We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

An unhealthy relationship: viral manipulation of the nuclear receptor superfamily

    Matthew S Miller

    Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada

    &
    Published Online:https://doi.org/10.2217/fmb.11.80

    The nuclear receptor (NR) superfamily is a diverse group of over 50 proteins whose function is to regulate the transcription of a vast array of cellular genes. These proteins are able to tune transcription over an extremely dynamic range due to the fact that they may act as either transcriptional activators or repressors depending on promoter context and ligand status. Due to these unique properties, diverse families of viruses have evolved strategies to exploit NRs in order to regulate expression of their own genes and to optimize the cellular milieu to facilitate the viral lifecycle. While the specific NRs targeted by these viruses vary, the strategies used to target them are common. This is accomplished at the cis-level by incorporation of nuclear receptor response elements into the viral genome and at the trans-level by viral proteins that target NRs directly or indirectly to modulate their function. The specific NR(s) targeted by a particular virus are likely to be reflective of the tissue tropism of the virus in question. Thus, the essential role played by NRs in the replication cycles of such diverse viruses underscores the importance of understanding their functions in the context of specific infections. This knowledge will allow appropriate considerations to be made when treating infected individuals with hormone-associated diseases and will potentially assist in the rational design of novel antiviral therapeutics.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Wild G, Gardner A, West SA. Adaptation and the evolution of parasite virulence in a connected world. Nature459(7249),983–986 (2009).
    • Pelka P, Ablack JN, Fonseca GJ, Yousef AF, Mymryk JS. Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. J. Virol.82(15),7252–7263 (2008).
    • Ferrari R, Pellegrini M, Horwitz GA, Xie W, Berk AJ, Kurdistani SK. Epigenetic reprogramming by adenovirus e1a. Science321(5892),1086–1088 (2008).
    • Horwitz GA, Zhang K, Mcbrian MA, Grunstein M, Kurdistani SK, Berk AJ. Adenovirus small e1a alters global patterns of histone modification. Science321(5892),1084–1085 (2008).
    • Khattab MA. Targeting host factors: a novel rationale for the management of hepatitis C virus. World J. Gastroenterol.15(28),3472–3479 (2009).
    • Konig R, Stertz S, Zhou Y et al. Human host factors required for influenza virus replication. Nature463(7282),813–817 (2010).
    • Karlas A, Machuy N, Shin Y et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature463(7282),818–822 (2010).
    • Watanabe T, Watanabe S, Kawaoka Y. Cellular networks involved in the influenza virus life cycle. Cell Host Microbe7(6),427–439 (2010).
    • Hoffmann HH, Kunz A, Simon VA, Palese P, Shaw ML. Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc. Natl Acad. Sci. USA108(14),5777–5782 (2011).
    • 10  Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat. Rev. Drug Discov.5(12),993–996 (2006).
    • 11  Mangelsdorf DJ, Thummel C, Beato M et al. The nuclear receptor superfamily: the second decade. Cell83(6),835–839 (1995).
    • 12  Gronemeyer H, Gustafsson JA, Laudet V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov.3(11),950–964 (2004).
    • 13  Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: implications for function. Annu. Rev. Physiol.69,201–220 (2007).
    • 14  Aranda A, Martinez-Iglesias O, Ruiz-Llorente L, Garcia-Carpizo V, Zambrano A. Thyroid receptor: roles in cancer. Trends Endocrinol. Metab.20(7),318–324 (2009).
    • 15  Deroo BJ, Korach KS. Estrogen receptors and human disease. J. Clin. Invest.116(3),561–570 (2006).
    • 16  Elfaki DA, Bjornsson E, Lindor KD. Review article: nuclear receptors and liver disease – current understanding and new therapeutic implications. Aliment Pharmacol. Ther.30(8),816–825 (2009).
    • 17  Sonoda J, Pei L, Evans RM. Nuclear receptors: decoding metabolic disease. FEBS Lett.582(1),2–9 (2008).
