 

second section focuses on the relevant literature 

survey on existing models. The third section provides 

extensive detail regarding the computational 

techniques used in the work. The fourth section 

focuses on the proposed architectural design of DCT. 

The experimental findings and their inferences are 

discussed in section 5. Section 6 concludes the paper.  

2. Existing models 

With just 11 multiplications and 29 additions, C 

loeffler developed a method for implementing 1D-

DCT for 8 points. A novel class of DCT algorithms 

were proposed that are practical and quick [5]. The 

proposed architecture considers optimizing the 

loeffler-DCT technique and efforts are made to 

reduce the computational liability further.  

With just 11 multiplications and 29 additions, C 

loeffler developed a method for implementing 1D-

DCT for 8 points. A novel class of DCT algorithms 

were proposed that are practical and quick [5]. The 

proposed architecture considers optimizing the 

loeffler-DCT technique and efforts are made to 

reduce the computational liability further.  

Anjana and Samuel presented a method for 

implementing a floating-point multiplier using a 

Vedic multiplier on DCT. A high-speed FPM is 

developed with the help of Vedic mathematics [6]. 

This paper concentrates on the implementation of a 

Vedic multiplier chosen for its consistent structure, 

but it leads to a steady increase in latency and size. 

FPMs contribute more to digital signal processors' 

delay paths. 

R. L. Chung suggested a unique loeffler DCT 

design based on a coordinate rotation digital 

computer (CORDIC) mechanism. The described 

design was fabricated utilizing a UMC 0.18-m 

CMOS process with an 8.04K gate count and 100 

MHz operating frequency [7]. However, Loeffler 

based DCT employs CORDIC which uses fixed-point 

arithmetic, which can lead to quantization problems 

in calculations. Over the course of several iterations, 

these mistakes may begin to distort the final outcome. 

Deivakani suggested a method for implementing 

DCT that utilizes a recursive algorithm in general. 

The recurrent sparse matrix has been disintegrated by 

utilizing the vector symmetry from the DCT basis to 

build a flexible and scalable approximation approach 

for enforcing the longest software and hardware by 

employing an 8-point approximation to obtain a DCT 

[8]. However, recurrent sparse matrix take up more 

space than dense matrices since they have to keep 

track of both the non-zero values and their associated 

indices. The extra space required for storing matrix 

elements of higher dimensions can become a serious 

issue in particular applications. 

Masera developed an area-efficient fixed-point 

architecture for the implementation of the discrete 

cosine transform (DCT) of different sizes in HEVC. 

The proposed method has reduced rate-distortion 

losses and achieved significant complexity savings 

compared to existing implementations. Two families 

of architectures for the 2D-DCT are designed: folded 
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and full-parallel [9]. The proposed method uses 

Integer DCT approximation which yields higher 

mean square error deviations. 

Thiruveni provided a digital implementation of an 

approximate 16-point DCT architecture based on the 

modified gate diffusion input (MGDI) approach. The 

simulation result indicates that area, power, and 

latency are reduced by 20%, 16%, and 7%, 

respectively [10]. The suggest method uses low 

complexity DCT kernel matrix due to which the 

obtained results deviated from the standard 

coefficient. Such architecture is not preferred in the 

high precision requirement applications. 

The N-point 1D-Integer DCT architecture 

suggested by M. A. Basri and N. M. Sk comprises a 

signed adjustable carry save adder tree-based 

multiplier unit. The parallel integer DCT delivers an 

improvement over the odd-even decomposition-

based design in terms of worst path delay [11]. 

However, the Parallel architecture uses 2N 1D-DCT 

blocks for NxN 2D-DCT computation there by 

increasing the hardware requirements. The suggested 

folded architecture uses N 1D-DCT blocks.  

