Breve revisión sobre la síntesis de los nanomateriales más usados como soportes y catalizadores en diversas aplicaciones

Contenido principal del artículo

C. E. Soto-Arteaga
https://orcid.org/0000-0002-8405-0122
E. D. Gutiérrez-López
https://orcid.org/0000-0001-6135-9074
Y. Esqueda-Barrón
https://orcid.org/0000-0002-0049-371X
J. N. Díaz de León
https://orcid.org/0000-0002-5828-8583

Resumen

El desarrollo de nanocatalizadores de alto rendimiento depende de la generación de sitios superficiales estables y activos a escala atómica mediante el control sistemático del tamaño, la forma y la composición química de metales y óxidos metálicos a nanoescala. En este trabajo se mencionan la síntesis y aplicación de nanomateriales basados principalmente en alúmina (Al2O3), Titania (TiO2) y algunos otros de menor uso como el óxido de cerio (CeO2). Asimismo, se describen brevemente sus características morfológicas, texturales y fases cristalográficas obtenidas. Se destaca la importancia de los métodos de síntesis en la morfología y estructura de las nanopartículas y cómo esto afecta a la actividad catalítica de los soportes y catalizadores preparados con ellas. 

Detalles del artículo

Cómo citar
Soto-Arteaga, C. E., Gutiérrez-López, E. D., Esqueda-Barrón, Y., & Díaz de León, J. N. (2023). Breve revisión sobre la síntesis de los nanomateriales más usados como soportes y catalizadores en diversas aplicaciones. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16(31), 1e-24e. https://doi.org/10.22201/ceiich.24485691e.2023.31.69777
Sección
Artículos de revisión

Citas

Afanasiev P. Topotactic synthesis of size-tuned MoS 2 inorganic fullerenes that allows revealing particular catalytic properties of curved basal planes. 2018.

Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution. Physical Chemistry Chemical Physics. 2013;15(9):3027-46.

Anjali Das CG, Ganesh Kumar V, Stalin Dhas T, Karthick V, Vineeth Kumar CM. Nanomaterials in anticancer applications and their mechanism of action-a review. India Earth Science and Technology Cell (Marine Biotechnological Studies. 2022;:600119-.

Bagheri S, Muhd Julkapli N, Bee S, Hamid A. Titanium dioxide as a catalyst support in heterogeneous catalysis. 2014.

Bamwenda GR, Tsubota S, Nakamura T, Haruta M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catalysis Letters. 1997;44(1/2):83-7.

Bratlie KM, Lee H, Komvopoulos K, Yang P, Somorjai GA. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Letters. 2007;7(10):3097-101.

Busca G. The surface of transitional aluminas: a critical review. Catalysis Today. 2014;226:2-13.

Celaya CA, Méndez-Galván M, Castro-Ocampo O, Torres-Martínez LM, Luévano-Hipólito E, Díaz de León JN, Lara-García HA, Díaz G, Muñiz J. Exploring the CO2 conversion into hydrocarbons via a photocatalytic process onto M-doped titanate nanotubes (M = Ni and Cu). Fuel. 2022;324.

Chen X, Mao SS. Synthesis of titanium dioxide (TiO 2) nanomaterials. Journal of Nanoscience and Nanotechnology. 2006;6(4):906-25.

Dabbagh HA, Rasti E, Yalfani MS, Medina F. Formation of γ-alumina nanorods in presence of alanine. Materials Research Bulletin. 2011;46(2):271-7.

Demir-Cakan R, Baccile N, Antonietti M, Titirici M-M. Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. 2022.

Díaz de León JN, Antunes-García J, Alonso-Núñez G, Zepeda TA, Galvan DH, Reyes JA de los, Fuentes S. Support effects of NiW hydrodesulfurization catalysts from experiments and DFT calculations. Applied Catalysis B: Environmental. 2018;238:480-9.

Díaz de León JN, Rodríguez JR, Rojas J, Esqueda-Barrón Y, Cárdenas L, Chowdari R, Alonso-Núñez G, Fuentes-Moyado S. new insight on the formation of sodium titanates 1D nanostructures and its application on CO2 hydrogenation. Frontiers in Chemistry. 2019;7:1-11.

Díaz de León JN, Rojas J, Domínguez D, Esqueda-Barrón Y, Romo-Herrera JM, Fuentes-Moyado S. The effect of shape and size of 1D and 0D titanium oxide nanorods in the photocatalytic degradation of red amaranth toxic dye. Nano-Structures and Nano-Objects. 2021;26:100738-.