    • 18  Sap J, Munoz A, Damm K et al. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature324(6098),635–640 (1986).
    • 19  Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c-erb-A gene encodes a thyroid hormone receptor. Nature324(6098),641–646 (1986).
    • 20  Frykberg L, Palmieri S, Beug H, Graf T, Hayman MJ, Vennstrom B. Transforming capacities of avian erythroblastosis virus mutants deleted in the erbA or erbB oncogenes. Cell32(1),227–238 (1983).
    • 21  Graf T, Beug H. Role of the v-erbA and v-erbB oncogenes of avian erythroblastosis virus in erythroid cell transformation. Cell34(1),7–9 (1983).
    • 22  Gandrillon O, Jurdic P, Benchaibi M, Xiao JH, Ghysdael J, Samarut J. Expression of the v-erbA oncogene in chicken embryo fibroblasts stimulates their proliferation in vitro and enhances tumor growth in vivo. Cell49(5),687–697 (1987).
    • 23  Damm K, Thompson CC, Evans RM. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature339(6226),593–597 (1989).
    • 24  Sap J, Munoz A, Schmitt J, Stunnenberg H, Vennstrom B. Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature340(6230),242–244 (1989).
    • 25  Thormeyer D, Baniahmad A. The v-erbA oncogene (review). Int. J. Mol. Med.4(4),351–358 (1999).
    • 26  Bauer A, Mikulits W, Lagger G, Stengl G, Brosch G, Beug H. The thyroid hormone receptor functions as a ligand-operated developmental switch between proliferation and differentiation of erythroid progenitors. EMBO J.17(15),4291–4303 (1998).
    • 27  Vicent GP, Zaurin R, Ballare C, Nacht AS, Beato M. Erk signaling and chromatin remodeling in MMTV promoter activation by proNgestins. Nucl. Recept. Signal7,e008 (2009).
    • 28  Arien KK, Vanham G, Arts EJ. Is HIV-1 evolving to a less virulent form in humans? Nat. Rev. Microbiol.5(2),141–151 (2007).
    • 29  Orchard K, Perkins N, Chapman C et al. A novel T-cell protein which recognizes a palindromic sequence in the negative regulatory element of the human immunodeficiency virus long terminal repeat. J. Virol.64(7),3234–3239 (1990).
    • 30  Cooney AJ, Tsai SY, O’Malley BW, Tsai MJ. Chicken ovalbumin upstream promoter transcription factor binds to a negative regulatory region in the human immunodeficiency virus type 1 long terminal repeat. J. Virol.65(6),2853–2860 (1991).
    • 31  Marban C, Suzanne S, Dequiedt F et al. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J.26(2),412–423 (2007).
    • 32  Ladias JA. Convergence of multiple nuclear receptor signaling pathways onto the long terminal repeat of human immunodeficiency virus-1. J. Biol. Chem.269(8),5944–5951 (1994).
    • 33  Hwang SB, Burbach JP, Chang C. TR4 orphan receptor crosstalks to chicken ovalbumin upstream protein-transcription factor and thyroid hormone receptor to induce the transcriptional activity of the human immunodeficiency virus type 1 long-terminal repeat. Endocrine8(2),169–175 (1998).
    • 34  Schwartz C, Catez P, Rohr O, Lecestre D, Aunis D, Schaeffer E. Functional interactions between C/EBP, Sp1, and COUP-TF regulate human immunodeficiency virus type 1 gene transcription in human brain cells. J. Virol.74(1),65–73 (2000).
    • 35  Hsia SC, Wang H, Shi YB. Involvement of chromatin and histone acetylation in the regulation of HIV-LTR by thyroid hormone receptor. Cell Res.11(1),8–16 (2001).