DCT is frequently employed in digital signal 

processing because it approaches the statistically 

ideal Karhunen-Loeve transform (KLT) for 

inseparably linked signals. An efficient 2-D discrete 

cosine transform calculation was given by Sang Uk 

Lee in a study (DCT). Instead of utilising N/2 1-D 

DCTs as in the typical row-by-column method, it is 

demonstrated that N X N DCT, where N = 2m, can 

be computed using only N/4 1-D DCTs and additions 

and multiplications requirement. The row-column 

technique has twice as many multiplications as the 

algorithm that was suggested. It's even faster than that 

of other fast algorithms, which have far more 

multiplication operations [12, 13]. The suggested 

technique employs only N/2 1D-DCT blocks but 1D-

DCT architecture consumes 32 multiplications, 

which are optimized using a new distributed 

architecture (NEDA). Even though the design 

complexity of 1D-DCT is reduced but it needs more 

arithmetic computation. 

The existing models have majorly focused on 

employing efficient computational techniques, 

namely coordinate rotation digital computer 

(CORDIC) mechanism [14-16], which approximates 

the cosine term appearing in the DCT definition 

thereby amplifying the mean square error in the 

output coefficients. CORDIC mechanism is suited for 

area optimization requirements. The pipeline 

architectures discussed in the articles [17] results in 

delay overhead. The trade-off exists between area and 

speed performances in the pipeline architectures.   

Akman proposed 2D-DCT design which reduces 

calculation complexity based on erroneous 

calculations in the steps, which can be ignored in the 

quantizing step [21]. Although the technique 

proposed reduces complexity in computation but 

yields high MSE and low PSNR compared to the 

conventional methods.  

Darji and Solanki suggested an architecture 

which eliminated the floating-point multiplier to 

reduce hardware complexity. It employs MCM 

(multiple constant multiplication) [22]. However, 

there exists a trade-off between eliminating floating 

point multiplication with accuracy.  

Maher and Srikanthan demonstrated that parallel 

topologies for 1D integer DCT of varying lengths can 

be derived from matrix multiplication schemes 

utilizing minimal adders. The suggested 2D DCT 

architecture makes use of a unique transposition 

buffer that, without altering the dimension of the 

transposition buffer, gives twice the throughput of 

existing solutions [25]. However, the N point 1D-

DCT architecture involves the N/2 point 1D-DCT 

blocks. This iterative structure increases with 

increases as the size of N.  

P. Garg and K. Suneja proposed 1D-DCT design 

using floating point units. The outcomes indicate 

improved precision and computational time [26]. 

However, the method employed uses 32 

multiplications for 8 input data set.  

To summarize, a review of the available literature 

demonstrates the requirement for design, to balance 

the trade-off between accuracy, processing time, and 

space utilization. The suggested method aims to 

enable an effective investigation of the design space 

to find the best compromises among the parameters 

under consideration. The proposed study employs 

Loeffler DCT, which is proven in the literature to be 

computationally efficient. Furthermore, floating-

point units are used in it to improve precision. The 

floating-point units are designed with care to use 

minimal time with a slight area utilization overhead. 

3. Efficient computational blocks 

The Proposed 1-D DCT architecture results in 

high precision model due to the usage of efficient 

computational blocks floating point arithmetic. Fig. 2 

depicts the architecture of floating-point adder/ 

subtractor. Exponent comparison, pre-aligning, 

adding, normalising, and round off are the five phases 

of the traditional floating-point addition algorithm. 
The phases for computing addition or subtraction (X 

± Y) for the given floating-point integers X = (s1, e1, 

m1) and Y = (s2, e2, m2) are described in detail. The  
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Figure. 2 Architecture of Floating-point Adder-Sub 

 

phases for computing addition or subtraction (X ± Y) 

for the given floating-point integers X = (s1, e1, m1) 

and Y = (s2, e2, m2) are described in detail. 

The architecture has comparator unit which 

compare the exponents of the two numbers X and Y 

which are to be added/subtracted. If exponent of X, 

e1 is less than exponent of Y, e2 (e1< e2), swap 

position of mantissas (m1 and m2). Assign the bigger 

exponent as the result's provisional exponent. Align 

the mantissas in second step by moving the smaller 

mantissa to the right by (|e1-e2|) bits. The arranged 

mantissas of both X and Y are now added or 

subtracted to get an intermediate result of the 

mantissa using pre-alignment unit. 

Normalization process is carried out to represent 

the result in IEEE standard floating-point 

representation. If the tentative result contains leading 

zeros, shift the result to the left and strip the number 

of leading zeros from the exponent. Shift operation 

on floating point representation is carried out as 

mentioned. For n-left shift, add n-value to the 

exponent part of floating-point binary number. For n-

right shift, subtract n-value to the exponent part of 

floating-point binary number.  

