Choosing a Better Delay Line Medium between Single-Mode and Multi-Mode Optical Fibers: the Effect of Bending

Auwal Mustapha Imam, Aliyu Kabiru Isiyaku, Mustapha Isah, Mohammed Isah Kimpa

Abstract

Optical fiber cables are materials whose core is made of silica and other materials such as chalcogenide glasses; they transmit a digital signal via light pulses through an extremely thin strand of glass. The light propagates and is being guided by the core which is surrounded by the cladding. Light travels in the optical fiber in the form of total internal reflection in the core of the fibers. The flexibility, low tensile strength, low signal loss, high bandwidth and other characteristics of optical fibers favors it for use as a delay medium in many applications. Another favorable characteristic of optical fiber delay lines is are their relative insensitivities to environmental effects and electromagnetic interferences. The immunity of optical fibers to interferences and their less weight added advantages to it for use as delay medium. Single-mode and multi-mode are the two most popular types of optical fibers. Single-mode fibers have good propagation and delay properties with a minimal loss that allows the signal to propagate in a large distance with insignificant distortion or attenuation. The percentage of power transmission of single-mode fibers is found to be higher than that of the multi-mode fibers. It is, therefore, a preferred type for use as a delay line. In this paper, relative studies of the two optical fibers modes, and the results of power input/output measurement of the two modes are presented with a view to coming up with a better type for use as a delay medium.



Keywords


optical fiber; single-mode fiber; multi-mode fiber; delay line; bandwidth

Full Text:

PDF


References


1. Al-Azzawi, A. (2017). Fiber optics: principles and advanced practices. Boca Raton: CRC Press.

[Google Scholar]

2. Bamiedakis, N., Chen, J., Penty, R. V., & White, I. H. (2016). High-bandwidth and low-loss multimode polymer waveguides and waveguide components for high-speed board-level optical interconnects. Optical Interconnects XVI.

[Google Scholar] [CrossRef]

3. Bigot-Astruc, M., Molin, D., Sillard, P., Gooijer, F., & Jahannes, F. (2013). Bend-resistant multimode optical fiber. Retrieved from http://google.com/patents/EP2642322A1?cl=en

[Google Scholar]

4. Chang, H., Luo, J., Gulgunje, P. V., & Kumar, S. (2017). Structural and Functional Fibers. Annual Review of Materials Research, 47(1), 331–359.

[Google Scholar] [CrossRef]

5. Colombe, Y., Slichter, D. H., Wilson, A. C., Leibfried, D., & Wineland, D. J. (2014). Single-mode optical fiber for high-power, low-loss UV transmission. Optics Express, 22(16), 19783.

[Google Scholar] [CrossRef]

6. Denoyer, G., Cole, C., Santipo, A., Russo, R., Robinson, C., Li, L., … Vulliet, N. (2015). Hybrid Silicon Photonic Circuits and Transceiver for 50 Gb/s NRZ Transmission Over Single-Mode Fiber. Journal of Lightwave Technology, 33(6), 1247–1254.

[Google Scholar] [CrossRef]

7. Dong, L., Li, J., McKay, H., Fu, L., & Marcinkevicius, A. (2017). Glass large-core optical fibers. Retrieved from https://www.google.ch/patents/US9632243

[Google Scholar]

8. Fadhali, M., Saktioto, Zainal, J., Munajat, Y., Ali, J., & Abdul Rahman, R. (2008). Mode matching for efficient laser diode to single mode fiber coupling. International Workshop and Conference on Photonics and Nanotechnology 2007.

[Google Scholar] [CrossRef]

9. Fang, W., Lu, M., Liu, X., Gong, L., & Zhu, Z. (2015). Joint Defragmentation of Optical Spectrum and IT Resources in Elastic Optical Datacenter Interconnections. Journal of Optical Communications and Networking, 7(4), 314.

[Google Scholar] [CrossRef]

10. Galvanauskas, A. (2004). High Power Fiber Lasers. Optics and Photonics News, 15(7), 42–47.

[Google Scholar] [CrossRef]

11. Gambling, W. A., Matsumura, H., & Ragdale, C. M. (1978). Field deformation in a curved single-mode fibre. Electronics Letters, 14(5), 130.

[Google Scholar] [CrossRef]

12. Gambling, W. A., Payne, D. N., & Matsumura, H. (1976). Radiation from curved single-mode fibres. Electronics Letters, 12(21), 567.

[Google Scholar] [CrossRef]

13. Garth, S. J. (1988). Birefringence in bent single-mode fibers. Journal of Lightwave Technology, 6(3), 445–449.

[Google Scholar] [CrossRef]

14. Gauthier, R. C., & Ross, C. (1997). Theoretical and experimental considerations for a single-mode fiber-optic bend-type sensor. Applied Optics, 36(25), 6264.

