We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Epigenetic signaling and crosstalk in regulation of gene expression and disease progression

    Soumen Manna

    Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India

    ,
    Jagdish Mishra

    Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India

    ,
    Tirthankar Baral

    Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India

    ,
    R Kirtana

    Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India

    ,
    Piyasa Nandi

    Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India

    ,
    Ankan Roy

    Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India

    ,
    Subhajit Chakraborty

    Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India

    ,
    Niharika

    Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India

    &
    Samir K Patra

    *Author for correspondence: Tel.: +91 661 246 2683;

    E-mail Address: skpatra_99@yahoo.com

    Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India

    Published Online:https://doi.org/10.2217/epi-2023-0235

    Chromatin modifications – including DNA methylation, modification of histones and recruitment of noncoding RNAs – are essential epigenetic events. Multiple sequential modifications converge into a complex epigenetic landscape. For example, promoter DNA methylation is recognized by MeCP2/methyl CpG binding domain proteins which further recruit SETDB1/SUV39 to attain a higher order chromatin structure by propagation of inactive epigenetic marks like H3K9me3. Many studies with new information on different epigenetic modifications and associated factors are available, but clear maps of interconnected pathways are also emerging. This review deals with the salient epigenetic crosstalk mechanisms that cells utilize for different cellular processes and how deregulation or aberrant gene expression leads to disease progression.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Verdone L, Caserta M, Di Mauro E. Role of histone acetylation in the control of gene expression. Biochem. Cell Biol. 83(3), 344–353 (2005).
    • 2. Patra SK, Deb M, Patra A. Molecular marks for epigenetic identification of developmental and cancer stem cells. Clin. Epigenetics 2(1), 27–53 (2011).
    • 3. Kar S, Parbin S, Deb M et al. Epigenetic choreography of stem cells: the DNA demethylation episode of development. Cell. Mol. Life Sci. 71(6), 1017–1032 (2014).
    • 4. Parbin S, Kar S, Shilpi A et al. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J. Histochem. Cytochem. 62(1), 11–33 (2014).
    • 5. Loury R, Sassone-Corsi P. Histone phosphorylation: how to proceed. Methods 31(1), 40–48 (2003).
    • 6. Ryu HY, Hochstrasser M. Histone sumoylation and chromatin dynamics. Nucleic Acids Res. 49(11), 6043–6052 (2021).
    • 7. Chen JJ, Stermer D, Tanny JC. Decoding histone ubiquitylation. Front Cell Dev Biol. 10, 968398 (2022).
    • 8. Deb M, Kar S, Sengupta D et al. Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell. Mol. Life Sci. 71(18), 3439–3463 (2014).
    • 9. Hsieh TF, Fischer RL. Biology of chromatin dynamics. Annu. Rev. Plant Biol. 56, 327–351 (2005).
    • 10. Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. Prog. Mol. Biol. Transl. Sci. 197, 261–302 (2023).
    • 11. Santos-Rosa H, Schneider R, Bannister AJ et al. Active genes are tri-methylated at K4 of histone H3. Nature 419(6905), 407–411 (2002). •• One of the premier publications about H3K4 methylation status in active genes.
    • 12. Sasidharan Nair V, El Salhat H, Taha RZ, John A, Ali BR, Elkord E. DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin. Epigenetics 10, 78 (2018).
    • 13. Vaissière T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat. Res. 659(1–2), 40–48 (2008).