Exception Handler unit handles certain exception 

that may occur in the algorithm. A flag is set by 

default, and the calculation proceeds. Exceptions are 

made in the following situations: Overload (when the 

rounded quantity is big to represent). Infinity is 

assigned for the result; Under-load (when the 

rounded quantity is too small to represent); Divide by 

zero, Uncertain results, Invalid. This flag is set for 

NAN.  

The FPM needs a normal multiplier design block 

as a sub-block to facilitate the process of floating- 

 

 
Figure. 3 Architecture of 11-bit serial multiplier using 

Shift-Add operations [2] 
 

point multiplication. There is immense literature on 

efficient multiplier design. The proposed architecture 

utilizes serial multiplier design [2] shown in Fig. 3. It 

comprises of an accumulator to store the multiplier, 

intermediate results and final product, control unit to 

carry on the process. The multiplier architecture is 

extended to accommodate 16-bit inputs to fit to the 

need of the proposed DCT architecture. 

Multiplying by shifting and adding is all that is 

required here. As soon as a partial product is 

generated, it is added and saved in the accumulator. 

Adding two 11-bit values needs a multiplicand of 11 

bits, a multiplier of 11 bits, and 22-bit result storage. 

The product register acts as an accumulator, adding 

up the incomplete products. If the multiplier's LSB bit 

is set to '1,' the multiplicand is pushed to the 

accumulator preceded by a right shift; if the 

multiplier's LSB bit is set to '0,' the product is only 

shifted. This iteration is repeated until the value 

reaches the 11th bit. There are several control signals 

that indicate when the process is complete: add, shift, 

load, start, and done. 

The proposed architecture uses half precision 

IEEE 754 floating point standards, where 10-bits are 

allocated for mantissa (M), 5-bits for exponent (E) 

and 1-bit for sign (S) as shown in Eq. (1).  

 

𝑉 = (−1)𝑠 ∗ (1 + 𝑀) ∗ 2𝑏;   𝑏 = 𝐸 − 15     (1) 

 

Fig. 4 depicts the architectural design of floating-

point multiplier unit. The architecture is modified to 

adjust with the required specification for the 

proposed design of 1D-DCT. The FPM block 

contains Sign bit calculator, Unsigned Adder-

Subtractor, 11-bit multiplier, and Normalizer. The 

sign bit is computed using the rules of multiplication 

of signed numbers. When two numbers are multiplied, 

the result is a negative quantity when any of the  
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Figure. 4 Architecture of Floating-point multiplier unit 

 
Table 1. Floating-point representation of scaling factors 

Scaling 

factor 

Decimal 

value 

IEEE 754 Half precision 

representation 

cos(3π/8) 0.3826 0011011000011111 

sin(3π/8) 0.9238 0011101101100010 

cos(π/16) 0.9807 0011101111010111 

sin(π/16) 0.1950 0011001000111101 

cos(3π/16) 0.8314 0011101010100111 

sin(3π/16) 0.5555 0011100001110010 

 

multiplied values is negative. When two numbers 

have the same polarity, the sign bit is always positive. 

A basic XOR gate will suffice the requirement and 

hence used in the construction of a sign bit computing 

unit. 

The unsigned adder-subtractor: responsible of 

adding the first input's exponent to the other input's 

exponent and deducting the bias value (1b) from the 

summation output (i.e. e1 (Exponent) + e2 

(Exponent) − Bias). Here, a 5-bit adder and a 6-bit 

Subtractor are utilised, and bias value is 15 (2k-1-1, 

where k is number of exponent bits) for the half 

precision standards. Unsigned multiplier unit 

controls the process of unsigned multiplication of 

mantissas. The least significant 10 bits of each of the 

input's mantissa is supplied as an input this unit. One 

additional MSB bit with logic '1' is appended for both 

the inputs while supplying to suffice the demand of 

standard representation of floating-point number i.e., 

1. Mantissa. The performance of the multiplier is 

chosen in such a way that it has no negative effect on 

the overall performance of the DCT design. It is 

necessary to normalize the result of the mantissa 

multiplication so that it begins with the number one 

to the left of the decimal point (a leading '1'). 

