We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The benefit of immunotherapy in patients with hepatocellular carcinoma: a systematic review and meta-analysis

    Deniz Can Guven

    *Author for correspondence:

    E-mail Address: denizcguven@hotmail.com

    Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, 06100, Turkey

    ,
    Enes Erul

    **Author for correspondence: Tel.: +90 312 305 4330;

    E-mail Address: eneserul@hotmail.com

    Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey

    ,
    Taha Koray Sahin

    Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, 06100, Turkey

    ,
    Omer Dizdar

    Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, 06100, Turkey

    ,
    Suayib Yalcin

    Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, 06100, Turkey

    &
    Ibrahim Halil Sahin

    Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA

    Published Online:https://doi.org/10.2217/fon-2022-0642

    Background: A systemic review of the survival benefit of immune checkpoint inhibitors (ICIs) in phase III hepatocellular carcinoma (HCC) trials was conducted. Methods: Meta-analyses were performed with the generic inverse-variance method with a fixed-effects model. Results: In 10 trials encompassing 6123 patients, ICI-based therapy (monotherapy/combination) improved overall survival (OS) compared with the control arm (hazard ratio [HR]: 0.77; 95% CI: 0.70–0.84; p < 0.001). The survival benefit was consistent across variable treatment lines, Eastern Cooperative Oncology Group performance status and AFP levels. While the OS benefit was more pronounced in hepatitis B-related HCC (HR: 0.70; 95% CI: 0.63–0.77; p < 0.001), OS was improved in hepatitis C-related (HR: 0.83; 95% CI: 0.71–0.98) and nonviral HCC (HR: 0.86; 95% CI: 0.77–0.97). Conclusion: ICI-based therapies should be the standard for all patients with advanced HCC.