    • 14. Foster BM, Stolz P, Mulholland CB et al. Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of UHRF1 toward chromatin. Mol. Cell 72(4), 739–752.e9 (2018). • First described how RING E3 ubiquitin ligase UHRF1 controls methylation of newly replicated DNA.
    • 15. Rothbart SB, Krajewski K, Nady N et al. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat. Struct. Mol. Biol. 19(11), 1155–1160 (2012).
    • 16. Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M, Shirakawa M. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep. 10(11), 1235–1241 (2009).
    • 17. Hashimoto H, Vertino PM, Cheng X. Molecular coupling of DNA methylation and histone methylation. Epigenomics 2(5), 657–669 (2010).
    • 18. Morselli M, Pastor WA, Montanini B et al. In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. Elife 4, e06205 (2015).
    • 19. Stewart KR, Veselovska L, Kim J et al. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev. 29(23), 2449–2462 (2015). •• Defined how histone modifications can configure the DNA methylation pattern.
    • 20. Salhab A, Nordström K, Gasparoni G et al. A comprehensive analysis of 195 DNA methylomes reveals shared and cell-specific features of partially methylated domains. Genome Biol. 19(1), 150 (2018).
    • 21. Smallwood A, Estève PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 21(10), 1169–1178 (2007).
    • 22. Liyanage VR, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR. DNA modifications: function and applications in normal and disease states. Biology (Basel) 3(4), 670–723 (2014).
    • 23. Menafra R, Stunnenberg HG. MBD2 and MBD3: elusive functions and mechanisms. Front. Genet. 5, 428 (2014).
    • 24. Lempiäinen JK, Garcia BA. Characterizing crosstalk in epigenetic signaling to understand disease physiology. Biochem. J. 480(1), 57–85 (2023).
    • 25. Laugesen A, Højfeldt JW, Helin K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell 74(1), 8–18 (2019).
    • 26. Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications – writers that read. EMBO Rep. 16(11), 1467–1481 (2015).
    • 27. Molina-Serrano D, Schiza V, Kirmizis A. Crosstalk among epigenetic modifications: lessons from histone arginine methylation. Biochem. Soc. Trans. 41(3), 751–759 (2013).
    • 28. Sugeedha J, Gautam J, Tyagi S. SET1/MLL family of proteins: functions beyond histone methylation. Epigenetics. 16(5), 469–487 (2021).
    • 29. Wu L, Lee SY, Zhou B et al. ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes. Mol Cell. 49(6), 1108–1120 (2013).
    • 30. Bian C, Xu C, Ruan J et al. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J. 30(14), 2829–2842 (2011).
    • 31. Wu F, Li X, Looso M et al. Spurious transcription causing innate immune responses is prevented by 5-hydroxymethylcytosine. Nat Genet. 55(1), 100–111 (2023).
    • 32. Zhao W, Xu Y, Wang Y et al. Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation. Sci. Rep. 11(1), 15912 (2021). • Demonstrated that H3K27ac in the promoter region leads to H3K4me3 enrichment around transcription start sites and activates gene expression.
    • 33. Fischle W. Talk is cheap – cross-talk in establishment, maintenance, and readout of chromatin modifications. Genes Dev. 22(24), 3375–3382 (2008).
    • 34. Lee JS, Smith E, Shilatifard A. The language of histone crosstalk. Cell 42(5), 682–685 (2010). •• Histone modifications are more like a language than a code in chromatin signaling pathways.
    • 35. Taubert S, Gorrini C, Frank SR et al. E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1. Mol Cell Biol. 24(10), 4546–4556 (2004).
    • 36. Li X. Epigenetics and cell cycle regulation in cystogenesis. Cell. Signal. 68, 109509 (2020).
    • 37. Ma Y, Kanakousaki K, Buttitta L. How the cell cycle impacts chromatin architecture and influences cell fate. Front. Genet. 6, 19 (2015).