Considering that the inputs are normalized numbers, 

the partial product has the first bit (bit 21) set to one, 

effectively starting the resultant multiplication 

product with a decimal point. The result would yield 

1 bit (MSB bit) from sign bit calculator unit, 5-bit 

(exponent bits) from unsigned adder-subtractor unit, 

and the rest 10 bits (Mantissa) through normalized 

serial multiplier block. Overall, the authors could 

multiply the two floating point integers using a shift-

add operation rather than a multiplication. This 

significantly improves the performance of the DCT 

unit. 

4. Architectural design of loeffler DCT 

The name DCT comes from the fact that the N*N 

transform matrix Y are produced as a function of 

cosines. The DCT is comparable to DFT, and in terms 

of compression, the DCT outperforms the DFT. In the 

Eq. (2), the N-point DCT is defined as follows [4] for 

an input stream {x (n)}, n ϵ [0, N −1], 

 

𝑌(𝑘) =  √
2

𝑁
  𝛼(𝑘) ∑ 𝑥(𝑛)𝑐𝑜𝑠 (

(2𝑛+1)𝑘𝜋

2𝑁
)𝑁−1

𝑛=0   (2) 

 

Where α(0)=1/√2  and α (k)=1 if  k ≠0; 

 

The proposed work focuses on Loeffler 1D-DCT 

design [5], which entails 11 multiplications and 29 

additions in the design. The proposed architectural 

design of 1D-DCT, Loeffler 1D-DCT is implemented 

using Floating point arithmetic to accomplish higher 

precision. The care has been taken to reduce the 

computationally intense operations such as 

multiplication operations are replaced by shift-add 

processes. These yield optimum results compared to 

most of the existing techniques in the literature. It has 

a few scaling factors that are expressed in terms of 

sine and cosine values. Floating point format is 

utilised to express the scaling factors in Eq. (2). Table 

1 lists scaling factors in corresponding floating-point 

integers. 

The proposed architectural design of 1D-DCT 

employing Floating point arithmetic units is shown in 

Fig. 5. The design utilizes the symmetric property of 

DCT basis function matrix. The architecture can be 

analysed in four stages for simplicity. During the first 

stage of procedure, the inputs are added and 

subtracted accordingly. Assume x0, x1, x2, x3, x4, x5, 

x6 and x7 as inputs to DCT block. The first stage 

results in the intermediate values S0, S1,…., S7, 

C1,…,C3 and further stages proceed as illustrated. 

 

Stage 1:S0=x0+x7,S1=x1+x6,S2=x2+x5, S3=x4+x3 

Stage 1: S4=x7-x0, S5=x6-x1, S6=x5-x2, S7=x4-x3 

Stage 2:C0=S0+S3,C1=S2+S1,C2=S2-S1,C3=S3-S0 

Stage 3: Y0=C0+C1 

 

Some of the outputs need additional stage of 

computation whose data-path is depicted in the  
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Figure. 5 Proposed Architectural design of Loeffler 1D 

DCT with FPU 
 

 
(a) 

 
(b) 

Figure. 6 Architectural design of: (a) FPU block used in 

1D DCT design (method 1), and (b)FPU block with 

reduced number of multiplications (method 2) 

 

 

architectural design of Loeffler 1D- DCT shown in 

Fig. 5. The proposed architecture follows 8X8 

Loeffler 1D-DCT design with inclusion of Floating-

point adders, subtractors and multipliers in order to 

achieve high precision output. Loeffler proposed in 

[5] to derive DCT coefficients in four phases, as seen 

in Fig. 5. The first stage is performed by four FPA 

and four FPS blocks, while the second stage is 

composed of two FPA, two FPS, and two FPU 

(multiplier, adder, and Subtractor) blocks. Each FPU 

block consumes 4 FPM but can be decreased to 3 

FPM using constant adjustments. The third stage is 

made up of three FPA, three FPS, and one FPU block. 

The fourth level stage employs two FPM blocks to 

accomplish √2 multiplication, along with one FPA 

and one FPS. Eqs. (3) and (4) defines the FPU block 

shown in architecture. The two inputs are considered 

as I0, I1 and outputs are Z0, Z1. The same equations 

are applied to construct FPU blocks 1 and 2. 