    Papers of special note have been highlighted as: •• of considerable interest

    References

    • 1. Sung H, Ferlay J, Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021).
    • 2. Erstad DJ, Tanabe KK. Hepatocellular carcinoma: early-stage management challenges. J. Hepatocell. Carcinoma 4, 81–92 (2017).
    • 3. Lau WY, Leung TW, Lai BS et al. Preoperative systemic chemoimmunotherapy and sequential resection for unresectable hepatocellular carcinoma. Ann. Surg. 233(2), 236–241 (2001).
    • 4. Heimbach JK, Kulik LM, Finn RS et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 67(1), 358–380 (2018).
    • 5. Koulouris A, Tsagkaris C, Spyrou V, Pappa E, Troullinou A, Nikolaou M. Hepatocellular carcinoma: an overview of the changing landscape of treatment options. J. Hepatocell. Carcinoma 8, 387–401 (2021).
    • 6. Llovet JM, Kelley RK, Villanueva A et al. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 7(1), 6 (2021).
    • 7. Ohki T, Sato K, Kondo M et al. Relationship between outcomes and relative dose intensity of lenvatinib treatment in patients with advanced hepatocellular carcinoma. Liver Res. 4(4), 199–205 (2020).
    • 8. Atallah E, Schiffer CA. Discontinuation of tyrosine kinase inhibitors in chronic myeloid leukemia: when and for whom? Haematologica 105(12), 2738–2745 (2020).
    • 9. Zou X-L, Li X-B, Ke H et al. Prognostic value of neoantigen load in immune checkpoint inhibitor therapy for cancer. Front. Immunol. 12, (2021).
    • 10. Mauriello A, Zeuli R, Cavalluzzo B et al. High somatic mutation and neoantigen burden do not correlate with decreased progression-free survival in HCC patients not undergoing immunotherapy. Cancers 11(12), 1824 (2019).
    • 11. Wong M, Kim JT, Cox B et al. Evaluation of tumor mutational burden in small early hepatocellular carcinoma and progressed hepatocellular carcinoma. Hepat. Oncol. 8(4), HEP39–HEP39 (2021).
    • 12. Federico P, Petrillo A, Giordano P et al. Immune checkpoint inhibitors in hepatocellular carcinoma: current status and novel perspectives. Cancers 12(10), (2020).
    • 13. Yau T, Kang Y-K, Kim T-Y et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The CheckMate 040 randomized clinical trial. JAMA Oncol. 6(11), e204564–e204564 (2020).
    • 14. Zhu AX, Finn RS, Edeline J et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 19(7), 940–952 (2018).
    • 15. Finn RS, Qin S, Ikeda M et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382(20), 1894–1905 (2020). •• A pivotal, positive phase III study with immunotherapy changing the treatment algorithms in advanced hepatocellular carcinoma (HCC).
    • 16. Abou-Alfa GK, Lau G, Kudo M et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 1(8), EVIDoa2100070 (2022). •• The first positive phase III study using an immunotherapy-immunotherapy combination in the first-line treatment of advanced HCC.
    • 17. Yau T, Park J-W, Finn RS et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 23(1), 77–90 (2022).
    • 18. Teng W, Lin CC, Ho MM et al. Alpha-fetoprotein response at different time-points is associated with efficacy of nivolumab monotherapy for unresectable hepatocellular carcinoma. Am. J. Cancer Res. 11(5), 2319–2330 (2021).
    • 19. Hsu WF, Chuang PH, Chen CK et al. Predictors of response and survival in patients with unresectable hepatocellular carcinoma treated with nivolumab: real-world experience. Am. J. Cancer Res. 10(12), 4547–4560 (2020).
    • 20. Kelley RK, Rimassa L, Cheng A-L et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 23(8), 995–1008 (2022).
    • 21. Ren Z, Xu J, Bai Y et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2–3 study. Lancet Oncol. 22(7), 977–990 (2021).
    • 22. Cheng A-L, Qin S, Ikeda M et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. doi: 10.1016/j.jhep.2021.11.030 (2022).
    • 23. Haber PK, Puigvehí M, Castet F et al. Evidence-based management of hepatocellular carcinoma: systematic review and meta-analysis of randomized controlled trials (2002–2020). Gastroenterology 161(3), 879–898 (2021). •• A fundamental meta-analysis evaluating the treatment landscape of HCC across two decades.
    • 24. Pfister D, Núñez NG, Pinyol R et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592(7854), 450–456 (2021). •• A pivotal study investigating the mechanisms of immunotherapy underperformance in nonviral HCC.
    • 25. Ho WJ, Danilova L, Lim SJ et al. Viral status, immune microenvironment and immunological response to checkpoint inhibitors in hepatocellular carcinoma. J. Immunother. Cancer 8(1), e000394 (2020).
    • 26. Ding Z, Dong Z, Chen Z et al. Viral status and efficacy of immunotherapy in hepatocellular carcinoma: a systematic review with meta-analysis. Front. Immunol. 12, 733530 (2021).
    • 27. Page MJ, Mckenzie JE, Bossuyt PM et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71 (2021).