[Google Scholar] [CrossRef]

15. Gong, H., Yang, X., Ni, K., Zhao, C.-L., & Dong, X. (2014). An Optical Fiber Curvature Sensor Based on Two Peanut-Shape Structures Modal Interferometer. IEEE Photonics Technology Letters, 26(1), 22–24.

[Google Scholar] [CrossRef]

16. Gruner-Nielsen, L., Sun, Y., Jensen, R. V., Nicholson, J. W., & Lingle, R. (2014). Splicing of few mode fibers. 2014 The European Conference on Optical Communication (ECOC).

[Google Scholar] [CrossRef]

17. Hecht, J. (2015). Understanding fiber optics. Auburndale: LaserLight Press.

[Google Scholar]

18. Hirose, K., Liang, Y., Kurosaka, Y., Watanabe, A., Sugiyama, T., & Noda, S. (2014). Watt-class high-power, high-beam-quality photonic-crystal lasers. Nature Photonics, 8(5), 406–411.

[Google Scholar] [CrossRef]

19. Hoque, M.-U., Hasan, M. N., & Lee, Y.-C. (2017). Design and fabrication of a biconvex aspherical microlens for maximizing fiber coupling efficiency with an ultraviolet laser diode. Sensors and Actuators A: Physical, 254, 36–42.

[Google Scholar] [CrossRef]

20. Jackson, K. P., Newton, S. A., Moslehi, B., Tur, M., Cutler, C. C., Goodman, J. W., & Shaw, H. J. (1985). Optical Fiber Delay-Line Signal Processing. IEEE Transactions on Microwave Theory and Techniques, 33(3), 193–210.

[Google Scholar] [CrossRef]

21. Karstensen, H., & Frankenberger, R. (1989). High-efficiency two lens laser diode to single-mode fiber coupler with a silicon plano convex lens. Journal of Lightwave Technology, 7(2), 244–249.

[Google Scholar] [CrossRef]

22. Kasap, S. O. (2013). Optoelectronics & photonics: principles & practices: international edition. N. d: Pearson.

[Google Scholar]

23. Kim, A., Roy, M., Dadani, F., & Wilson, B. C. (2010). A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients. Optics Express, 18(6), 5580.

[Google Scholar] [CrossRef]

24. Kubota, H. (2005). Tunable laser source. Retrieved from http://bit.ly/2Atm3q0

[Google Scholar]

25. Lee, B. (2003). Review of the present status of optical fiber sensors. Optical Fiber Technology, 9(2), 57–79.

[Google Scholar] [CrossRef]

26. Li, Z., Zhou, J., Wang, W., He, B., Xue, Y., & Lou, Q. (2009). Limitations of coiling technique for mode controlling of multimode fiber lasers. 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics.

[Google Scholar] [CrossRef]

27. Liu, Z., Tan, Z., Yin, B., Bai, Y., & Jian, S. (2014). Refractive index sensing characterization of a singlemode–claddingless–singlemode fiber structure based fiber ring cavity laser. Optics Express, 22(5), 5037.

[Google Scholar] [CrossRef]

28. Lu, Y.-K., Tsai, Y.-C., Liu, Y.-D., Yeh, S.-M., Lin, C.-C., & Cheng, W.-H. (2007). Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes. Optics Express, 15(4), 1434.

[Google Scholar] [CrossRef]

29. Luo, Z., Wu, D., Xu, B., Xu, H., Cai, Z., Peng, J., … Zhang, H. (2016). Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale, 8(2), 1066–1072.

[Google Scholar] [CrossRef]

30. Marcuse, D. (1976). Field deformation and loss caused by curvature of optical fibers. Journal of the Optical Society of America, 66(4), 311.

[Google Scholar] [CrossRef]

31. Modavis, R. A., & Webb, T. W. (1995). Anamorphic microlens for laser diode to single-mode fiber coupling. IEEE Photonics Technology Letters, 7(7), 798–800.

[Google Scholar] [CrossRef]

32. Morales-Delgado, E. E., Farahi, S., Papadopoulos, I. N., Psaltis, D., & Moser, C. (2015). Delivery of focused short pulses through a multimode fiber. Optics Express, 23(7), 9109–9120.

[Google Scholar] [CrossRef]

33. Puttnam, B. J., Luis, R. S., Klaus, W., Sakaguchi, J., Delgado Mendinueta, J.-M., Awaji, Y., … Marciante, J. (2015). 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb. 2015 European Conference on Optical Communication (ECOC).

[Google Scholar] [CrossRef]

34. Richardson, D. J., Nilsson, J., & Clarkson, W. A. (2010). High power fiber lasers: current status and future perspectives [Invited]. Journal of the Optical Society of America B, 27(11), B63–B92.