 

𝑍0 = 𝐼0. 𝑐𝑜𝑠 (
𝑚𝜋

2𝑁
) + 𝐼1. 𝑠𝑖𝑛 (

𝑚𝜋

2𝑁
)            (3) 

 

𝑍1 = −𝐼0. 𝑠𝑖𝑛 (
𝑚𝜋

2𝑁
) + 𝐼1. 𝑐𝑜𝑠 (

𝑚𝜋

2𝑁
)       (4) 

 

Where m=1 or 3; N=8. Fig. 6 (a) illustrates the 

internal structure of an FPU block. The structure 

follows Eqs. (3) and (4) using floating point blocks. 

In the architecture, trigonometric functions cosine 

and sine are represented as C and S respectively. 

cos(mπ/16) = Cmπ/16; m=1 or 3; sin(mπ/16) = 

Smπ/16; m=1 or 3.  The FPU block can be further 

optimised with only 3 multiplications and 3 additions 

requirement as suggested by Loeffler modified fast 

DCT computation algorithm. The Eqs. (5) and (6) are 

the modified versions of Eqs. (3) and (4) respectively. 

 

𝑍0 = (− 𝑘𝑠𝑖𝑛 (
𝑚𝜋

2𝑁
) + 𝑘𝑐𝑜𝑠 (

𝑚𝜋

2𝑁
)) 𝐼1 + 

𝑘𝑐𝑜𝑠 (
𝑚𝜋

2𝑁
) (𝐼0 + 𝐼1)   (5) 

 

𝑍1 = (− 𝑘𝑠𝑖𝑛 (
𝑚𝜋

2𝑁
) − 𝑘𝑐𝑜𝑠 (

𝑚𝜋

2𝑁
)) 𝐼0 

+𝑘𝑐𝑜𝑠 (
𝑚𝜋

2𝑁
) (𝐼0 + 𝐼1)    (6) 

 

The modified block diagram is shown in Fig. 6b. 

With this, the proposed Loeffler 1D-DCT design 

requires 11 multiplications and 29 additions as 

compared to 14 and 26 [5]. The inverse DCT employs 

the same algorithmic structure as the forward DCT, 

but in a reverse context. The architecture for inverse 

transform is not shown to avoid the duplication. 

5. 2D-DCT using N 1D-DCT 

The two-dimensional DCT sequence Ymn; where 

m and n ranges from 0 to N-1is given in Eq. (7) for a 

given data sequence xij where i and j ranges from 0 

to N-1 [4,13]. 
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Figure. 7 Datapath of the 2D-DCT architecture (even) 

 

 
Figure. 8 Control Logic of proposed 2D-DCT architecture 
 

𝑌𝑚𝑛 =
4

𝑁2
𝑢(𝑚)𝑢(𝑛) ∗ 

∑ ∑ 𝑋𝑖𝑗𝑐𝑜𝑠
(2𝑖 + 1)𝑚

2𝑁

𝑁−1

𝑗=0
𝜋  

𝑁−1

𝑖=0
𝑐𝑜𝑠

(2𝑖 + 1)𝑛

2𝑁
𝜋 

𝑤ℎ𝑒𝑟𝑒 𝑢(𝑛) = 𝑢(𝑚) = {
1

√2
,   𝑚 = 𝑛 = 0  

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

 

The proposed architectural design of 1D-DCT is 

applied for realizing  𝛼ρ𝑙  Eq. (8).  

 

𝛼𝜌𝑙 =  ∑(𝑥𝑖𝑗(𝜌,𝑎) + 𝑥𝑖𝑗(𝜌,𝑏)) cos (
(2𝑖 + 1)𝜔

2𝑁
)

𝑁−1

𝑖=0

𝜋  

(8) 

 

𝛽ρ𝑙  is computed for odd value of n using (9). The 

quotient  𝑞𝜌𝑖  is computed as (ρi + (ρ-1)/2)/N, to 

adjust the sign of 𝛽ρ𝑙 . 