    • 36  Hsia SC, Shi YB. Chromatin disruption and histone acetylation in regulation of the human immunodeficiency virus type 1 long terminal repeat by thyroid hormone receptor. Mol. Cell Biol.22(12),4043–4052 (2002).
    • 37  Lee MO, Hobbs PD, Zhang XK, Dawson MI, Pfahl M. A synthetic retinoid antagonist inhibits the human immunodeficiency virus type 1 promoter. Proc. Natl Acad. Sci. USA91(12),5632–5636 (1994).
    • 38  Sawaya BE, Rohr O, Aunis D, Schaeffer E. Regulation of human immunodeficiency virus type 1 gene transcription by nuclear receptors in human brain cells. J. Biol. Chem.271(37),22895–22900 (1996).
    • 39  Rohr O, Aunis D, Schaeffer E. COUP-TF and Sp1 interact and cooperate in the transcriptional activation of the human immunodeficiency virus type 1 long terminal repeat in human microglial cells. J. Biol. Chem.272(49),31149–31155 (1997).
    • 40  Sawaya BE, Rohr O, Aunis D, Schaeffer E. Chicken ovalbumin upstream promoter transcription factor, a transcriptional activator of HIV-1 gene expression in human brain cells. J. Biol. Chem.271(38),23572–23576 (1996).
    • 41  Recio JA, Aranda A. Activation of the HIV-1 long terminal repeat by nerve growth factor. J. Biol. Chem.272(43),26807–26810 (1997).
    • 42  Recio JA, Martinez De La Mata J, Martin-Nieto J, Aranda A. Retinoic acid stimulates HIV-1 transcription in human neuroblastoma SH-SY5Y cells. FEBS Lett.469(1),118–122 (2000).
    • 43  Liu Y, Kim BO, Kao C, Jung C, Dalton JT, He JJ. Tip110, the human immunodeficiency virus type 1 (HIV-1) Tat-interacting protein of 110 kDa as a negative regulator of androgen receptor (AR) transcriptional activation. J. Biol. Chem.279(21),21766–21773 (2004).
    • 44  Mcinerney EM, Rose DW, Flynn SE et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev.12(21),3357–3368 (1998).
    • 45  Kino T, Gragerov A, Kopp JB, Stauber RH, Pavlakis GN, Chrousos GP. The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid receptor. J. Exp. Med.189(1),51–62 (1999).
    • 46  Sherman MP, De Noronha CM, Pearce D, Greene WC. Human immunodeficiency virus type 1 Vpr contains two leucine-rich helices that mediate glucocorticoid receptor coactivation independently of its effects on G(2) cell cycle arrest. J. Virol.74(17),8159–8165 (2000).
    • 47  Hanley TM, Blay Puryear W, Gummuluru S, Viglianti GA. PPARγ and LXR signaling inhibit dendritic cell-mediated HIV-1 capture and trans-infection. PLoS Pathog.6,e1000981 (2010).
    • 48  Abdool Karim Q, Abdool Karim SS, Frohlich JA et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science329(5996),1168–1174 (2010).
    • 49  Chen X, Zachar V, Chang C, Ebbesen P, Liu X. Differential expression of Nur77 family members in human T-lymphotropic virus type 1-infected cells: transactivation of the TR3/nur77 gene by Tax protein. J. Virol.72(8),6902–6906 (1998).
    • 50  Azran I, Schavinsky-Khrapunsky Y, Aboud M. Role of Tax protein in human T-cell leukemia virus type-I leukemogenicity. Retrovirology1,20 (2004).
    • 51  Liu X, Chen X, Zachar V, Chang C, Ebbesen P. Transcriptional activation of human TR3/nur77 gene expression by human T-lymphotropic virus type I Tax protein through two AP-1-like elements. J. Gen. Virol.80(Pt 12),3073–3081 (1999).
    • 52  Doucas V, Evans RM. Human T-cell leukemia retrovirus-Tax protein is a repressor of nuclear receptor signaling. Proc. Natl Acad. Sci. USA96(6),2633–2638 (1999).