[Google Scholar] [CrossRef]

35. Saitoh, K., & Koshiba, M. (2003). Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Optics Express, 11(23), 3100.

[Google Scholar] [CrossRef]

36. Sanghera, J. ., & Aggarwal, I. (1999). Active and passive chalcogenide glass optical fibers for IR applications: a review. Journal of Non-Crystalline Solids, 256-257, 6–16.

[Google Scholar] [CrossRef]

37. Savastru, D., Popescu, M., Miclos, S., Sava, F., Lorinczi, A., Rusu, M., & Savu, V. (2008). Single mode optical fiber coupling to a laser diode. Optical Memory and Neural Networks, 17(4), 254–257.

[Google Scholar] [CrossRef]

38. Schermer, R. T. (2007). Mode scalability in bent optical fibers. Optics Express, 15(24), 15674.

[Google Scholar] [CrossRef]

39. Schermer, R. T., & Cole, J. H. (2007). Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment. IEEE Journal of Quantum Electronics, 43(10), 899–909.

[Google Scholar] [CrossRef]

40. Schwaerzle, M., Elmlinger, P., Paul, O., & Ruther, P. (2015). Miniaturized 3×3 optical fiber array for optogenetics with integrated 460 nm light sources and flexible electrical interconnection. 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS).

[Google Scholar] [CrossRef]

41. Shah, V. S., Curtis, L., Vodhanel, R. S., Bour, D. P., & Young, W. C. (1990). Efficient power coupling from a 980-nm, broad-area laser to a single-mode fiber using a wedge-shaped fiber endface. Journal of Lightwave Technology, 8(9), 1313–1318.

[Google Scholar] [CrossRef]

42. Sharma, A., & Kumar, M. (2015). Flat band slow light in silicon photonic crystal waveguide with large delay bandwidth product and low group velocity dispersion. IET Optoelectronics, 9(1), 24–28.

[Google Scholar] [CrossRef]

43. Shiraishi, K., Kagaya, M., Muro, K., Yoda, H., Kogami, Y., & Tsai, C. S. (2008). Single-mode fiber with a plano-convex silicon microlens for an integrated butt-coupling scheme. Applied Optics, 47(34), 6345.

[Google Scholar] [CrossRef]

44. Sokkar, T. Z. N., Ramadan, W. A., Shams El-Din, M. A., Wahba, H. H., & Aboleneen, S. S. (2014). Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber. Optics and Lasers in Engineering, 53, 133–141.

[Google Scholar] [CrossRef]

45. Sun, Y., Lingle, R., Shubochkin, R., McCurdy, A. H., Balemarthy, K., Braganza, D., … Bhoja, S. (2017). SWDM PAM4 Transmission Over Next Generation Wide-Band Multimode Optical Fiber. Journal of Lightwave Technology, 35(4), 690–697.

[Google Scholar] [CrossRef]

46. Tong, X. C. (2014). Advanced materials for integrated optical waveguides. N. d.: Springer.

[Google Scholar]

47. Wang, J., Ashrafi, R., Adams, R., Glesk, I., Gasulla, I., Capmany, J., & Chen, L. R. (2016). Subwavelength grating enabled on-chip ultra-compact optical true time delay line. Scientific Reports, 6(1).

[Google Scholar] [CrossRef]

48. Wilner, K., & van den Heuvel, A. P. (1976). Fiber-optic delay lines for microwave signal processing. Proceedings of the IEEE, 64(5), 805–807.

[Google Scholar] [CrossRef]

49. Xu, P., Dong, Y., Zhang, J., Zhou, D., Jiang, T., Xu, J., … Bao, X. (2015). Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis. Optics Express, 23(17), 22714.

[Google Scholar] [CrossRef]

50. Zadok, A., Zilka, E., Eyal, A., Thévenaz, L., & Tur, M. (2008). Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers. Optics Express, 16(26), 21692–21707.

[Google Scholar] [CrossRef]

51. Zavalin, A., Yang, J., Haase, A., Holle, A., & Caprioli, R. (2014). Implementation of a Gaussian Beam Laser and Aspheric Optics for High Spatial Resolution MALDI Imaging MS. Journal of The American Society for Mass Spectrometry, 25(6), 1079–1082.

[Google Scholar] [CrossRef]

52. Zervas, M. N., & Codemard, C. A. (2014). High Power Fiber Lasers: A Review. IEEE Journal of Selected Topics in Quantum Electronics, 20(5), 219–241.

[Google Scholar] [CrossRef]


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Auwal Mustapha Imam, Aliyu Kabiru Isiyaku, Mustapha Isah, Mohammed Isah Kimpa

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.