    • 38. Bou Kheir T, Lund AH. Epigenetic dynamics across the cell cycle. Essays Biochem. 48(1), 107–120 (2010).
    • 39. Loyola A, Tagami H, Bonaldi T et al. The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep. 10(7), 769–775 (2009).
    • 40. Torrisani J, Unterberger A, Tendulkar SR, Shikimi K, Szyf M. AUF1 cell cycle variations define genomic DNA methylation by regulation of DNMT1 mRNA stability. Molecular and cellular biology 27(1), 395–410 (2007).
    • 41. Mancini M, Magnani E, Macchi F, Bonapace IM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res. 49(11), 6053–6068 (2021).
    • 42. Budhavarapu VN, Chavez M, Tyler JK. How is epigenetic information maintained through DNA replication? Epigenetics Chromatin 6(1), 32 (2013).
    • 43. Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10(3), 192–206 (2009).
    • 44. Allis CD, Jenuwein T, Reinberg D. Epigenetics- Overview and concepts. Epigenetics. Allis CDJenuwein TReinberg D (Eds). Epigenetics Cold Spring Harbor Laboratory Press, 1, 23–61 (2007).
    • 45. Wang J, Jia ST, Jia S. New insights into the regulation of heterochromatin. Trends Genet. 32(5), 284–294 (2016).
    • 46. Cutter DiPiazza AR, Taneja N, Dhakshnamoorthy J, Wheeler D, Holla S, Grewal SIS. Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation. Proc. Natl Acad. Sci. USA 118(22), e2100699118 (2021).
    • 47. Soni DK, Biswas R. Role of non-coding RNAs in post-transcriptional regulation of lung diseases. Front. Genet. 12, 767348 (2021).
    • 48. Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc. Res. 90(3), 430–440 (2011).
    • 49. Butler AA, Webb WM, Lubin FD. Regulatory RNAs and control of epigenetic mechanisms: expectations for cognition and cognitive dysfunction. Epigenomics 8(1), 135–151 (2016).
    • 50. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11(9), 597–610 (2010).
    • 51. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15(8), 509–524 (2014).
    • 52. Sengupta D, Deb M, Kar S et al. Dissecting miRNA facilitated physiology and function in human breast cancer for therapeutic intervention. Semin. Cancer Biol. 72, 46–64 (2021). •• A landmark review which highlights recent advances in miRNA function.
    • 53. Saviana M, Le P, Micalo L et al. Crosstalk between miRNAs and DNA methylation in cancer. Genes 14(5), 1075 (2023).
    • 54. Yao Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol. 51, 11–17 (2019).
    • 55. Hillyar CR, Kanabar SS, Rallis KS, Varghese JS. Complex cross-talk between EZH2 and miRNAs confers hallmark characteristics and shapes the tumor microenvironment. Epigenomics 14(11), 699–709 (2022).
    • 56. Liu X, Chen X, Yu X et al. Regulation of microRNAs by epigenetics and their interplay involved in cancer. J. Exp. Clin. Cancer Res. 32(1), 96 (2013).
    • 57. Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature 457(7228), 396–404 (2009).
    • 58. Brennecke J, Aravin AA, Stark A et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6), 1089–1103 (2007).
    • 59. Gunawardane LS, Saito K, Nishida KM et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315(5818), 1587–1590 (2007).
    • 60. Zhang Q, Zhu Y, Cao X et al. The epigenetic regulatory mechanism of PIWI/piRNAs in human cancers. Mol Cancer. 22(1), 45 (2023).
    • 61. Dong J, Wang X, Cao C et al. UHRF1 suppresses retrotransposons and cooperates with PRMT5 and PIWI proteins in male germ cells. Nat. Commun. 10(1), 4705 (2019).
    • 62. Pezic D, Manakov SA, Sachidanandam R, Aravin AA. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev. 28(13), 1410–1428 (2014).
    • 63. Birmingham A, Anderson EM, Reynolds A et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets [published correction appears in Nat. Methods 2007 Jun; 4(6): 533]. Nat. Methods 3(3), 199–204 (2006).
