We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Wood materials for limiting the bacterial reservoir on surfaces in hospitals: would it be worthwhile to go further?

    Muhammad T Munir

    Laboratoire Innovation Matériau Bois Habitat Apprentissage (LIMBHA), Ecole Supérieure du Bois, 7 Rue Christian Pauc, 44000 Nantes, France

    ,
    Florence Aviat

    Your ResearcH-Bio-Scientific, 307 La Gauterie, 44430 Le Landreau, France

    ,
    Didier Lepelletier

    Laboratoire MiHAR EE 1701 S, Institut de Recherche en Santé 2, Université de Nantes, 22 Boulevard Benoni-Goullin, 44200 Nantes, France

    ,
    Patrice Le Pape

    EA 1155 IICiMed, Institut de Recherche en Santé 2, Université de Nantes, 22 Boulevard Benoni-Goullin, 44200 Nantes, France

    ,
    Laurence Dubreil

    PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France

    ,
    Mark Irle

    Laboratoire Innovation Matériau Bois Habitat Apprentissage (LIMBHA), Ecole Supérieure du Bois, 7 Rue Christian Pauc, 44000 Nantes, France

    ,
    Michel Federighi

    UMR INRA 1014 SECALIM, Oniris, Route de Gachet, CS 40706, 44307 Nantes Cedex 03, France

    ,
    Christophe Belloncle

    Laboratoire Innovation Matériau Bois Habitat Apprentissage (LIMBHA), Ecole Supérieure du Bois, 7 Rue Christian Pauc, 44000 Nantes, France

    ,
    Matthieu Eveillard

    *Author for correspondence:

    E-mail Address: MaEveillard@chu-angers.fr

    CRCINA, Inserm, Université de Nantes, Université d’Angers, Angers, 44200 Nantes, France

    &
    Hélène Pailhoriès

    Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire, 4 Rue Larrey 49933 Angers Cedex, France

    Published Online:https://doi.org/10.2217/fmb-2019-0339

    Aim: To assess the activity of Quercus petraea (oak) on five bacterial species/genus frequently involved in hospital-acquired infections for evaluating the interest of going further in exploring the possibilities of using untreated wood as a material in the hospital setting. Materials & methods: We studied the activity of Q. petraea by the disk diffusion method. Results:Q. petraea was active on Staphylococcus aureus and Acinetobacter coalcoaceticus–baumannii complex, two bacterial species particularly resistant in the hospital environment, independently from their resistance to antibiotics, and was slightly active on Pseudomonas aeruginosa. Concurrently, Q. petraea was not active on Enterococci and Escherichia coli. Conclusion: Overall, untreated wood material presented antimicrobial properties that could have an impact on the cross-transmission of certain bacterial species in healthcare settings.

    References

    • 1. Dancer SJ. The role of hospital cleaning in the control of hospital-acquired infection. J. Hosp. Infect. 73(4), 378–385 (2009).
    • 2. Dancer SJ. Controlling hospital-acquired infections: focus on the role of the environment and new technologies for decontamination. Clin. Microbiol. Rev. 27(4), 665–690 (2014).
    • 3. Huang SS, Datta R, Platt R. Risk of acquiring antibiotic-resistant bacteria from prior room occupants. Arch. Intern. Med. 166(18), 1945–1951 (2006).
    • 4. Nseir S, Blezejewski C, Lubret R, Wallet F, Courcol R, Durocher A. Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin. Microbiol. Infect. 17(8), 1201–1208 (2011).
    • 5. Cheng VCC, Wong SC, Chen JHK et al. Control of multidrug-resistant Acinetobacter baumannii in Hong Kong: role of environmental surveillance in communal areas after a hospital outbreak. Am. J. Infect. Control 46(1), 60–66 (2018).
    • 6. Nyrud AQ, Bringslimark T, Bysheim K. Benefits from wood interior in a hospital room: a preference study. Archit. Sci. Rev. 57(2), 125–131 (2014).
    • 7. Kotradyova V, Vavrinsky E, Kalinakova B et al. Wood and its impact on humans and environment quality in health care facilities. Int. J. Environ. Res. Public Health 16(18), 3496 (2019).
    • 8. Munir MT, Aviat F, Pailhories H et al. Direct screening method to assess antimicrobial behaviour of untreated wood. Eur. J. Wood Wood Prod. 77(2), 319–322 (2019).
    • 9. Munir MT, Pailhoriès H, Eveillard M et al. Antimicrobial characteristics of untreated wood: toward an hygienic environment. Health 11, 152–170 (2019).
    • 10. Baier C, Ipaktchi R, Ebadi E et al. A multimodal infection control concept in a burn intensive care unit – lessons learnt from a methicillin-resistant Staphylococcus aureus outbreak. J. Hosp. Infect. 98(2), 127–133 (2018).
    • 11. Dancer SJ, White LF, Lamb J, Girvan EK, Robertson C. Measuring the effect of enhanced cleaning in a UK hospital: a prospective cross-over study. BMC Med. 7, 28 (2009).
    • 12. Chapartegui-Gonzalez I, Lazaro-Diez M, Bravo Z, Navas J, Icardo JM, Ramos-Vivas J. Acinetobacter baumannii maintains its virulence after long-time starvation. PLoS ONE 13, e0201961 (2018).