 

𝛽𝜌𝑙 =  

∑ (−1)𝑞𝜌𝑖(𝑥𝑖𝑗(𝜌,𝑎) + 𝑥𝑖𝑗(𝜌,𝑏)) 𝑐𝑜𝑠 (
(2𝑖+1)𝜔

2𝑁
)𝑁−1

𝑖=0 𝜋  

(9) 

 

Where ω is m±nρ for ω in the range 0 to N-1. If m±nρ 

is out of the range, then new value ω is computed 

using ω mod 2N. The cosine function of trigonometry 

dictates the sign convention. Using 1-D DCT, α_ρl 

and β_ρl are computed using Eqs. (10a), (10b), and 

then they are added and subtracted in the appropriate 

manner to compute the final output, Ymn, as 

illustrated in the suggested architecture of 2-D DCT 

shown in Fig. 7. 

 

𝑦𝑚𝑛 =  
1

2
∑ (𝛼𝜌𝑙+ + 𝛼𝜌𝑙−)𝑁−1

𝜌=1 (𝑒𝑣𝑒𝑛)            (10a) 

 

𝑦𝑚𝑛 =  
1

2
∑ (𝛽𝜌𝑙+ + 𝛽𝜌𝑙−)            𝑁−1

𝜌=1 (𝑜𝑑𝑑) (10b) 

 

The postfix +, – to α_ρl and β_ρl indicates ω=m+nρ 

and ω=m-nρ respectively. Several architectures for 

designing 2D-DCT using 1D-DCT are available in 

the literature. The traditional method necessitates 2N 

1-D DCT blocks that employ the row-column 

decomposition method. The architecture suggested in 

[13] is used here, which employs only N 1D-DCT 

blocks. Fig. 7 depicts the architecture of 2D-DCT (the 

even part), whereas the odd part is similar to the even 

except the input groups and minor sign changes. 

The 2D-DCT architecture is designed for N=8. 

The image dataset for higher dimensions is split into 

the multiple blocks of 8X8 and fed into the 2D-DCT 

architecture. This process is carried out by Moving 

window architecture. Fig. 8 depicts the arrangement 

and control logic for processing an image input to the 

proposed design. For the functional verification 

purpose, the 2D-DCT output coefficients are 

processed and fed as an input the inverse 

transformation of 2D-DCT. The structure of the 

inverse DCT remains same as the DCT is a separable 

and orthogonal transform. The results are matched 

with original input data, which are discussed in the 

next section. 

6. Results and discussions 

The Authors have made use of Xilinx Synthesis 

Tool (XST) to design and verify the proposed 

architecture. The hardware implementation of the 

proposed DCT design is carried out on 28nm, 40nm, 

65nm technology node devices of Vertex, Kintex 

FPGA device family. The Chip Scope pro tool suite, 

which offers a variety of modules that can be added 

to the HDL model to capture inputs and outputs 

directly from the FPGA hardware, is used since the 

number of input and output ports is vast. An effort has  
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Table 2. Precision comparison and RMSD computation 

Sample 

Input 

sequence 

1D- DCT output Precision 

Manual 

Calculation 

Proposed 

architecture 

9 16.2635 16.26 0.0035 

4 -2.9341 -2.93 -0.0041 

1 3.537 3.53 0.007 

2 5.8307 5.82 0.0107 

8 2.1213 2.12 0.0013 

7 -0.5625 -0.56 -0.0025 

8 -0.6997 -0.69 -0.0097 

7 1.7542 1.75 0.0042 

RMSD = 0.0062 

 

 
Figure. 9 Analysis of computations involved in the 

conventional and proposed method 

*Multipliers are replaced by shift-add operation block 
 

 
Figure. 10 Saving achieved in number of computations 

 

been made to make it easier to provide input and to 

display output via VIO (Virtual Input/Output) 

modules. This tool can monitor and influence the 

design in real time.  The performance metric 

considered for the evaluation of precision of DCT is 

root mean square deviation (RMSD). Eq. (11) defines 

RMSD of the output of DCT architecture to the 

manually calculated output values. 