    • 64. Dueva R, Akopyan K, Pederiva C et al. Neutralization of the positive charges on histone tails by RNA promotes an open chromatin structure. Cell Chem. Biol. 26(10), 1436–1449.e5 (2019).
    • 65. Yap KL, Li S, Muñoz-Cabello AM et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38(5), 662–674 (2010).
    • 66. Rosa S, Duncan S, Dean C. Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression. Nat. Commun. 7, 13031 (2016).
    • 67. Csorba T, Questa JI, Sun Q, Dean C. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc. Natl Acad. Sci. USA 111(45), 16160–16165 (2014).
    • 68. Schmitz KM, Mayer C, Postepska A, Grummt I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24(20), 2264–2269 (2010).
    • 69. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22(2), 96–118 (2021).
    • 70. Ohzeki J, Larionov V, Earnshaw WC, Masumoto H. De novo formation and epigenetic maintenance of centromere chromatin. Curr. Opin. Cell Biol. 58, 15–25 (2019).
    • 71. Allshire RC, Karpen GH. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet. 9(12), 923–937 (2008).
    • 72. Nagpal H, Fierz B. The elusive structure of centro-chromatin: molecular order or dynamic heterogenetity? J. Mol. Biol. 433(6), 166676 (2021).
    • 73. Bergmann JH, Martins NM, Larionov V, Masumoto H, Earnshaw WC. HACking the centromere chromatin code: insights from human artificial chromosomes. Chromosome Res. 20(5), 505–519 (2012).
    • 74. Allshire RC, Madhani HD. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19(4), 229–244 (2018).
    • 75. Richards EJ, Elgin SC. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108(4), 489–500 (2002). •• Histone hypoacetylation, histone H3K9 methylation and CpG methylation are three important epigenetic bases for spreading of heterochromatin for stable epigenetic inheritance of the silent state.
    • 76. Saksouk N, Simboeck E, Déjardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 8, 3 (2015).
    • 77. Achrem M, Szućko I, Kalinka A. The epigenetic regulation of centromeres and telomeres in plants and animals. Comp. Cytogenet. 14(2), 265–311 (2020).
    • 78. Black BE, Cleveland DW. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 144(4), 471–479 (2011).
    • 79. Westhorpe FG, Straight AF. The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harb. Perspect. Biol. 7(1), a015818 (2014).
    • 80. Ohzeki J, Bergmann JH, Kouprina N et al. Breaking the HAC barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J. 31(10), 2391–2402 (2012). •• Demonstrated the role of H3K9 acetyl/methyl modifications in kinetochore assembly and maintenance.
    • 81. Carroll CW, Straight AF. Centromere formation: from epigenetics to self-assembly. Trends Cell Biol. 16(2), 70–78 (2006).
    • 82. Hoffmann S, Izquierdo HM, Gamba R et al. A genetic memory initiates the epigenetic loop necessary to preserve centromere position. EMBO J. 39(20), e105505 (2020). • Genetic memory governed by CENP proteins initiates the epigenetic modification necessary for centromere formation.
    • 83. Dvash T, Fan G. Epigenetics of X chromosome inactivation. Handbook of Epigenetics. Academic Press, 341–351 (2011).
    • 84. Galupa R, Heard E. X-chromosome inactivation: a crossroads between chromosome architecture and gene regulation. Annu. Rev. Genet. 52, 535–566 (2018).
    • 85. Lu Z, Carter AC, Chang HY. Mechanistic insights in X-chromosome inactivation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372(1733), 20160356 (2017).
    • 86. Fang H, Disteche CM, Berletch JB. X inactivation and escape: epigenetic and structural features. Front Cell Dev Biol. 7, 219 (2019).
    • 87. Żylicz JJ, Bousard A, Žumer K et al. The implication of early chromatin changes in X chromosome inactivation. Cell 176(1–2), 182–197.e23 (2019).
