We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The future of pharmacogenetics for osteoporosis

    Francesca Marini

    * Author for correspondence

    Metabolic Bone Unit, Department of Surgery & Translation Medicine, University of Florence, Florence, Italy. .

    &
    Maria Luisa Brandi

    Metabolic Bone Unit, Department of Surgery & Translation Medicine, University of Florence, Florence, Italy

    Published Online:https://doi.org/10.2217/pgs.13.40

    The possibility to predict the outcome of medical treatments, both in terms of efficacy and development of adverse effects, is the main goal of modern personalized medicine. The principal aim of pharmacogenetics is to design specific predictive genetic tests, to be performed prior to any drug treatment, and to tailor the therapy for each patient based on the results of these tests. Few pharmacogenetic tests are today validated and commonly applied in clinical practice, and none in the area of osteoporosis and bone disorders. Surely, the complex regulation of bone metabolism and the involvement of numerous different molecular pathways makes it difficult to individuate responsible genes and polymorphisms involved in the modulation of anti-osteoporotic drug response and, subsequently, in designing specific predictive analyses.

    Papers of special note have been highlighted as: ▪ of interest

    References

    • Sim SC, Ingelman-Sundberg M. The human cytochrome P450 Allele Nomenclature Committee Web site: submission criteria, procedures, and objectives. Methods Mol. Biol.320,183–191 (2006).
    • Krall EA, Dawson-Hughes B. Heritable and life-style determinants of bone mineral density. J. Bone Miner. Res.8,1–9 (1993)
    • Styrkarsdottir U, Halldorsson BV, Gretarsdottir S et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med.358(22),2355–2365 (2008).
    • Marini F, Brandi ML. Pharmacogenetics of osteoporosis. F1000. Biol. Rep.19(2),63 (2010).
    • Marini F, Brandi ML. Pharmacogenetics of osteoporosis: what is the evidence? Curr. Osteoporos. Rep.10(3),221–227 (2012).
    • Riancho JA, Hernández JL. Pharmacogenomics of osteoporosis: a pathway approach. Pharmacogenomics13(7),815–829 (2012).
    • Rojo Venegas K, Aguilera Gómez M, Cañada Garre M et al. Pharmacogenetics of osteoporosis: towards novel theranostics for personalized medicine? OMICS16(12),638–651 (2012)
    • Melhus H, Kindmark A, Amér S, Wilén B, Lindh E, Ljunghall S. Vitamin D receptor genotypes in osteoporosis. Lancet344(8927),949–950 (1994).
    • Jia F, Sun RF, Li QH et al. Vitamin D receptor BsmI polymorphism and osteoporosis risk: a meta-analysis from 26 studies. Genet. Test. Mol. Biomarkers17(1),30–34 (2013).
    • 10  Horst-Sikorska W, Dytfeld J, Wawrzyniak A et al. Vitamin D receptor gene polymorphisms, bone mineral density and fractures in postmenopausal women with osteoporosis. Mol. Biol. Rep.40(1),383–390 (2013).
    • 11  Dundar U, Solak M, Kavuncu V et al. Evidence of association of vitamin D receptor Apa I gene polymorphism with bone mineral density in postmenopausal women with osteoporosis. Clin. Rheumatol.28(10),1187–1191 (2009).
    • 12  Fang Y, van Meurs JB, Arp P et al. Vitamin D binding protein genotype and osteoporosis. Calcif. Tissue Int.85(2),85–93 (2009).
    • 13  Zintzaras E, Rodopoulou P, Koukoulis GN. Bsm I, TaqI, ApaI and FokI polymorphisms in the vitamin D receptor (VDR) gene and the risk of osteoporosis: a meta-analysis. Dis. Markers22(5–6),317–326 (2006).
    • 14  Uitterlinden AG, Ralston SH, Brandi ML et al. The association between common vitamin D receptor gene variations and osteoporosis: a participant-level meta-analysis. Ann. Intern. Med.145(4),255–264 (2006).
    • 15  Eisman JA. Pharmacogenetics of the vitamin D receptor and osteoporosis. Drug Metab. Dispos.29(4 Pt 2),505–512 (2001).
