We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Tremelimumab and durvalumab in the treatment of unresectable, advanced hepatocellular carcinoma

    ,
    Danny N Khalil

    Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

    Weill Medical College at Cornell University, New York, NY 10021, USA

    ,
    James J Harding

    Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

    Weill Medical College at Cornell University, New York, NY 10021, USA

    ,
    Eileen M O'Reilly

    Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

    Weill Medical College at Cornell University, New York, NY 10021, USA

    &
    Ghassan K Abou-Alfa

    *Author for correspondence: Tel.: +1 646 888 4184;

    E-mail Address: abou-alg@mskcc.org

    Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

    Weill Medical College at Cornell University, New York, NY 10021, USA

    Published Online:https://doi.org/10.2217/fon-2022-0652

    Liver cancer is the third most common cause of cancer-related mortality worldwide, with over 780,000 deaths in 2018. About 90% of liver cancer cases are hepatocellular carcinoma (HCC), a prototype of inflammation-driven cancer, leading to a robust rationale for the exploration of immune therapy. Previously approved agents for first-line therapy, such as sorafenib, lenvatinib and bevacizumab combined with atezolizumab, have focused on angiogenesis. HIMALAYA was the first trial to demonstrate the benefit of dual immune checkpoint inhibitors, representing a new treatment option in this scenario.

    Plain language summary

    Liver cancer is the third most common cause of cancer-related mortality worldwide, with over 780,000 deaths in 2018. About 90% of liver cancer cases originate in liver cells and are referred to as hepatocellular carcinoma (HCC). Systemic treatment (medications) is the mainstay for patients with advanced disease who are not suitable for resection or liver transplant and aims to improve survival and quality of life. HIMALAYA was the first study to demonstrate the benefit of using a combination of two immunotherapy medications for initial treatment.