    • 28. Qin S, Chen Z, Fang W et al. Pembrolizumab plus best supportive care versus placebo plus best supportive care as second-line therapy in patients in Asia with advanced hepatocellular carcinoma (HCC): Phase 3 KEYNOTE-394 study. J. Clin. Oncol. 40(Suppl. 4), 383–383 (2022).
    • 29. Finn RS, Ryoo BY, Merle P et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J. Clin. Oncol. 38(3), 193–202 (2020).
    • 30. Finn R, Kudo M, Merle P et al. LBA34 primary results from the phase III LEAP-002 study: lenvatinib plus pembrolizumab versus lenvatinib as first-line (1L) therapy for advanced hepatocellular carcinoma (aHCC). Ann. Oncol. 33, S1401 (2022).
    • 31. Qin S, Kudo M, Meyer T et al. LBA36 Final analysis of RATIONALE-301: randomized, phase III study of tislelizumab versus sorafenib as first-line treatment for unresectable hepatocellular carcinoma. Ann. Oncol. 33, S1402–S1403 (2022).
    • 32. Qin S, Chan L, Gu S et al. LBA35 camrelizumab (C) plus rivoceranib (R) vs. sorafenib (S) as first-line therapy for unresectable hepatocellular carcinoma (uHCC): a randomized, phase III trial. Ann. Oncol. 33, S1401–S1402 (2022). •• The first positive phase III study using an immunotherapy-tyrosine-kinase inhibitor combination in the first-line treatment of advanced HCC.
    • 33. Ho WJ, Danilova L, Lim SJ et al. Viral status,immune microenvironment and immunological response to checkpoint inhibitors in hepatocellular carcinoma. J. Immunother. Cancer 8(1), e000394 (2020).
    • 34. Ding Z, Dong Z, Chen Z et al. Viral status and efficacy of immunotherapy in hepatocellular carcinoma: a systematic review with meta-analysis. Front Immunol. 12, 733530 (2021).
    • 35. Cabibbo G, Celsa C, Enea M et al. Progression-free survival early assessment is a robust surrogate endpoint of overall survival in immunotherapy trials of hepatocellular carcinoma. Cancers 13(1), 90 (2020).
    • 36. Nakano M, Yatsuhashi H, Bekki S et al. Trends in hepatocellular carcinoma incident cases in Japan between 1996 and 2019. Sci. Rep. 12(1), 1517 (2022).
    • 37. Kulik L, El-Serag HB. Epidemiology and management of hepatocellular carcinoma. Gastroenterology 156(2), 477–491.e471 (2019).
    • 38. Nishikawa H, Osaki Y. Non-B, non-C hepatocellular carcinoma (Review). Int. J. Oncol. 43(5), 1333–1342 (2013).
    • 39. Hamed MA, Ali SA. Non-viral factors contributing to hepatocellular carcinoma. World J. Hepatol. 5(6), 311–322 (2013).
    • 40. Blonski W, Kotlyar DS, Forde KA. Non-viral causes of hepatocellular carcinoma. World J. Gastroenterol. 16(29), 3603–3615 (2010).
    • 41. Karin M. New insights into the pathogenesis and treatment of non-viral hepatocellular carcinoma: a balancing act between immunosuppression and immunosurveillance. Precis. Clin. Med. 1(1), 21–28 (2018).
    • 42. Orci LA, Sanduzzi-Zamparelli M, Caballol B et al. Incidence of hepatocellular carcinoma in patients with nonalcoholic fatty liver disease: a systematic review, meta-analysis, and meta-regression. Clin. Gastroenterol. Hepatol. 20(2), 283–292.e210 (2022).
    • 43. Mak LY, Cruz-Ramón V, Chinchilla-López P et al. Global epidemiology, prevention, and management of hepatocellular carcinoma. Am. Soc. Clin. Oncol. Educ. Book 38, 262–279 (2018).
    • 44. Song G, Shi Y, Zhang M et al. Global immune characterization of HBV/HCV-related hepatocellular carcinoma identifies macrophage and T-cell subsets associated with disease progression. Cell Discov. 6(1), 90 (2020).
    • 45. Borgia M, Dal Bo M, Toffoli G. Role of virus-related chronic inflammation and mechanisms of cancer immune-suppression in pathogenesis and progression of hepatocellular carcinoma. Cancers (Basel) 13(17), (2021).
    • 46. Bonilla CM, Mcgrath NA, Fu J, Xie C. Immunotherapy of hepatocellular carcinoma with infection of hepatitis B or C virus. Hepatoma Res. 6, 68 (2020).
    • 47. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19(2), 156–172 (2009).
    • 48. Saito T, Ichimura Y, Taguchi K et al. p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nat. Commun. 7, 12030 (2016).
    • 49. Seike T, Mizukoshi E, Yamada K et al. Fatty acid-driven modifications in T-cell profiles in non-alcoholic fatty liver disease patients. J. Gastroenterol. 55(7), 701–711 (2020).
    • 50. Inada Y, Mizukoshi E, Seike T et al. Characteristics of immune response to tumor-associated antigens and immune cell profile in patients with hepatocellular carcinoma. Hepatology 69(2), 653–665 (2019).
    • 51. Yarchoan M, Xing D, Luan L et al. Characterization of the immune microenvironment in hepatocellular carcinoma. Clin. Cancer Res. 23(23), 7333–7339 (2017).
    • 52. Lim CJ, Lee YH, Pan L et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 68(5), 916–927 (2019).
    • 53. Pocha C, Xie C. Hepatocellular carcinoma in alcoholic and non-alcoholic fatty liver disease-one of a kind or two different enemies? Transl. Gastroenterol. Hepatol. 4, 72 (2019).
    • 54. Cariani E, Missale G. Immune landscape of hepatocellular carcinoma microenvironment: implications for prognosis and therapeutic applications. Liver Int. 39(9), 1608–1621 (2019).