    • 16  Gennari L, Merlotti D, De Paola V, Martini G, Nuti R. Update on the pharmacogenetics of the vitamin D receptor and osteoporosis. Pharmacogenomics10(3),417–433 (2009).
    • 17  Elnenaei MO, Chandra R, Mangion T, Moniz C. Genomic and metabolomic patterns segregate with responses to calcium and vitamin D supplementation. Br. J. Nutr.105(1),71–79 (2011).▪ Interesting study that investigated the potential role of genetic variations in both ERα and VDR genes in predicting response to calcium and vitamin D supplementations in terms of variation of vitamin D-related urinary and serum metabolites.
    • 18  Kurabayashi T, Tomita M, Matsushita H et al. Association of vitamin D and estrogen receptor gene polymorphism with the effect of hormone replacement therapy on bone mineral density in Japanese women. Am. J. Obstet. Gynecol.180(5),1115–1120 (1999).
    • 19  Palomba S, Numis FG, Mossetti G et al. Raloxifene administration in post-menopausal women with osteoporosis: effect of different BsmI vitamin D receptor genotypes. Hum. Reprod.18(1),192–198 (2003).
    • 20  Marc J, Prezelj J, Komel R, Kocijancic A. VDR genotype and response to etidronate therapy in late postmenopausal women. Osteoporos. Int.10(4),303–306 (1999).
    • 21  Palomba S, Orio F Jr, Russo T et al. BsmI vitamin D receptor genotypes influence the efficacy of antiresorptive treatments in postmenopausal osteoporotic women, a 1-year multicenter, randomized and controlled trial. Osteoporos. Int.16(8),943–952 (2005).
    • 22  Currò M, Marini H, Alibrandi A et al. The ESR2 AluI gene polymorphism is associated with bone mineral density in postmenopausal women. J. Steroid. Biochem. Mol. Biol.127(3–5),413–417 (2011).
    • 23  Gennari L, Merlotti D, De Paola V et al. Estrogen receptor gene polymorphisms and the genetics of osteoporosis: a HuGE review. Am. J. Epidemiol.161(4),307–320 (2005).
    • 24  Ongphiphadhanakul B, Chanprasertyothin S, Payatikul P et al. Oestrogen-receptor-alpha gene polymorphism affects response in bone mineral density to oestrogen in post-menopausal women. Clin. Endocrinol. (Oxf.)52(5),581–585 (2000).
    • 25  Salmén T, Heikkinen AM, Mahonen A et al. The protective effect of hormone-replacement therapy on fracture risk is modulated by estrogen receptor alpha genotype in early postmenopausal women. J. Bone Miner. Res.15(12),2479–2486 (2000).
    • 26  Rapuri PB, Gallagher JC, Knezetic JA, Haynatzka V. Estrogen receptor alpha gene polymorphisms are associated with changes in bone remodeling markers and treatment response to estrogen. Maturitas53(4),371–379 (2006).
    • 27  Yahata T, Quan J, Tamura N, Nagata H, Kurabayashi T, Tanaka K. Association between single nucleotide polymorphisms of estrogen receptor alpha gene and efficacy of HRT on bone mineral density in post-menopausal Japanese women. Hum. Reprod.20(7),1860–1866 (2005).
    • 28  Heilberg IP, Hernandez E, Alonzo E et al. Estrogen receptor (ER) gene polymorphism may predict the bone mineral density response to raloxifene in postmenopausal women on chronic hemodialysis. Ren. Fail.27(2),155–161 (2005).
    • 29  Arko B, Prezelj J, Komel R, Kocijancic A, Marc J. No major effect of estrogen receptor beta gene RsaI polymorphism on bone mineral density and response to alendronate therapy in postmenopausal osteoporosis. J. Steroid. Biochem. Mol. Biol.81(2),147–152 (2002).
    • 30  Mullin BH, Carter KW, Lewis JR, Ingley E, Wilson SG, Prince RL. Significant association between common polymorphisms in the aromatase gene CYP19A1 and bone mineral density in postmenopausal women. Calcif. Tissue. Int.89(6),464–471 (2011).
    • 31  Riancho JA, Sañudo C, Valero C, Pipaón C, et al. Association of the aromatase gene alleles with BMD: epidemiological and functional evidence. J. Bone. Miner. Res.24(10),1709–1718 (2009).
    • 32  Valero C, Pérez-Castrillón JL, Zarrabeitia MT et al. Association of aromatase and estrogen receptor gene polymorphisms with hip fractures. Osteoporos. Int.19(6),787–792 (2008).