    • 53  Ariumi Y, Ego T, Kaida A, Matsumoto M, Pandolfi PP, Shimotohno K. Distinct nuclear body components, PML and SMRT, regulate the trans-acting function of HTLV-1 Tax oncoprotein. Oncogene22(11),1611–1619 (2003).
    • 54  Chin KT, Chun AC, Ching YP, Jeang KT, Jin DY. Human T-cell leukemia virus oncoprotein tax represses nuclear receptor-dependent transcription by targeting coactivator TAX1BP1. Cancer Res.67(3),1072–1081 (2007).
    • 55  Ono M, Kawakami M, Ushikubo H. Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J. Virol.61(6),2059–2062 (1987).
    • 56  Kaufmann S, Sauter M, Schmitt M et al. Human endogenous retrovirus protein Rec interacts with the testicular zinc-finger protein and androgen receptor. J. Gen. Virol.91(Pt 6),1494–1502 (2010).
    • 57  Ruprecht K, Mayer J, Sauter M, Roemer K, Mueller-Lantzsch N. Endogenous retroviruses and cancer. Cell Mol. Life Sci.65(21),3366–3382 (2008).
    • 58  Seeger C, Zoulim F, Mason WS. Hepadnaviruses. In: Field’s Virology, Knipe DM, Howley PM, Griffin DE et al. (Eds). Lippincott Williams & Wilkins, PA, USA, 2978–3029 (2007).
    • 59  Tang H, Mclachlan A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc. Natl Acad. Sci. USA98(4),1841–1846 (2001).▪▪ Seminal paper describing the importance of nuclear receptors (NRs) in HBV biogenesis and hepatotropism.
    • 60  Huan B, Siddiqui A. Retinoid X receptor RXR α binds to and trans-activates the hepatitis B virus enhancer. Proc. Natl Acad. Sci. USA89(19),9059–9063 (1992).
    • 61  Garcia AD, Ostapchuk P, Hearing P. Functional interaction of nuclear factors EF-C, HNF-4, and RXR α with hepatitis B virus enhancer I. J. Virol.67(7),3940–3950 (1993).
    • 62  Huan B, Kosovsky MJ, Siddiqui A. Retinoid X receptor α transactivates the hepatitis B virus enhancer 1 element by forming a heterodimeric complex with the peroxisome proliferator-activated receptor. J. Virol.69(1),547–551 (1995).
    • 63  Li M, Xie YH, Kong YY, Wu X, Zhu L, Wang Y. Cloning and characterization of a novel human hepatocyte transcription factor, hB1F, which binds and activates enhancer II of hepatitis B virus. J. Biol. Chem.273(44),29022–29031 (1998).
    • 64  Cai YN, Zhou Q, Kong YY et al. LRH-1/hB1F and HNF1 synergistically up-regulate hepatitis B virus gene transcription and DNA replication. Cell Res.13(6),451–458 (2003).
    • 65  Xie Y, Li M, Wang Y, Hofschneider PH, Weiss L. Site-specific mutation of the hepatitis B virus enhancer II B1 element: effect on virus transcription and replication. J. Gen. Virol.82(Pt 3),531–535 (2001).
    • 66  Ramiere C, Scholtes C, Diaz O et al. Transactivation of the hepatitis B virus core promoter by the nuclear receptor FXRα. J. Virol.82(21),10832–10840 (2008).
    • 67  Raney AK, Johnson JL, Palmer CN, Mclachlan A. Members of the nuclear receptor superfamily regulate transcription from the hepatitis B virus nucleocapsid promoter. J. Virol.71(2),1058–1071 (1997).▪ Examination of the complex regulation of hepatitis B transcription by multiple NRs.
    • 68  Yu X, Mertz JE. Promoters for synthesis of the pre-C and pregenomic mRNAs of human hepatitis B virus are genetically distinct and differentially regulated. J. Virol.70(12),8719–8726 (1996).