    Tweetable abstract

    The HIMALAYA study illustrates the value of the STRIDE regimen. One single dose of anti-CTLA4 tremelimumab plus durvalumab demonstrated an overall survival benefit for patients in need of first-line therapy for advanced hepatocellular carcinoma.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. International Agency for Research on Cancer. GLOBOCAN 2018. IARC, https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=11&type=0&statistic=5&prevalence=0&population_groupearth&color_palette=default&map_scale=quantile&map_nb_colors=5&continent=0&rotate=%255B10%252C0%255D (2022).
    • 2. Llovet JM, Kelley RK, Villanueva A et al. Hepatocellular carcinoma. Nat. Rev. Dis. Primers. 7(1), 6 (2021).
    • 3. Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15(10), 599–616 (2018).
    • 4. Llovet JM, Ricci S, Mazzaferro V et al. SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359(4), 378–390 (2008). • The phase III SHARP trial was the first to demonstrate overall survival benefit with systemic treatment (sorafenib) compared to placebo in advanced hepatocellular carcinoma.
    • 5. Kudo M, Finn RS, Qin S et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391(10126), 1163–1173 (2018). • The phase III REFLECT trial demonstrated noninferiority of lenvatinib compared with sorafenib.
    • 6. Finn RS, Qin S, Ikeda M et al. IMbrave150 Investigators. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382(20), 1894–1905 (2020). • The phase III IMbrave150 trial demonstrated benefits in overall survival with atezolizumab and bevacizumab compared with sorafenib.
    • 7. Abou-Alfa GK, Lau G, Kudo M et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. June 6 (2022). •• The phase III HIMALAYA trial demonstrated that the STRIDE regimen and durvalumab alone were superior and noninferior, respectively, compared with sorafenib.
    • 8. Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 20(1), 34–50 (2010).
    • 9. Kumar BV, Connors TJ, Farber DL. Human t cell development, localization, and function throughout life. Immunity 48(2), 202–213 (2018).
    • 10. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39(1), 98–106 (2016).
    • 11. Thompson CB, Lindsten T, Ledbetter JA et al. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc. Natl Acad. Sci. USA 86(4), 1333–1337 (1989).
    • 12. Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J. Leukoc. Biol. 94(1), 25–39 (2013).
    • 13. Tremelimumab. Drugs R. D. 10(2), 123–32 (2010)
    • 14. Letendre P, Monga V, Milhem M, Zakharia Y. Ipilimumab: from preclinical development to future clinical perspectives in melanoma. Future Oncol. 13(7), 625–636 (2017).
    • 15. Gombos RB, Gonzalez A, Manrique M et al. Toxicological and pharmacological assessment of AGEN1884, a novel human IgG1 anti-CTLA-4 antibody. PLOS ONE 13(4), e0191926 (2018).
    • 16. McDermott J, Jimeno A. Pembrolizumab: PD-1 inhibition as a therapeutic strategy in cancer. Drugs Today (Barc.) 51(1), 7–20 (2015).
    • 17. Gunturi A, McDermott DF. Nivolumab for the treatment of cancer. Expert Opin. Investig. Drugs 24(2), 253–260 (2015).
    • 18. Bose CK. Balstilimab and other immunotherapy for recurrent and metastatic cervical cancer. Med. Oncol. 39(4), 47 (2022).
    • 19. Alvarez-Argote J, Dasanu CA. Durvalumab in cancer medicine: a comprehensive review. Expert Opin. Biol. Ther. 19(9), 927–935 (2019).
    • 20. Hoos A. Evolution of end points for cancer immunotherapy trials. Ann. Oncol. 23(8), 47–52 (2012).
    • 21. Powles T, van der Heijden MS, Castellano D et al. DANUBE study investigators. Durvalumab alone and durvalumab plus tremelimumab versus chemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 21(12), 1574–1588 (2020).
    • 22. Ferris RL, Haddad R, Even C et al. Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase III study. Ann. Oncol. 31(7), 942–950 (2020).
    • 23. Rizvi NA, Cho BC, Reinmuth N et al. MYSTIC Investigators. Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small-cell lung cancer: The MYSTIC phase 3 randomized clinical trial. JAMA Oncol. 6(5), 661–674 (2020).
    • 24. Goldman JW, Dvorkin M, Chen Y, Reinmuth N, Hotta K, Trukhin D et al. CASPIAN investigators. Durvalumab, with or without tremelimumab, plus platinum-etoposide versus platinum-etoposide alone in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): updated results from a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 22(1), 51–65 (2021).
    • 25. Yu LX, Ling Y, Wang HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis. Oncol. 2(1), 6 (2018).
    • 26. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3), 309–322 (2012).
    • 27. Fu XT, Dai Z, Song K et al. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int. J. Oncol. 46(2), 587–596 (2015).
    • 28. Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis: possible targets and future directions. Nat. Rev. Clin. Oncol. 8(5), 292–301 (2011).
    • 29. Wan S, Zhao E, Kryczek I et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 147(6), 1393–1404 (2014).
    • 30. Pineau P, Volinia S, McJunkin K et al. miR-221 overexpression contributes to liver tumorigenesis. Proc. Natl Acad. Sci. USA 107(1), 264–269 (2010).
    • 31. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149(5), 1226–1239 (2015).
    • 32. Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat. Rev. Cancer 13(2), 123–135 (2013).
    • 33. El-Khoueiry AB, Sangro B, Yau T et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389(10088), 2492–2502 (2017).