Díaz de León JN, Petranovskii V, Los Reyes JA de, Alonso-Núñez G, Zepeda TA, Fuentes S, García-Fierro JL. One dimensional (1D) γ-alumina nanorod linked networks: synthesis, characterization and application. Applied Catalysis A: General. 2014;472:1-10.

Díaz de León JN, Zepeda TAA, Alonso-Núñez G, Galván DHH, Pawelec B, Fuentes S. Insight of 1D γ-Al2O3 nanorods decoration by NiWS nanoslabs in ultra-deep hydrodesulfurization catalyst. Journal of Catalysis. 2015;321:51-6.

Flytzani-Stephanopoulos M. Gold atoms stabilized on various supports catalyze the water-gas shift reaction. Accounts of Chemical Research. 2014;47(3):78392-.

Forsythe RC, Cox CP, Wilsey MK, Mü AM. Pulsed laser in liquids made nanomaterials for catalysis. 2021.

Fu L, Yang H, Hu Y, Wu D, Navrotsky A. Tailoring mesoporous γ-Al2O3 properties by transition metal doping: a combined experimental and computational study. Chemistry of Materials. 2017;29(3):133849-.

Fu Q, Weber A, Flytzani-stephanopoulos M. Nanostructured Au - CeO2 catalysts for low-temperature water - Gas Shift. Catalysis Letters. 2001;77(1):87-95.

Fu Y, Pichon B, Devred F, Singleton ML, Hermans S. Synthesis of spherical, rod, or chain ni nanoparticles and their structure - Activity relationship in glucose hydrogenation reaction. Journal of Catalysis. 2022;415:63-76.

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):38-40.

Ghampson IT, G P, Fierro JLG, Videla A, Escalona N. Catalytic hydrodeoxygenation of anisole over Re-MoOx /TiO2 and Re-VOx /TiO2 catalysts. Applied Catalysis B: Environmental. 2017;208:60-74.

Gopal NO, Hussain Basha M. TiO2 nano-flakes with high activity obtained from phosphorus doped TiO2 nanoparticles by hydrothermal method. Ceramics International. 2018;44(18):22129-34.

Guo Z, Jing G, Tolba SA, Yuan C-S, Li Y-H, Zhang X, Huang Z. Design and construction of an O-Au-O coordination environment in Au single atom-doped Ti 4+ defected TiO2 for an enhanced oxidative ability of lattice oxygen for Hg0 oxidation. Chemical Engineering Journal. 2023;451:138895-.

Haider AJ, Jameel ZN, Al-Hussaini IHM. Review on: titanium dioxide applications. Energy Procedia. 2019;157:17-29.

Hanková A, Kuzminova A, Hanuš J, Košutová T, Solař P, Kousal J, Kylián O. Nanostructured and columnar vanadium and vanadium oxides films synthesized by means of magnetron-based gas aggregation source. Surface and Coatings Technology. 2022;431:128015-.

Ingebrethsen BJ, Matijević E. Preparation of uniform colloidal dispersions by chemical reactions in aerosols-2. Spherical particles of aluminum hydrous oxide. Journal of Aerosol Science. 1980;11(3):271-80.

Jayan MA, Dawn SS, Vinoth Kumar GG. Facile preparation of highly dispersed copper promoted cobalt catalyst supported on alumina nanospheres. 2020.

Jiang C, Fan M, Gao G, Jiang W, Li X, Luo C, Zhang L, Wu F. Nanostructured AlOOH-A promising catalyst to reduce energy consumption for amine-based CO2 capture. Separation and Purification Technology. 2022;303:1383-5866.

Juárez-Moreno K, Díaz De León JN, Zepeda TA, Vázquez-Duhalt R, Fuentes S. Oxidative transformation of dibenzothiophene by chloroperoxidase enzyme immobilized on (1D)-γ-Al2O3 nanorods. Journal of Molecular Catalysis B: Enzymatic. 2015;115:90-5.

Jun-Cheng L, Lan X, Feng X, Zhan-Wen W, Fei W. Effect of hydrothermal treatment on the acidity distribution of γ-Al2O3 support. Applied Surface Science. 2006;253(2):766-70.

Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing. Advanced Materials. 1999;11(15):1307-11.

Kaur A, Bajaj B, Kaushik A, Saini A, Sud D. A review on template assisted synthesis of multi-functional metal oxide nanostructures: status and prospects. 2022.