    • 69  Yu X, Mertz JE. Differential regulation of the pre-C and pregenomic promoters of human hepatitis B virus by members of the nuclear receptor superfamily. J. Virol.71(12),9366–9374 (1997).
    • 70  Yu X, Mertz JE. Critical roles of nuclear receptor response elements in replication of hepatitis B virus. J. Virol.75(23),11354–11364 (2001).
    • 71  Lin WJ, Li J, Lee YF et al. Suppression of hepatitis B virus core promoter by the nuclear orphan receptor TR4. J. Biol. Chem.278(11),9353–9360 (2003).
    • 72  Gilbert S, Galarneau L, Lamontagne A, Roy S, Belanger L. The hepatitis B virus core promoter is strongly activated by the liver nuclear receptor fetoprotein transcription factor or by ectopically expressed steroidogenic factor 1. J. Virol.74(11),5032–5039 (2000).
    • 73  Ondracek CR, Rushing CN, Reese VC, Oropeza CE, Mclachlan A. Peroxisome proliferator-activated receptor γ Coactivator 1α and small heterodimer partner differentially regulate nuclear receptor-dependent hepatitis B virus biosynthesis. J. Virol.83(23),12535–12544 (2009).
    • 74  Oropeza CE, Li L, McLachlan A. Differential inhibition of nuclear hormone receptor-dependent hepatitis B virus replication by the small heterodimer partner. J. Virol.82(8),3814–3821 (2008).
    • 75  Ondracek CR, Reese VC, Rushing CN, Oropeza CE, Mclachlan A. Distinct regulation of hepatitis B virus biosynthesis by peroxisome proliferator-activated receptor γ coactivator 1α and small heterodimer partner in human hepatoma cell lines. J. Virol.83(23),12545–12551 (2009).
    • 76  Lee MO, Kang HJ, Cho H, Shin EC, Park JH, Kim SJ. Hepatitis B virus X protein induced expression of the Nur77 gene. Biochem. Biophys. Res. Commun.288(5),1162–1168 (2001).
    • 77  Kim K, Kim KH, Kim HH, Cheong J. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRα. Biochem. J.416(2),219–230 (2008).
    • 78  Na TY, Shin YK, Roh KJ et al. Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology49(4),1122–1131 (2009).
    • 79  Yang WJ, Chang CJ, Yeh SH et al. Hepatitis B virus X protein enhances the transcriptional activity of the androgen receptor through c-Src and glycogen synthase kinase-3β kinase pathways. Hepatology49(5),1515–1524 (2009).
    • 80  Li L, Oropeza CE, Sainz B, Jr., Uprichard SL, Gonzalez FJ, McLachlan A. Developmental regulation of hepatitis B virus biosynthesis by hepatocyte nuclear factor 4α. PLoS One4(5),e5489 (2009).
    • 81  Reese V, Ondracek C, Rushing C, Li L, Oropeza CE, Mclachlan A. Multiple nuclear receptors may regulate hepatitis B virus biosynthesis during development. Int. J. Biochem. Cell Biol.43(2),230–237 (2009).
    • 82  Feinstone SM, Kapikian AZ, Purcell RH, Alter HJ, Holland PV. Transfusion-associated hepatitis not due to viral hepatitis type A or B. N. Engl. J. Med.292(15),767–770 (1975).
    • 83  Choo QL, Richman KH, Han JH et al. Genetic organization and diversity of the hepatitis C virus. Proc. Natl Acad. Sci. USA88(6),2451–2455 (1991).
    • 84  Lemon SM, Walker C, Alter MJ, Yi MK. Hepatitis C virus. In: Field’s Virology, Knipe DM, Howley PM, Griffin DE et al. (Eds). Lippincott Williams & Wilkins, PA, USA, 1254–1304 (2007).