    • 55. De Battista D, Zamboni F, Gerstein H et al. Molecular signature and immune landscape of HCV-associated hepatocellular carcinoma (HCC): differences and similarities with HBV-HCC. J. Hepatocell. Carcinoma 8, 1399–1413 (2021).
    • 56. Mee CJ, Farquhar MJ, Harris HJ et al. Hepatitis C virus infection reduces hepatocellular polarity in a vascular endothelial growth factor-dependent manner. Gastroenterology 138(3), 1134–1142 (2010).
    • 57. Zhu C, Liu X, Wang S et al. Hepatitis C virus core protein induces hypoxia-inducible factor 1α-mediated vascular endothelial growth factor expression in Huh7.5.1 cells. Mol. Med. Rep. 9(5), 2010–2014 (2014).
    • 58. Alzamzamy A, Elsayed H, Abd Elraouf M, Eltoukhy H, Megahed T, Aboubakr A. Serum vascular endothelial growth factor as a tumor marker for hepatocellular carcinoma in hepatitis C virus-related cirrhotic patients. World J. Gastrointest. Oncol. 13(6), 600–611 (2021).
    • 59. Villani R, Facciorusso A, Bellanti F et al. DAAs rapidly reduce inflammation but increase serum VEGF level: a rationale for tumor risk during anti-HCV treatment. PLOS ONE 11(12), e0167934 (2016).
    • 60. Faillaci F, Marzi L, Critelli R et al. Liver angiopoietin-2 is a key predictor of de novo or recurrent hepatocellular cancer after hepatitis C virus direct-acting antivirals. Hepatology 68(3), 1010–1024 (2018).
    • 61. Bruix J, Cheng A-L, Meinhardt G, Nakajima K, De Sanctis Y, Llovet J. Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: analysis of two phase III studies. J. Hepatol. 67(5), 999–1008 (2017).
    • 62. Bruix J, Raoul J-L, Sherman M et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial. J. Hepatol. 57(4), 821–829 (2012).
    • 63. Papatheodoridis GV, Chan HL-Y, Hansen BE, Janssen HLA, Lampertico P. Risk of hepatocellular carcinoma in chronic hepatitis B: assessment and modification with current antiviral therapy. J. Hepatol. 62(4), 956–967 (2015).
    • 64. Lebossé F, Gudd C, Tunc E et al. CD8(+)T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction. EBioMedicine 49, 258–268 (2019).
    • 65. Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J. Hepatol. 61(6), 1385–1396 (2014).
    • 66. Kaseb AO, Hasanov E, Cao HST et al. Perioperative nivolumab monotherapy versus nivolumab plus ipilimumab in resectable hepatocellular carcinoma: a randomised, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 7(3), 208–218 (2022).
    • 67. Marron TU, Fiel MI, Hamon P et al. Neoadjuvant cemiplimab for resectable hepatocellular carcinoma: a single-arm, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 7(3), 219–229 (2022).
    • 68. Chen GH, Wang GB, Huang F et al. Pretransplant use of toripalimab for hepatocellular carcinoma resulting in fatal acute hepatic necrosis in the immediate postoperative period. Transpl. Immunol. 66, 101386 (2021).
    • 69. Dehghan Y, Schnickel GT, Hosseini M et al. Rescue liver re-transplantation after graft loss due to severe rejection in the setting of pre-transplant nivolumab therapy. Clin. J. Gastroenterol. 14(6), 1718–1724 (2021).
    • 70. Tabrizian P, Florman SS, Schwartz ME. PD-1 inhibitor as bridge therapy to liver transplantation? Am. J. Transplant. 21(5), 1979–1980 (2021).
    • 71. Sogbe M, López-Guerra D, Blanco-Fernández G, Sangro B, Narváez-Rodriguez I. Durvalumab as a successful downstaging therapy for liver transplantation in hepatocellular carcinoma: the importance of a washout period. Transplantation 105(12), 398–400 (2021).
    • 72. Llovet JM, Castet F, Heikenwalder M et al. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 19(3), 151–172 (2022).
    • 73. Shimada S, Mogushi K, Akiyama Y et al. Comprehensive molecular and immunological characterization of hepatocellular carcinoma. EBioMedicine 40, 457–470 (2019). •• A landmark study evaluating the molecular landscape of HCC with implications for treatment selection.
    • 74. Shimada S, Tanaka S. Molecular targeted drugs, comprehensive classification and preclinical models for the implementation of precision immune-oncology in hepatocellular carcinoma. Int. J. Clin. Oncol. 27(7), 1101–1109 (2022).
    • 75. Calderaro J, Ziol M, Paradis V, Zucman-Rossi J. Molecular and histological correlations in liver cancer. J. Hepatol. 71(3), 616–630 (2019).
    • 76. Rebouissou S, Franconi A, Calderaro J et al. Genotype-phenotype correlation of CTNNB1 mutations reveals different ß-catenin activity associated with liver tumor progression. Hepatology 64(6), 2047–2061 (2016).
    • 77. Chen L, Zhou Q, Liu J, Zhang W. CTNNB1 alternation is a potential biomarker for immunotherapy prognosis in patients with hepatocellular carcinoma. Front. Immunol. 12, 759565 (2021).
    • 78. Zhu AX, Abbas AR, De Galarreta MR et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 28(8), 1599–1611 (2022).
    • 79. Sia D, Jiao Y, Martinez-Quetglas I et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153(3), 812–826 (2017).
    • 80. Sangro B, Melero I, Wadhawan S et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J. Hepatol. 73(6), 1460–1469 (2020).