We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Manganese(II), copper(II) and silver(I) complexes containing 1,10-phenanthroline/1,10-phenanthroline-5,6-dione against Candida species

    Rafael M Gandra

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    ,
    Clarissa A Pacheco

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    ,
    Leandro S Sangenito

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Nilópolis, Rio de Janeiro, Brazil

    ,
    Lívia S Ramos

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    ,
    Lucieri OP Souza

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    ,
    Pauraic McCarron

    Chemistry Department, Maynooth University, National University of Ireland, Maynooth, Ireland

    ,
    Malachy McCann

    Chemistry Department, Maynooth University, National University of Ireland, Maynooth, Ireland

    ,
    Michael Devereux

    The Centre for Biomimetic & Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin, Ireland

    ,
    Marta H Branquinha

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    Rede Micologia RJ – Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil

    &
    André LS Santos

    *Author for correspondence:

    E-mail Address: andre@micro.ufrj.br

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    Rede Micologia RJ – Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil

    Published Online:https://doi.org/10.2217/fmb-2023-0212

    Background: New chemotherapeutics are urgently required to treat Candida infections caused by drug-resistant strains. Methods: The effects of 16 1,10-phenanthroline (phen)/1,10-phenanthroline-5,6-dione/dicarboxylate complexed with Mn(II), Cu(II) and Ag(I) were evaluated against ten different Candida species. Results: Proliferation of Candida albicans, Candida dubliniensis, Candida famata, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis and Candida tropicalis was inhibited by three of six Cu(II) (MICs 1.52–21.55 μM), three of three Ag(I) (MICs 0.11–12.74 μM) and seven of seven Mn(II) (MICs 0.40–38.06 μM) complexes. Among these [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O, where oda = octanedioic acid, exhibited effective growth inhibition (MICs 0.4–3.25 μM), favorable activity indexes, low toxicity against Vero cells and good/excellent selectivity indexes (46.88–375). Conclusion: [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O represents a promising chemotherapeutic option for emerging, medically relevant and drug-resistant Candida species.