 

𝑅𝑀𝑆𝐷 =  √∑ 𝐸𝑖2𝑁
𝑖=1

𝑁
                                    (11) 

 

Where Ei = (Op – Om); Op is output of proposed 

DCT; Om is output computed manually.  N is input 

sequence length. For experimentation, input length of 

8 is selected. The RMSD resulted for the experiment 

is 0.0062 as shown in Table 2, which is reasonable 

considering the complexity involved in the 

computation of DCT coefficients, making the 

proposed architecture high precision. 

The process of reading and writing the inputs and 

outputs to the floating-point architectures (FPU) are 

quite complex and time consuming. The given set of 

input sequence is to be initially converted to half 

precision IEEE 754 standard format and the same is 

to be done while reading the outputs. When 

considering eight 16-bit inputs, a total of 8*16-bit = 

128-bit input and output must be handled. This is not 

possible with the FPGAs where usually 32 input pins 

and 32 outputs pins are provided. The state-of-the-art 

tool is employed for realizing the intended design on 

the FPGA. All 128 bits of input is provided virtually 

using Chipscope pro VIO and the outputs are 

displayed virtually on the monitor through the FPGA.   

Fig. 9 provides the analysis on number of 

computations required for the conventional and 

proposed method. As the number of computations in 

conventional method increases exponentially with 

respect to increase in the number of samples, the 

logarithmic scale is considered across the y-axis. 

The Eqs. (12) and (13) are used to derive the 

values of the respective parameters for proposed 1D-

DCT. 

 

      No. of Multiplication, 𝑀1 = (
𝑁

2
) 𝑙𝑜𝑔2

𝑁 − 1  (12) 

 

     No. of Addition,𝐴1 = (𝑁)𝑙𝑜𝑔2
𝑁 + (

𝑁

4
)

2
+ 1 (13) 

 

The plot proves that proposed method 

performance increases with increases in the sample 

size. Fig. 10 shows the saving achieved in the number 

of multiplications and additions using the proposed 

method, which is computed by taking the ratio of 

proposed to conventional method. The multiplication 

is computationally intense compared to additions and 

hence the results are favourable.  

Fig. 11 shows the obtained RTL schematic of 

proposed 1D-DCT (method 1) for N=8 from Xilinx 

synthesis tool. The RTL design overview of 1D-DCT 

shows that 11 FPMs and 29 FPS/FPAs are employed 

in the proposed 1D-DCT architecture. Table 3 

illustrates the comparative analysis of the proposed 

DCT with the existing method. The loeffler model 

uses the least multiplier. The multipliers are replaced 

by Shift-add in order to achieve the favourable results.  
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Figure. 11 Register Transfer Logic (RTL) netlist schematic of proposed 1D-DCT 

 
Table 3: Comparative analysis of proposed DCT (N=8) with existing models 

Reference Transform 
Computation 

method used 
Technology 

Hardware 

Utilization 

Computation 

time (ns) 

Max. 

Frequency 

(MHz) 

RMSD PSNR 

Chung [7] 2D-DCT 
Recursive 

CORDIC 
180nm 8400 - 100 0.06 31.54 

Lee [16] 1D-DCT CORDIC 130nm 22400 - - - 31.45 

Sun [18] 2D-DCT 
CORDIC- 

Loeffler DCT 
130nm 44920 15.08 - - 31.92 

Meher 

[25] 

2D Int 

DCT 

 Matrix 

Vector Prod. 

Unit (MVPU) 

90nm 37750 25.6 380 - - 

P. Garg 

[26] 
1D-DCT  

Approx. 

Floating-

point adder 

28nm 6446 28.05 - 0.04 27.92 

Singhadia 

[27] 
2D-DCT 

Transform 

Symmetricity 
40nm 39625 - 149.35 - - 

Proposed 

design  

1D and 

2D-DCT  

Loeffler DCT 

with FPU and 

Shift-add 

multiplication 

28nm 
8731 (1D) 

34924(2D) 
18.3 496.2 

0.0064 37.24* 

 40nm 
8778(1D) 

35712(2D) 
22.7 410 

*50% DCT coefficients unitized for reconstruction; ‘- ‘: Values not mentioned in the literature 

 