Khajeh Talkhoncheh S, Haghighi M. Syngas production via dry reforming of methane over Ni-based nanocatalyst over various supports of clinoptilolite, ceria and alumina. 2015.

Khdary NH, Alayyar AS, Alsarhan LM, Alshihri S, Mokhtar M. Metal oxides as catalyst/supporter for CO2 capture and conversion, review. Catalysts. 2022;12(3):300-.

Komanicky V, Iddir H, Chang K-C, Menzel A, Karapetrov G, Hennessy D, Zapol P, You H. Shape-dependent activity of platinum array catalyst. Journal of the American Chemical Society. 2009;131(16):5732-3.

László B, Baán K, Ferencz Z, Galbács G, Oszkó A, Kónya Z, Kiss J, Erdőohelyi A. Gold size effect in the thermalinduced reaction of CO2 and H2 on titania- and titanate nanotube-supported gold catalysts. Journal of Nanoscience and Nanotechnology. 2018;19(1):470-7.

Laurenti D, Phung-Ngoc B, Roukoss C, Devers E, Marchand K, Massin L, Lemaitre L, Legens C, Quoineaud AA, Vrinat M. Intrinsic potential of alumina-supported CoMo catalysts in HDS: comparison between Γc, Γt, and δ-alumina. Journal of Catalysis. 2013;297:165-7.

Liu F, Zheng X, Chen J, Zheng Y, Jiang L. Controlling the synthesis and application of nanocrystalline spherical and ordered mesoporous alumina with high thermal stability. RSC Advances. 2015;5(114):93917-25.

Liu S, Wang H, Wei Y, Zhang R, Royer S. Morphology-oriented ZrO2 -supported vanadium oxide for the NH3-SCR process: importance of structural and textural properties. ACS Applied Materials & Interfaces. 2019;11(25):22240-54.

López-Rodríguez L, Araiza DG, Arcos DG, Gómez-Cortés A, Díaz G. Bimetallic Cu-Pt catalysts over nanoshaped ceria for hydrogen production via methanol. decomposition. Catalysis Today. 2022;394-396:486-98.

Mai H-X, Sun L-D, Zhang Y-W, Si R, Feng W, Zhang H-P, Liu H-C, Yan C-H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. The Journal of Physical Chemistry B. 2005;109(51):24380-5.

Martín N, Viniegra M, Vargas R, Garza J. Nanostructured oxides of transition metals with applications in catalysis. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología. 2021;14(26):1-16.

Matsuda S, Kato A. Titanium oxide based catalysts - A review. Applied Catalysis. 1983;8(2):149-65.

Mendoza-Núñez EM, Solís-García A, Ortiz-Domínguez C, Soto-Arteaga E, Domínguez D, Contreras OE, Fuentes-Moyado S, Díaz de León JN. Insight into alcohol transformation over binary Al2O3-Y2O3 mixed oxide nanoparticles. Applied Catalysis B: Environmental. 2022;:121567-.

Ota M, Hirota Y, Uchida Y, Sakamoto Y, Nishiyama N. Low temperature synthesized H2Ti3O7 nanotubes with a high CO2 adsorption property by amine modification. 2018.

Ouyang Y, Li X, Ding F, Bai L, Yuan F. Simultaneously enhance thermal conductive property and mechanical properties of silicon rubber composites by introducing ultrafine Al2O3 nanospheres prepared via thermal plasma. Composites Science and Technology. 2020;190:108019-.

Over H. Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting. ACS Catalysis. 2021;11(14):884871-.

Patiño-Guillén G, Arceta-Lozano A, Falcón-Montes JA, García-Díaz E, Díaz de León JN, Vázquez-Duhalt R, Gao G, Méndez-Rojas M Ángel, Campos-Delgado J. Simple in situ functionalization of carbon nanospheres. Nanotechnology. 2021;32(8):085602-.

Peláez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B, Environmental. 2012;125:331-49.

Phung TK, Hernández LP, Lagazzo A, Busca G. Dehydration of ethanol over zeolites, silica alumina and alumina: lewis acidity, brønsted acidity and confinement effects. Applied Catalysis A: General. 2015;493:77-89.

Puga AV, Corma A. Hydrogenation of CO2 on nickel-iron nanoparticles under sunlight irradiation. Topics in Catalysis. 2018;61(18-19):181019-.

Romero-Núñez A, Gómez-Cortés A, Tiznado H, Díaz G. Ni-doped ceria nanorods for the WGS reaction: effect of Ni distribution in methane suppression. 2018.