    • 88. McHugh CA, Chen CK, Chow A et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521(7551), 232–236 (2015).
    • 89. Kalantry S, Mills KC, Yee D, Otte AP, Panning B, Magnuson T. The Polycomb group protein Eed protects the inactive X-chromosome from differentiation-induced reactivation. Nat. Cell Biol. 8(2), 195–202 (2006). •• PRC complexes repress the inactive X chromosome from reactivation by stably silencing gene expression.
    • 90. Sarma K, Levasseur P, Aristarkhov A, Lee JT. Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc. Natl Acad. Sci. USA 107(51), 22196–22201 (2010).
    • 91. Pintacuda G, Wei G, Roustan C et al. hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish Polycomb-mediated chromosomal silencing. Mol. Cell 68(5), 955–969.e10 (2017).
    • 92. Jeon Y, Lee JT. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146(1), 119–133 (2011).
    • 93. Hasegawa Y, Brockdorff N, Kawano S, Tsutui K, Tsutui K, Nakagawa S. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell. 19(3), 469–476 (2010).
    • 94. Gdula MR, Nesterova TB, Pintacuda G et al. The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat. Commun. 10(1), 30 (2019).
    • 95. Ryan VH, Dignon GL, Zerze GH et al. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69(3), 465–479.e7 (2018).
    • 96. Lange UC, Verdikt R, Ait-Ammar A, Van Lint C. Epigenetic crosstalk in chronic infection with HIV-1. Semin. Immunopathol. 42(2), 187–200 (2020).
    • 97. Hussain T, Saha D, Purohit G et al. Transcription regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 is epigenetically controlled through the REST repressor complex. Sci. Rep. 7(1), 11541 (2017).
    • 98. Xu J, Wang Z, Lu W et al. EZH2 promotes gastric cancer cells proliferation by repressing p21 expression. Pathol. Res. Pract. 215(6), 152374 (2019).
    • 99. Kang N, Eccleston M, Clermont PL et al. EZH2 inhibition: a promising strategy to prevent cancer immune editing. Epigenomics 12(16), 1457–1476 (2020).
    • 100. Yang CC, LaBaff A, Wei Y et al. Phosphorylation of EZH2 at T416 by CDK2 contributes to the malignancy of triple negative breast cancers. Am. J. Transl. Res. 7(6), 1009–1020 (2015).
    • 101. Nie L, Wei Y, Zhang F et al. CDK2-mediated site-specific phosphorylation of EZH2 drives and maintains triple-negative breast cancer [published correction appears in Nat. Commun. 2020 Jan 29; 11(1): 673]. Nat. Commun. 10(1), 5114 (2019).
    • 102. Sengupta D, Deb M, Rath SK et al. DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop. Exp. Cell Res. 346(2), 176–187 (2016). •• A landmark article which described the epigenetic command of DNA methylation for gene silencing over H3K4me3, a strong histone mark for active genes.
    • 103. Matsumura Y, Nakaki R, Inagaki T et al. H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation. Mol. Cell 60(4), 584–596 (2015).
    • 104. Liu X, Wang C, Liu W et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537(7621), 558–562 (2016).
    • 105. Prickaerts P, Adriaens ME, Beucken TVD et al. Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3. Epigenetics Chromatin 9, 46 (2016).
    • 106. Pradhan N, Parbin S, Kar S et al. Epigenetic silencing of genes enhanced by collective role of reactive oxygen species and MAPK signaling downstream ERK/Snail axis: ectopic application of hydrogen peroxide repress CDH1 gene by enhanced DNA methyltransferase activity in human breast cancer. Biochim. Biophys. Acta Mol. Basis Dis. 1865(6), 1651–1665 (2019).
    • 107. Deb M, Sengupta D, Rath SK et al. Clusterin gene is predominantly regulated by histone modifications in human colon cancer and ectopic expression of the nuclear isoform induces cell death. Biochim. Biophys. Acta 1852(8), 1630–1645 (2015).