    • 85  Liang TJ, Rehermann B, Seeff LB, Hoofnagle JH. Pathogenesis, natural history, treatment, and prevention of hepatitis C. Ann. Intern. Med.132(4),296–305 (2000).
    • 86  Tsutsumi T, Suzuki T, Shimoike T et al. Interaction of hepatitis C virus core protein with retinoid X receptor α modulates its transcriptional activity. Hepatology35(4),937–946 (2002).
    • 87  Kim K, Kim KH, Ha E, Park JY, Sakamoto N, Cheong J. Hepatitis C virus NS5A protein increases hepatic lipid accumulation via induction of activation and expression of PPARγ. FEBS Lett.583(17),2720–2726 (2009).
    • 88  Dharancy S, Malapel M, Perlemuter G et al. Impaired expression of the peroxisome proliferator-activated receptor α during hepatitis C virus infection. Gastroenterology128(2),334–342 (2005).
    • 89  Cheng Y, Dharancy S, Malapel M, Desreumaux P. Hepatitis C virus infection down-regulates the expression of peroxisome proliferator-activated receptor α and carnitine palmitoyl acyl-CoA transferase 1A. World J. Gastroenterol.11(48),7591–7596 (2005).
    • 90  Watashi K, Inoue D, Hijikata M, Goto K, Aly HH, Shimotohno K. Anti-hepatitis C virus activity of tamoxifen reveals the functional association of estrogen receptor with viral RNA polymerase NS5B. J. Biol. Chem.282(45),32765–32772 (2007).
    • 91  Hayashida K, Shoji I, Deng L, Jiang DP, Ide YH, Hotta H. 17β-estradiol inhibits the production of infectious particles of hepatitis C virus. Microbiol. Immunol.54(11),684–690 (2010).
    • 92  Kanda T, Steele R, Ray R, Ray RB. Hepatitis C virus core protein augments androgen receptor-mediated signaling. J. Virol.82(22),11066–11072 (2008).
    • 93  Scholtes C, Diaz O, Icard V et al. Enhancement of genotype 1 hepatitis C virus replication by bile acids through FXR. J. Hepatol.48(2),192–199 (2008).
    • 94  Graham FL, Van Der Eb AJ, Heijneker HL. Size and location of the transforming region in human adenovirus type 5 DNA. Nature251(5477),687–691 (1974).
    • 95  Folkers GE, Van Der Saag PT. Adenovirus E1A functions as a cofactor for retinoic acid receptor β (RAR β) through direct interaction with RAR β. Mol. Cell Biol.15(11),5868–5878 (1995).
    • 96  Wahlstrom GM, Vennstrom B, Bolin MB. The adenovirus E1A protein is a potent coactivator for thyroid hormone receptors. Mol. Endocrinol.13(7),1119–1129 (1999).
    • 97  Meng X, Yang YF, Cao X et al. Cellular context of coregulator and adaptor proteins regulates human adenovirus 5 early region 1A-dependent gene activation by the thyroid hormone receptor. Mol. Endocrinol.17(6),1095–1105 (2003).
    • 98  Meng X, Webb P, Yang YF et al. E1A and a nuclear receptor corepressor splice variant (N-CoRI) are thyroid hormone receptor coactivators that bind in the corepressor mode. Proc. Natl Acad. Sci. USA102(18),6267–6272 (2005).▪▪ Study describes the unique method by which E1A coactivates thyroid hormone receptor through binding in the corepressor mode.
    • 99  Sato Y, Ding A, Heimeier RA et al. The adenoviral E1A protein displaces corepressors and relieves gene repression by unliganded thyroid hormonereceptors in vivo. Cell Res.19(6),783–792 (2009).
    • 100  York B, O’Malley BW. Steroid receptor coactivator (SRC) family: masters of systems biology. J. Biol. Chem.285(50),38743–38750 (2010).
    • 101  Kurokawa R, Kalafus D, Ogliastro MH et al. Differential use of CREB binding protein-coactivator complexes. Science279(5351),700–703 (1998).