    Plain language summary

    Candida species are widespread fungi that can cause a variety of infections in humans, and some of them exhibit resistance profile to existing antifungal drugs. Consequently, it is imperative to discover novel treatments for these clinically relevant human infections. Complexes are chemical compounds containing metal ion components that are well-known for their antimicrobial properties, including antifungal activity. In the present study, we investigated the effects of 16 novel complexes against ten medically relevant Candida species, including some strains resistant to commonly used clinical antifungals. Our findings revealed that all complexes containing manganese and silver metals effectively inhibited the growth of all Candida species tested, albeit to varying extents. Some of these complexes exhibited superior antifungal activity and lower toxicity to mammalian cells compared to traditional antifungals, such as fluconazole. In conclusion, these new complexes hold promise as a potential novel approach for treating fungal infections, especially those caused by drug-resistant Candida strains.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Taei M, Chadeganipour M, Mohammadi R. An alarming rise of non-albicans Candida species and uncommon yeasts in the clinical samples; a combination of various molecular techniques for identification of etiologic agents. BMC Res. Notes 12(1), 779 (2019).
    • 2. Lass-Flörl C, Steixner S. The changing epidemiology of fungal infections. Mol. Aspects Med. 94, 101215 (2023).
    • 3. McCarty TP, White CM, Pappas PG. Candidemia and invasive candidiasis. Infect. Dis. Clin. North Am. 35(2), 389–413 (2021). • An excellent review on candidiasis and its main etiological agents.
    • 4. Antinori S, Milazzo L, Sollima S, Galli M, Corbellino M. Candidemia and invasive candidiasis in adults: a narrative review. Eur. J. Intern. Med. 34, 21–28 (2016).
    • 5. Gómez-Gaviria M, Martínez-Álvarez JA, Chávez-Santiago JO, Mora-Montes HM. Candida haemulonii complex and Candida auris: biology, virulence factors, immune response, and multidrug resistance. Infect. Drug Resist. 16, 1455–1470 (2023).
    • 6. Francisco EC, de Jong AW, Colombo AL. Candida haemulonii species complex: a mini-review. Mycopathologia 188, 909–917 (2023).
    • 7. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat. Rev. Dis. Primers 4, 18026 (2018).
    • 8. Lyman M, Forsberg K, Sexton DJ et al. Worsening spread of Candida auris in the United States, 2019 to 2021. Ann. Intern. Med. 176(4), 489–495 (2023).
    • 9. Vargas-Espindola LA, Cuervo-Maldonado SI, Enciso-Olivera JL et al. Fungemia in hospitalized adult patients with hematological malignancies: epidemiology and risk factors. J. Fungi 9(4), 400 (2023).
    • 10. Espinel-Ingroff A, Cantón E, Pemán J. Antifungal resistance among less prevalent Candida non-albicans and other yeasts versus established and under development agents: a literature review. J. Fungi 7(1), 24 (2021).
    • 11. Aragón-Muriel A, Reyes-Márquez V, Cañavera-Buelvas F et al. Pincer complexes derived from tridentate Schiff bases for their use as antimicrobial metallopharmaceuticals. Inorganics 10(9), 134 (2022).
    • 12. Rees TW, Ho PY, Hess J. Recent advances in metal complexes for antimicrobial photodynamic therapy. Chembiochem 24(16), e202200796 (2023).
    • 13. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets, and applications. Nat. Rev. Microbiol. 11(6), 371–384 (2013). •• An excellent review on the relevance of metals in microbial physiology and their antimicrobial activities.
    • 14. Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 7(3), 202–224 (2023). •• A comprehensive review on the significance of metals in addressing microbial resistance profiles.