    • 108. Manna S, Kirtana R, Roy A, Baral T, Patra SK. Mechanisms of Hedgehog, calcium and retinoic acid signalling pathway inhibitors: plausible modes of action along the MLL–EZH2–p53 axis in cellular growth control. Arch. Biochem. Biophys. 742, 109600 (2023).
    • 109. Lima-Fernandes E, Murison A, da Silva Medina T et al. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat. Commun. 10(1), 1436 (2019).
    • 110. Al-Hasani K, Mathiyalagan P, El-Osta A. Epigenetics, cardiovascular disease, and cellular reprogramming. J. Mol. Cell. Cardiol. 128, 129–133 (2019).
    • 111. Shi Y, Zhang H, Huang S et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 7(1), 200 (2022).
    • 112. Williams SM, Golden-Mason L, Ferguson BS et al. Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J. Mol. Cell. Cardiol. 67, 112–125 (2014).
    • 113. Lan C, Chen C, Qu S et al. Inhibition of DYRK1A, via histone modification, promotes cardiomyocyte cell cycle activation and cardiac repair after myocardial infarction. EBioMedicine 82, 104139 (2022).
    • 114. Jiang Y, Xiang C, Zhong F et al. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics 11(1), 361–378 (2021).
    • 115. Daneshpajooh M, Bacos K, Bysani M et al. HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells. Diabetologia 60(1), 116–125 (2017).
    • 116. Zullo A, Sommese L, Nicoletti G, Donatelli F, Mancini FP, Napoli C. Epigenetics and type 1 diabetes: mechanisms and translational applications. Transl. Res. 185, 85–93 (2017).
    • 117. Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell 10(12), 864–882 (2019).
    • 118. Berson A, Nativio R, Berger SL, Bonini NM. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci. 41(9), 587–598 (2018).
    • 119. Ghosh P, Saadat A. Neurodegeneration, and epigenetics: a review. Neurologia (Engl. Ed.) 38(6), e62–e68 (2023).
    • 120. Peña CJ, Bagot RC, Labonté B, Nestler EJ. Epigenetic signaling in psychiatric disorders. J. Mol. Biol. 426(20), 3389–3412 (2014).
    • 121. Kwon M, Park K, Hyun K et al. H2B ubiquitylation enhances H3K4 methylation activities of human KMT2 family complexes. Nucleic Acids Res. 48(10), 5442–5456 (2020).
    • 122. Duan YC, Zhang SJ, Shi XJ et al. Research progress of dual inhibitors targeting crosstalk between histone epigenetic modulators for cancer therapy. Eur. J. Med. Chem. 222, 113588 (2021). • Highlights the recent advancements in dual inhibitors in epigenetic crosstalk.
    • 123. Garcia-Martinez L, Zhang Y, Nakata Y, Chan HL, Morey L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat. Commun. 12(1), 1786 (2021).
    • 124. Stillman B. Histone modifications: insights into their influence on gene expression. Cell 175(1), 6–9 (2018).
    • 125. Lepack AE, Werner CT, Stewart AF et al. Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science 368(6487), 197–201 (2020).
    • 126. Farrelly LA, Thompson RE, Zhao S et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567(7749), 535–539 (2019).
    • 127. Patra SK. Emerging histone glutamine modifications mediated gene expression in cell differentiation and the VTA reward pathway. Gene 768, 145323 (2021).
    • 128. Patra SK, Szyf M. Epigenetic perspectives of COVID-19: virus infection to disease progression and therapeutic control. Biochim Biophys Acta Mol Basis Dis. 1868(12), 166527 (2022).
    • 129. Chlamydas S, Papavassiliou AG, Piperi C. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics 16(3), 263–270 (2021).
    • 130. Zhang Y, Chen Y, Li Y et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-I. Proc. Natl Acad. Sci. USA 118(23), e2024202118 (2021).
    • 131. Kee J, Thudium S, Renner DM et al. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 610(7931), 381–388 (2022).
    • 132. Flower TG, Buffalo CZ, Hooy RM, Allaire M, Ren X, Hurley JH. Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein. Proc. Natl Acad. Sci. USA 118(2), e2021785118 (2021).