Safo IA, Werheid M, Dosche C, Oezaslan M. The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Advances. 2019;1(8):3095-106.

Sakashita Y, Yoneda T. Orientation of MoS2 clusters supported on two kinds of γ-Al2O3 single crystal surfaces with different indices. Journal of Catalysis. 1999;185(2):487-95.

Satterfield CN. Heterogeneous Catalysis in Practice. EUA: McGraw-Hill; 1991.

Shi W, Xu G, Han X, Wang Y, Liu Z, Xue S, Sun N. Nano-sized alumina supported palladium catalysts for methane combustion with excellent thermal stability. Journal of Environmental Sciences. 2023;126:333-47.

Shojaie-Bahaabad M, Taheri-Nassaj E. Economical synthesis of nano alumina powder using an aqueous sol-gel method. 2008.

Song YJ, Wang M, Yang Zhang X, Wu JY, Zhang T. Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of highyield silver nanospheres and nanowires. Nanoscale Research Letters. 2014;9(1).

Sun X, Li Y. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chemistry - A European Journal. 2003;9(10):2229-38.

Tauster SJ, Fung SC, Baker RTK, Horsley JA. Strong interactions in supported-metal catalysts. Science. 1981;211(4487):1121-5.

Topsøe H, Bjerne SC, Franklin EM. Hydrotreating catalysis. Catalysis. 1996;:1-269.

Trovarelli A, Llorca J. Ceria catalysts at nanoscale: how do crystal shapes catalysis?. ACS Catalysis. 2017;7(7):4716-35.

Trueba M, Trasatti SP. γ-alumina as a support for catalysts: a review of fundamental aspects. European Journal of Inorganic Chemistry. 2005;17:3393-40.

Valadez-Rentería E, Pérez-González R, Gómez-Solís C, Díaz-Torres LA, Encinas A, Oliva J, Rodríguez-González V. A novel and stretchable carbon-nanotube/Ni@TiO2:W photocatalytic composite for the complete removal of diclofenac drug from the drinking water. Journal of Environmental Sciences. 2023;126:575-89.

Wang F, Li C, Sun L-D, Wu H, Ming T, Wang J, Jimmy CY, Yan C-H. Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. Journal of the American Chemical Society. 2011;133(4):1106-11.

Wang J, Wang K, Hong He Z, Song Li S, Rong Zhang R, Guo P, Wang W, Yang Y, Tie Liu Z. Solvent-induced synthesis of hierarchical TiO2 nanoflowers with tunable morphology by monolayer self-assembly for probing the photocatalytic performance. Journal of Nanostructure in Chemistry. 2021;:0123456789-.

Wu Z, Li M, Overbury SH. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. Journal of Catalysis. 2012;285(1):61-73.

Xu R, Wang D, Zhang J, Li Y. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chemistry - An Asian Journal. 2006;1(6):888-93.

Yao R, Wei J, Ge Q, Xu J, Han Y, Xu H, Sun J. Structure sensitivity of iron oxide catalyst for CO2 hydrogenation. Catalysis Today. 2021;371:134-41.

Yuan Q, Yin A-X, Luo C, Sun L-D, Zhang Y-W, Duan W-T, Liu H-C, Yan C-H. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability. Journal of the American Chemical Society. 2008;130(11):3465-72.

Zhang L, Wang W, Chen Z, Zhou L, Xu H, Zhu W. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. Journal of Materials Chemistry. 2007;17(24):2526-.

Zhang S, Zhi S, Wang H, Guo J, Sun W, Zhang L, Jiang Y, Zhang X, Jiang K, Wu D. Laser-assisted rapid synthesis of anatase/rutile TiO2 heterojunction with function-specified microzones for the effective photo-oxidation of sulfamethoxazole. Chemical Engineering Journal. 2023;453:139702-.

Zhang Z, Goodall JBM, Brown S, Karlsson L, Clark RJH, Hutchison JL, Rehman IU, Darr JA. Continuous hydrothermal synthesis of extensive 2D sodium titanate (Na2Ti3O7) nano-sheets. Dalton Transactions. 2010;39(3):711-4.

Zhong Z, Li J, Jian M, Shu R, Tian Z, Wang C, Chen Y, Shi N, Wu Y. Hydrodeoxygenation of lignin-derived phenolic compounds over Ru/TiO2 catalyst: effect of TiO2 morphology. Fuel. 2023;333.

Zhou K, Wang X, Sun X, Peng Q, Li Y. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. Journal of Catalysis. 2005;229(1):206-12.