The analysis shows that the balance in the trade-

off factors such as Hardware utilisation, Time, MSE 

and PSNR is achieved. Without utilizing more 

hardware, the proposed design could achieve higher 

accuracy with optimum computational delay. 
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Figure. 12 Device utilization summary of the 1D-DCT 

design implemented on various FPGA devices 
 

 
Figure. 13 Timing analysis of the 1D-DCT design 

implemented on various FPGA devices 
 

Table 4. Computational complexity comparison of 

proposed 1D-DCT (N=8) with existing models 

Reference Multipliers Adders Shift 
Storage 

units 

Chung [7] 
Recursive 

algorithm 
108 96 64 

Lee [16] CORDIC 120 92 24 

Sun [18] CORDIC 104 82 12 

Sungwook 

[23] 

NEDA 
32 88 40 

Singhadia 

[27] 

Transform 

Symmetry  
800 416 0 

Proposed 

design  

FPU with 

Shift-add  
117 66 8 

 

   
Figure. 14 Reconstructed images by feeding the DCT 

coefficients to the inverse DCT: (a) retaining 50% of the 

coefficients, and (b) retaining 25% of the coefficients 
 

The proposed architecture is designed using HDL 

and is implemented on various FPGA hardware with 

varied technology nodes to evaluate the performance. 

The device utilization summary is shown in Fig. 12 

depicts that the number of slice registers and LUTs 

utilized by the design on the FPGA devices- 65nm 

(xc5vlx50t), 45nm (xc6slx75t), 40nm (xc6vlx75t)  

 

 
Figure. 15 Comparison of MSE and PSNR 

 

 and 28nm (xc7k160t). The average gate count (LUT) 

consumption is 8.5K LUTs. 

The timing analysis of the proposed DCT is 

carried out on various technology node FPGAs and is 

shown in Fig. 13. It reveals that the maximum 

combinational path delay resulted in the range of 

18ns to 51ns. The maximum operating frequency of 

the clock obtained is 496MHz on xc7k160t FPGA. 

Table 4 displays the computational complexity of 

numerous existing approaches that have been studied 

in the literature. The number of multipliers and 

adders needed for each of the architecture is tabulated. 

It is evident that the proposed architecture uses 

optimum number of multipliers and adders in 

comparison with existing efficient techniques.  Fig. 

14 Shows the sample input image data compared with 

the reconstructed image output by retaining 50% and 

25% DCT coefficients. The results comprehend the 

functionality of the proposed architecture. 

Mean square error and PSNR are computed for 

the 2D-DCT design with varied percentage of 

retention of the DCT coefficients is provided in Fig. 

15.  

Although the proposed architecture employs a 

similar design structure to the Loeffler-based DCT 

design presented in the literature, the proposed design 

accomplishes greater PSNR of 37.24dB as compared 

with 31.92dB in CORDIC loeffler based DCT [8], 

without compromising much on speed and area. 

Utilizing floating point arithmetic units contributes to 

its high precision construction. Using shift-add 

operations rather than multipliers improves hardware 

utilization and reduces the combination path delay. 

7. Conclusion 

The work presents a high precision 1D-DCT 

architectures employing floating point arithmetic unit. 

The proposed model implements 1D-DCT using 8X8 

Loeffler architecture which utilizes 14 

multiplications-26 additions (method 1) and 11 

multiplications-29 additions (method 2). The 

floating-point arithmetic unit consists of serial 
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multiplier blocks, which are made up of shift-add 

operations rather than true multiplication operations. 

The proposed method uses 117 additions, 66 shifts 

and 8 storage units of 16-bits, which shows 

improvements in comparison with existing models. 

The Computational time and hardware utilization are 

found to be optimum considering the computationally 

intense floating-point units. The proposed 

architecture is implemented on various FPGA 

devices discussed. Because of the high precision 

computation, which enables accuracy up to three 

decimal points, the Root Mean square error deviation 

is negligibly small. The experimental results 

demonstrate that the proposed model significantly 

enhanced the required number of computations and 

precision. In addition, the PSNR has improved by 

17%, and the maximum clock frequency attained is 

496MHz. The proposed design strikes a balance 

between trade-off parameters such as area, speed, and 

precision. The 2D-DCT is tested using a sample 

image and results of MSE and PSNR are found to be 

favourable. Further, the proposed architecture can be 

extended to higher lengths of input sequence.  
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