    • 34. Yau T, Park JW, Finn RS et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 23(1), 77–90 (2022).
    • 35. Zhu AX, Finn RS, Edeline J et al. KEYNOTE-224 investigators. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 19(7), 940–952 (2018).
    • 36. Finn RS, Ryoo BY, Merle P et al. KEYNOTE-240 investigators. pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J. Clin. Oncol. 38(3), 193–202 (2020).
    • 37. Qin S, Chen Z, Fang W et al. Pembrolizumab plus best supportive care versus placebo plus best supportive care as second-line therapy in patients in Asia with advanced hepatocellular carcinoma (HCC): Phase 3 KEYNOTE-394 study. J. Clin. Oncol. 40 (4), 383–383 (2022).
    • 38. Cheng AL, Qin S, Ikeda M et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 76(4), 862–873 (2022).
    • 39. Fang P, Hu JH, Cheng ZG, Liu ZF, Wang JL, Jiao SC. Efficacy and safety of bevacizumab for the treatment of advanced hepatocellular carcinoma: a systematic review of phase II trials. PLOS ONE 7(12), e49717 (2012).
    • 40. Ollivier-Hourmand I, Allaire M, Cervoni JP. Club Francophone pour l'Etude de l'Hypertension Portale. Management of portal hypertension in patients treated with atezolizumab and bevacizumab for hepatocellular carcinoma. J. Hepatol. 77, 566– 567 (2022).
    • 41. Li M, Zhao R, Chen J et al. Next generation of anti-PD-L1 atezolizumab with enhanced anti-tumor efficacy in vivo. Sci. Rep. 11(1), 5774 (2021).
    • 42. Chen Y, Pei Y, Luo J, Huang Z, Yu J, Meng X. Looking for the optimal PD-1/PD-L1 inhibitor in cancer treatment: a comparison in basic structure, function, and clinical practice. Front Immunol. 11, 1088 (2020).
    • 43. Galle PR, Finn RS, Cheng AL et al. Assessment of the impact of anti-drug antibodies on PK and clinical outcomes with atezolizumab+bevacizumab in HCC [abstract]. Proceedings of the American Association for Cancer Research Annual Meeting 2021. Philadelphia, PA, USA (2021), (AbstractCT185).
    • 44. Giraud J, Chalopin D, Blanc JF, Saleh M. Hepatocellular carcinoma immune landscape and the potential of immunotherapies. Front Immunol. 12, 655697 (2021).
    • 45. Liaskou E, Wilson DV, Oo YH. Innate immune cells in liver inflammation. Mediators Inflamm. 2012, 949157 (2012).
    • 46. Robinson MW, Harmon C, O'Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol. Immunol. 13, 267–276 (2016).
    • 47. Tu JF, Ding YH, Ying XH et al. Regulatory T cells, especially ICOS+ FOXP3+ regulatory T cells, are increased in the hepatocellular carcinoma microenvironment and predict reduced survival. Sci. Rep. 6, 35056 (2016).
    • 48. Kelley RK, Sangro B, Harris W et al. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: randomized expansion of a phase I/II study. J. Clin. Oncol. 39(27), 2991–3001 (2021). • A phase I/II trial that demonstrated safety and preliminary efficacy using the STRIDE regimen in hepatocellular carcinoma patients.
    • 49. Dart SJ, Cook AM, Millward MJ et al. Changes in expression of PD-L1 on peripheral T cells in patients with melanoma and lung cancer treated with PD-1 inhibitors. Sci. Rep. 11(1), 15312 (2021).
    • 50. Antonia S, Goldberg SB, Balmanoukian A et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small-cell lung cancer: a multicentre, phase 1b study. Lancet Oncol. 17(3), 299–308 (2016).
    • 51. Schnipper LE, Davidson NE, Wollins DS et al. Updating the American Society of Clinical Oncology Value Framework: revisions and reflections in response to comments received. J. Clin. Oncol. 34(24), 2925–2934 (2016).
    • 52. Cherny NI, Dafni U, Bogaerts J et al. ESMO-Magnitude of Clinical Benefit Scale version 1.1. Ann. Oncol. 28(10), 2340–2366 (2017).
    • 53. Desai J, Deva S, Lee JS et al. Phase IA/IB study of single-agent tislelizumab, an investigational anti-PD-1 antibody, in solid tumors. J. Immunother. Cancer 8:e000453, (2020).
    • 54. Armstrong S, Prins P, He AR. Immunotherapy and immunotherapy biomarkers for hepatocellular carcinoma. Hepatoma Res. 7, 18 (2021).
    • 55. Lim CJ, Lee YH, Pan L et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 68(5), 916–927 (2019).
    • 56. Pfister D, Núñez NG, Pinyol R et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592(7854), 450–456 (2021).
    • 57. Inada Y, Mizukoshi E, Seike T, Tamai T, Iida N, Kitahara M et al. Characteristics of immune response to tumor-associated antigens and immune cell profile in patients with hepatocellular carcinoma. Hepatology 69(2), 653–665 (2019). doi:10.1002/hep.30212.
    • 58. Bruix J, Raoul JL, Sherman M, Mazzaferro V, Bolondi L, Craxi A et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial. J. Hepatol. 57(4), 821–9 (2012) doi:10.1016/j.jhep.2012.06.014.
    • 59. Rizzo A, Ricci AD. PD-L1 TMB, and other potential predictors of response to immunotherapy for hepatocellular carcinoma: how can they assist drug clinical trials? Expert Opin. Investig. Drugs. 31(4), 415–423 (2022).
    • 60. Rizzo A, Ricci AD, Gadaleta-Caldarola G, Brandi G. First-line immune checkpoint inhibitor-based combinations in unresectable hepatocellular carcinoma: current management and future challenges. Expert Rev. Gastroenterol. Hepatol. 15(11), 1245–1251 (2021).
    • 61. Greten TF, Sangro B. Targets for immunotherapy of liver cancer. J. Hepatol, doi:10.1016/j.jhep.2017.09.007. (2017) (Epub ahead of print).
    • 62. Ferrara R, Pilotto S, Caccese M et al. Do immune checkpoint inhibitors need new studies methodology? J. Thorac. Dis. 10(Suppl. 13), S1564–S1580 (2018).