    • 33  Hadfield KD, Newman WG. Pharmacogenetics of aromatase inhibitors. Pharmacogenomics13(6),699–707 (2012).
    • 34  Turkistani A, Marsh S. Pharmacogenomics of third-generation aromatase inhibitors. Expert Opin. Pharmacother.13(9),1299–1307 (2012).
    • 35  Mann V, Hobson EE, Li B et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J. Clin. Invest.107(7),899–907 (2001).
    • 36  Uitterlinden AG, Burger H, Huang Q et al. Relation of alleles of the collagen type Ialpha1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N. Engl. J. Med.338(15),1016–1021 (1998).
    • 37  Jin H, van’t Hof RJ, Albagha OM, Ralston SH. Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis. Hum. Mol. Genet.18(15),2729–2738 (2009).
    • 38  Mann V, Ralston SH. Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone32(6),711–717 (2003).
    • 39  Simsek M, Cetin Z, Bilgen T, Taskin O, Luleci G, Keser I. Effects of hormone replacement therapy on bone mineral density in Turkish patients with or without COL1A1 Sp1 binding site polymorphism. J. Obstet. Gynaecol. Res.34(1),73–77 (2008).
    • 40  Qureshi AM, Herd RJ, Blake GM, Fogelman I, Ralston SH. Colia1 Sp1 polymorphism predicts response of femoral neck bone density to cyclical etidronate therapy. Calcif. Tissue Int.70(3),158–163 (2002).
    • 41  Vidal C, Formosa R, Xuereb-Anastasi A. Functional polymorphisms within the TNFRSF11B (osteoprotegerin) gene increase the risk for low bone mineral density. J. Mol. Endocrinol.47(3),327–333 (2011).
    • 42  Mencej-Bedrač S, Preželj J, Marc J. TNFRSF11B gene polymorphisms 1181G>C and 245T>G as well as haplotype CT influence bone mineral density in postmenopausal women. Maturitas69(3),263–267 (2011).
    • 43  García-Unzueta MT, Riancho JA, Zarrabeitia MT et al. Association of the 163A/G and 1181G/C osteoprotegerin polymorphism with bone mineral density. Horm. Metab. Res.40(3),219–224 (2008).
    • 44  Wang C, He JW, Qin YJ et al. Osteoprotegerin gene polymorphism and therapeutic response to alendronate in postmenopausal women with osteoporosis. Honghua. Yi. Xue. Za. Zhi.89(42),2958–2962 (2009).
    • 45  Urano T, Shiraki M, Usui T, Sasaki N, Ouchi Y, Inoue S. A1330V variant of the low-density lipoprotein receptor-related protein 5 (LRP5) gene decreases Wnt signaling and affects the total body bone mineral density in Japanese women. Endocr. J.56(4),625–631 (2009).
    • 46  van Meurs JB, Trikalinos TA, Ralston SH et al. Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA299(11),1277–1290 (2008).
    • 47  Kruk M, Ralston SH, Albagha OM. LRP5 polymorphisms and response to risedronate treatment in osteoporotic men. Calcif. Tissue Int.84(3),171–179 (2009).
    • 48  Kim H, Choe SA, Ku SY, Kim SH, Kim JG. Association between Wnt signaling pathway gene polymorphisms and bone response to hormone therapy in postmenopausal Korean women. Menopause18(7),808–813 (2011).▪ First pharmacogenetic study of osteoporosis that investigated the role of polymorphisms of genes involved in the Wnt signaling pathway.
    • 49  Marini F, Falchetti A, Silvestri S et al. Modulatory effect of farnesyl pyrophosphate synthase (FDPS) rs2297480 polymorphism on the response to long-term amino-bisphosphonate treatment in postmenopausal osteoporosis. Curr. Med. Res. Opin.24(9),2609–2615 (2008).
    • 50  Olmos JM, Zarrabeitia MT, Hernández JL, Sañudo C, González-Macías J, Riancho JA. Common allelic variants of the farnesyl diphosphate synthase gene influence the response of osteoporotic women to bisphosphonates. Pharmacogenomics J.12(3),227–232 (2012).