    • 102  Imperiale MJ, Major EO. Polyomaviruses. In: Field’s Virology, Knipe DM, Howley PM, Griffin DE et al. (Eds). Lippincott Williams & Wilkins, PA, USA, 2264–2298 (2007).
    • 103  Moens U, Subramaniam N, Johansen B, Johansen T, Traavik T. A steroid hormone response unit in the late leader of the noncoding control region of the human polyomavirus BK confers enhanced host cell permissivity. J. Virol.68(4),2398–2408 (1994).
    • 104  Moens U, Van Ghelue M, Johansen B, Seternes OM. Concerted expression of BK virus large T- and small t-antigens strongly enhances oestrogen receptor-mediated transcription. J. Gen. Virol.80(Pt 3),585–594 (1999).
    • 105  Markowitz RB, Eaton BA, Kubik MF, Latorra D, Mcgregor JA, Dynan WS. BK virus and JC virus shed during pregnancy have predominantly archetypal regulatory regions. J. Virol.65(8),4515–4519 (1991).
    • 106  Psyrri A, Dimaio D. Human papillomavirus in cervical and head-and-neck cancer. Nat. Clin. Pract. Oncol.5(1),24–31 (2008).
    • 107  Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet371(9625),1695–1709 (2008).
    • 108  Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer10(8),550–560 (2010).
    • 109  Banks L, Pim D, Thomas M. Viruses and the 26S proteasome: hacking into destruction. Trends Biochem. Sci.28(8),452–459 (2003).
    • 110  Maufort JP, Shai A, Pitot HC, Lambert PF. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res.70(7),2924–2931 (2010).
    • 111  Collins LL, Lin DL, Mu XM, Chang C. Feedback regulation between orphan nuclear receptor TR2 and human papilloma virus type 16. J. Biol. Chem.276(29),27316–27321 (2001).
    • 112  De-Castro Arce J, Gockel-Krzikalla E, Rosl F. Retinoic acid receptor β silences human papillomavirus-18 oncogene expression by induction of de novo methylation and heterochromatinization of the viral control region. J. Biol. Chem.282(39),28520–28529 (2007).
    • 113  Chong T, Chan WK, Bernard HU. Transcriptional activation of human papillomavirus 16 by nuclear factor I, AP1, steroid receptors and a possibly novel transcription factor, PVF: a model for the composition of genital papillomavirus enhancers. Nucleic Acids Res.18(3),465–470 (1990).
    • 114  Wu MH, Chan JY, Liu PY, Liu ST, Huang SM. Human papillomavirus E2 protein associates with nuclear receptors to stimulate nuclear receptor- and E2-dependent transcriptional activations in human cervical carcinoma cells. Int. J. Biochem. Cell Biol.39(2),413–425 (2007).
    • 115  Wu MH, Huang CJ, Liu ST, Liu PY, Ho CL, Huang SM. Physical and functional interactions of human papillomavirus E2 protein with nuclear receptor coactivators. Biochem. Biophys. Res. Commun.356(3),523–528 (2007).
    • 116  Webster K, Taylor A, Gaston K. Oestrogen and progesterone increase the levels of apoptosis induced by the human papillomavirus type 16 E2 and E7 proteins. J. Gen. Virol.82(Pt 1),201–213 (2001).
    • 117  Brake T, Lambert PF. Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc. Natl Acad. Sci. USA102(7),2490–2495 (2005).▪▪ Investigation of the role of estrogen in multiple stages of human papillomavirus-induced cervical cancer in a transgenic mouse model.
    • 118  Chung SH, Wiedmeyer K, Shai A, Korach KS, Lambert PF. Requirement for estrogen receptor α in a mouse model for human papillomavirus-associated cervical cancer. Cancer Res.68(23),9928–9934 (2008).