    • 15. Gandra RM, McCarron P, Fernandes MF et al. Antifungal potential of copper(II), manganese(II), and silver(I) 1,10-phenanthroline chelates against multidrug-resistant fungal species forming the Candida haemulonii complex: impact on the planktonic and biofilm lifestyles. Front. Microbiol. 8, 1257 (2017).
    • 16. Frota HF, Lorentino CMA, Barbosa PF et al. Antifungal potential of the new copper(II)-theophylline/1,10-phenanthroline complex against medically relevant drug-resistant Candida species. Biometals doi: 10.1007/s10534-023-00549-y (2023) (Epub ahead of print).
    • 17. Mello TP, Aor AC, Barcellos IC et al. Active Cu(II), Mn(II) and Ag(I) 1,10-phenanthroline/1,10-phenanthroline-5,6-dione/dicarboxylate chelates on Scedosporium. Future Microbiol 18, 1049–1059 (2023).
    • 18. Rigo GV, Cardoso FG, Devereux M et al. Antimicrobial and antibiofilm activities of copper(II)-1,10-phenanthroline-5,6-dione against commensal bacteria and fungi responsible for vaginal microbiota dysbiosis. Curr. Microbiol. 80, 383 (2023).
    • 19. Sousa IS, Vieira TDP, Menna-Barreto RFS et al. Silver(I) 1,10-phenanthroline complexes are active compounds against Fonsecaea pedrosoi and negatively modulate its potential virulence attributes. J. Fungi 9, 356 (2023).
    • 20. Oliveira SSC, Santos VS, Devereux M, McCann M, Santos ALS, Branquinha MH. The anti-Leishmania amazonensis and anti-Leishmania chagasi action of copper(II) and silver(I) 1,10-phenanthroline-5,6-dione coordination compounds. Pathogens 12, 70 (2023).
    • 21. Lima AKC, Elias CGR, Oliveira SSC et al. Anti-Leishmania braziliensis activity of 1,10-phenanthroline-5,6-dione and its Cu(II) and Ag(I) complexes. Parasitol. Res. 120, 3273–3285 (2021).
    • 22. Peregrino IV, Ventura RF, Borghi M et al. Antibacterial activity and carbapenem re-sensitizing ability of 1,10-phenanthroline-5,6-dione and its metal complexes against KPC-producing Klebsiella pneumoniae clinical strains. Lett. Appl. Microbiol. 73, 139–148 (2021).
    • 23. Granato MQ, Mello TP, Nascimento RS et al. Silver(I) and copper(II) complexes of 1,10-phenanthroline-5,6-dione against Phialophora verrucosa: a focus on the interaction with human macrophages and Galleria mellonella larvae. Front. Microbiol. 12, 641258 (2021).
    • 24. Majodina S, Ndima L, Abosede OO et al. Physical stability enhancement and antimicrobial properties of a sodium ionic cocrystal with theophylline. CrystEngComm 23, 335–352 (2021).
    • 25. Ventura RF, Galdino ACM, Viganor L et al. Antimicrobial action of 1,10-phenanthroline-based compounds on carbapenemase-producing Acinetobacter baumannii clinical strains: efficacy against planktonic- and biofilm-growing cells. Braz. J. Microbiol. 51, 1703–1710 (2020).
    • 26. Rigo GV, Silveira BP, Devereux M, McCann M, Santos ALS, Tasca T. Anti-Trichomonas vaginalis activity of 1,10-phenanthroline-5,6-dione-based drugs and synergistic effect with metronidazole. Parasitology 146, 1179–1183 (2019).
    • 27. McCarron P, McCann M, Devereux M et al. Unprecedented in-vitro antitubercular activitiy of manganese(II) complexes containing 1,10-phenanthroline and dicarboxylate ligands: increased activity, superior selectivity and lower toxicity in comparison to their copper(II) analogues. Front. Microbiol. 9, 1432 (2018).
    • 28. Granato MQ, Gonçalves DS, Seabra SH et al. F. 1,10-Phenanthroline-5,6-dione–based compounds are effective in disturbing crucial physiological events of Phialophora verrucosa. Front. Microbiol. 8, 76 (2017).
    • 29. Viganor L, Galdino ACM, Nunes APF et al. Anti-Pseudomonas aeruginosa activity of 1,10-phenanthroline-based drugs against both planktonic- and biofilm-growing cells. J. Antimicrob. Chemother. 71, 128–134 (2016).
    • 30. McCann M, Kellett A, Kavanagh K, Devereux M, Santos ALS. Deciphering the antimicrobial activity of phenanthroline chelators. Curr. Med. Chem. 19(17), 2703–2714 (2012). • The paper summarizes some interesting insights into the modes of action of the metal complexes containing the ligand 1,10-phenanthroline.