    • 51  Choi HJ, Choi JY, Cho SW et al. Genetic polymorphism of geranylgeranyl diphosphate synthase (GGSP1) predicts bone density response to bisphosphonate therapy in Korean women. Yonsei. Med. J.51(2),231–238 (2010).▪ References [49–51] are three interesting studies that investigated the role of polymorphisms of genes of the mevalonate pathway (the molecular target of amino-bisphosphonates [NBPs] within the osteoclast precursors and the osteoclasts) in the response to NBP therapy in different populations.
    • 52  Carbonell Sala S, Falchetti A, Martineti V et al. Intron 1 polymorphism (A/C) of FDPS gene: a new genetic marker for N-BPs therapy response? J. Bone Miner. Res.20(Suppl. 1),S1–S512 (2005).
    • 53  Songpatanasilp T, Chanprasertyothin S. Effects of differences in polymorphism of gene encoding enzyme faenesyl diphosphate synthase (FDPS), rs2297480, on bone mineral density and biochemical markers of bone turnover in Thai postmenopausal women. J. Med. Assoc. Thai.94(5),S38–S46 (2011).
    • 54  Daly AK. Using genome-wide association studies to identify genes important in serious adverse drug reactions. Annu. Rev. Pharmacol. Toxicol.52,21–35 (2012).▪ Comprehensive recent review that specifically focused on and described each type of serious adverse drug reaction for which genome-wide association (GWA) data are currently available.
    • 55  Sarasquete ME, García-Sanz R, Marín L et al. Bisphosphonate-related osteonecrosis of the jaw is associated with polymorphisms of the cytochrome P450 CYP2C8 in multiple myeloma: a genome-wide single nucleotide polymorphism analysis. Blood112(7),2709–2712 (2008).▪ Interesting pharmacogenetic case–control association study that investigated, through a GWA of approximately 500,568 SNPs, the association between genetic variations and the development of osteonecrosis of the jaw, after long-term NBP treatment, in patients affected by multiple myeloma.
    • 56  Nicoletti P, Cartsos VM, Palaska PK, Shen Y, Floratos A, Zavras AI. Genomewide pharmacogenetics of bisphosphonate-induced osteonecrosis of the jaw: the role of RBMS3. Oncologist17(2),279–287 (2012).▪ Interesting study that performed a pharmacogenetic GWA study using a dense DNA array with >733,000 genetic markers, to identify highly penetrant polymorphisms associated with NBP-related osteonecrosis of the jaw across multiple drugs.
    • 57  Ioannidis JP, Ralston SH, Bennett ST et al. Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA292(17),2105–2114 (2004).
    • 58  Ralston SH, Uitterlinden AG, Brandi ML et al. Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS Med.3(4),e90 (2006).
    • 59  Langdahl BL, Uitterlinden AG, Ralston SH et al. Large-scale analysis of association between polymorphisms in the transforming growth factor beta 1 gene (TGFB1) and osteoporosis: the GENOMOS study. Bone42(5),969–981 (2008).
    • 60  Uitterlinden AG. The latest news from the GENOMOS study. Clin. Cases Miner. Bone Metab.6(1),35–43 (2009).
    • 61  Rivadeneira F, Styrkársdottir U, Estrada K et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet.41(11),1199–1206 (2009).
    • 62  Baer-Dubowska W, Majchrzak-Celinska A, Cichocki M. Pharmacoepigenetics: a new approach to predicting individual drug responses and targeting new drugs. Pharmacol. Rep.63(2),293–304 (2011).
    • 63  Peedicayil J. Pharmacoepigenetics and pharmacoepigenomics. Pharmacogenomics9(12),1785–1786 (2008).
    • 64  Gomez A, Ingelman-Sundberg. Pharmacoepigenetics: its role in interindividual differences in drug response. Clin. Pharmacol. Therapeutics85(4),426–430 (2009).
    • 65  Rukov JL, Shomron N. MicroRNA pharmacogenomics: post-transcriptional regulation of drug response. Trends Mol. Med.17(8),412–422 (2011).
    • 66  Mishra P, Bertino JR. MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics10(3),399–416 (2009).
    • 101  Table of Pharmacogenomic Biomarkers in Drug Labels. www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm
    • 102  Guidance on Pharmacogenetic Tests and Genetic Tests for Heritable Markers. www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm077862.htm