    • 119  Roizman B, Knipe DM, Whitley RJ. Herpes simplex viruses. In: Field’s Virology. Knipe DM, Howley PM, Griffin DE et al. (Eds). Lippincott Williams & Wilkins, PA, USA, 2503–2601 (2007).
    • 120  Hardwicke MA, Schaffer PA. Differential effects of nerve growth factor and dexamethasone on herpes simplex virus type 1 oriL- and oriS-dependent DNA replication in PC12 cells. J. Virol.71(5),3580–3587 (1997).
    • 121  Marquart M, Bhattacharjee P, Zheng X et al. Ocular reactivation phenotype of HSV-1 strain F(MP)E, a corticosteroid-sensitive strain. Curr. Eye Res.26(3–4),205–209 (2003).
    • 122  Hsia SC, Pinnoji RC, Bedadala GR, Hill JM, Palem JR. Regulation of herpes simplex virus type 1 thymidine kinase gene expression by thyroid hormone receptor in cultured neuronal cells. J. Neurovirol.16(1),13–24 (2010).
    • 123  Bedadala GR, Pinnoji RC, Palem JR, Hsia SC. Thyroid hormone controls the gene expression of HSV-1 LAT and ICP0 in neuronal cells. Cell Res.20(5),587–598 (2010).
    • 124  Rickinson AB, Kieff E. Epstein–Barr virus. In: Field’s Virology. Knipe DM, Howley PM, Griffin DE et al. (Eds). Lippincott Williams & Wilkins, PA, USA, 2657–2700 (2007).
    • 125  Lee JM, Lee KH, Weidner M, Osborne BA, Hayward SD. Epstein–Barr virus EBNA2 blocks Nur77- mediated apoptosis. Proc. Natl Acad. Sci. USA99(18),11878–11883 (2002).▪ Study shows that an Epstein–Barr virus-encoded protein is able to block apoptosis induced by a NR.
    • 126  Seo SY, Kim EO, Jang KL. Epstein–Barr virus latent membrane protein 1 suppresses the growth-inhibitory effect of retinoic acid by inhibiting retinoic acid receptor-β2 expression via DNA methylation. Cancer Lett.270(1),66–76 (2008).
    • 127  Yang EV, Webster Marketon JI, Chen M, Lo KW, Kim SJ, Glaser R. Glucocorticoids activate Epstein Barr virus lytic replication through the upregulation of immediate early BZLF1 gene expression. Brain Behav. Immun.24(7),1089–1096 (2010).
    • 128  Yenamandra SP, Lundin A, Arulampalam V et al. Expression profile of nuclear receptors upon Epstein–Barr virus induced B cell transformation. Exp. Oncol.31(2),92–96 (2009).
    • 129  Yenamandra SP, Klein G, Kashuba E. Nuclear receptors and their role in Epstein–Barr virus induced B cell transformation. Exp. Oncol.31(2),67–73 (2009).
    • 130  Nuclear receptors as drug targets. Ottow E, Weinmann H (Eds). Wiley-VCH, Weinheim, Germany (2008).
    • 131  Para MF, Schouten J, Rosenkranz SL et al. Phase I/II trial of the anti-HIV activity of mifepristone in HIV-infected subjects ACTG 5200. J. Acquir. Immune Defic. Syndr.53(4),491–495 (2010).▪▪ Description of a recent Phase I/II clinical trial which examined use of a glucocorticoid receptor inhibitor to inhibit HIV infection. The drug was safe and well-tolerated, but did not exhibit anti-HIV activity at the dosages used.
    • 132  Solodushko V, Fouty B. Mifepristone increases γ-retroviral infection efficiency by enhancing the integration of virus into the genome of infected cells. Gene Ther.17(10),1253–1261 (2010).
    • 133  Ciesek S, Steinmann E, Iken M et al. Glucocorticosteroids increase cell entry by hepatitis C virus. Gastroenterology138(5),1875–1884 (2010).