    • 31. McCann M, Geraghty M, Devereux M, O'Shea D, Mason J, O'Sullivan L. Insights into the mode of action of the anti-Candida activity of 1,10-phenanthroline and its metal chelates. Met. Based Drugs 7(4), 185–193 (2000). • The paper proposed the mechanisms of action of 1,10-phenanthroline complexes against Candida.
    • 32. Coyle B, Kavanagh K, McCann M, Devereux M, Geraghty M. Mode of anti-fungal activity of 1,10-phenanthroline and its Cu(II), Mn(II) and Ag(I) complexes. Biometals 16(2), 321–329 (2003).
    • 33. Kellett A, Howe O, O'Connor M et al. Radical-induced DNA damage by cytotoxic square-planar copper(II) complexes incorporating o-phthalate and 1,10-phenanthroline or 2,2′-dipyridyl. Free Radic. Biol. Med. 53(3), 564–576 (2012).
    • 34. McCann M, Coyle B, McKay S et al. Synthesis and x-ray crystal structure of [Ag(phendio)2]ClO4 (phendio = 1,10-phenanthroline-5,6-dione) and its effects on fungal and mammalian cells. Biometals 17(6), 635–645 (2004).
    • 35. Casey MT, McCann M, Devereux M et al. Synthesis and structure of the MnII,IIcomplex salt [Mn2(η1η1 μ2-oda)(phen)4(H2O)2][Mn2][Mn2(η1η1 μ2-oda)(phen)4(η1-oda)2]·4H2O (odah2 = octanedioic acid): a catalyst for H2O2 disproportionation. J. Chem. Soc. Chem. Commun. 22, 2643–2645 (1994).
    • 36. Devereux M, McCann M, Cronin JF, Ferguson G, McKee V. Binuclear and polymeric copper(II) dicarboxylate complexes: syntheses and crystal structures of [Cu2(pda)(phen)4](ClO4)2⋅5H2O⋅C2H5OH [Cu2(oda)(phen)4],(ClO4)2⋅2.6H2O⋅C2H5OH and {[Cu2(pda)2(NH3)4(H2O)2]⋅4H2O}n (odaH2 = octanedioic acid; pdaH2 = pentanedioic acid; phen = 1,10-phenanthroline). Polyhedron 18(16), 2141–2148 (1999).
    • 37. Devereux M, McCann M, Leon V, Geraghty M, McKee V, Wikaira J. Synthesis and biological activity of manganese (II) complexes of phthalic and isophthalic acid: x-ray crystal structures of [Mn(ph)(phen)2(H2O)].4H2O [Mn(phen)2H2O],2(isoph)2(phen).12H2O and [Mn(isoph)(bipy)]4. 2.75biby(n)(phH(2) = phthalic acid; isoph = isophthalic acid; phen = 1,10-phenanthroline; bipy = 2,2-bipyridine). Met. Based Drugs 7(5), 275–288 (2000).
    • 38. McCann S, McCann M, Casey MT et al. Manganese(II) complexes of 3,6,9-trioxaundecanedioic acid (3,6,9-tddaH2): x-ray crystal structures of [Mn(3,6,9-tdda)(H2O)2]·2H2O and {[Mn(3,6,9-tdda)(phen)2·3H2O]·EtOH}n. Polyhedron 16(24), 4247–4252 (1997).
    • 39. Kellett A, O'Connor M, McCann M et al. Bis-phenanthroline copper(II) phthalate complexes are potent in vitro antitumor agents with ‘self-activating’ metallo-nuclease and DNA binding properties. Dalton Trans. 40(5), 1024–1027 (2011).
    • 40. M27-Ed4E: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts (4th Edition). Clinical and Laboratory Standards Institute, PA, USA (2017).
    • 41. M60-ED2: Performance Standards for Antifungal Susceptibility Testing of Yeasts (2nd Edition). Clinical and Laboratory Standards Institute, PA, USA (2020).
    • 42. M57S: Epidemiological Cutoff Values for Antifungal Susceptibility Testing (4th Edition). Clinical and Laboratory Standards Institute, PA, USA (2022).
    • 43. Liya SJ, Siddique R. Determination of antimicrobial activity of some commercial fruit (apple, papaya, lemon and strawberry) against bacteria causing urinary tract infection. Eur. J Microbiol. Immunol. (Bp.) 8(3), 95–99 (2018).
    • 44. Geraghty M, Cronin JF, Devereux M, McCann M. Synthesis and antimicrobial activity of copper(II) and manganese(II) alpha,omega-dicarboxylate complexes. Biometals 13(1), 1–8 (2000).
    • 45. Hoffman AE, Miles L, Greenfield TJ et al. Clinical isolates of Candida albicans, Candida tropicalis, and Candida krusei have different susceptibilities to Co(II) and Cu(II) complexes of 1,10-phenanthroline. Biometals 28(2), 415–423 (2015).
    • 46. Gandra RM, McCarron P, Viganor L et al. In vivo activity of copper(II), manganese(II), and silver(I) 1,10-phenanthroline chelates against Candida haemulonii using the Galleria mellonella model. Front. Microbiol. 11, 470 (2020).