ARTHROBACTER AS BIOFACTORY OF THERAPEUTIC ENZYMES

Authors

  • Shabnam Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, India
  • Wamik Azmi Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, India http://orcid.org/0000-0003-2689-4359

DOI:

https://doi.org/10.22159/ijpps.2018v10i11.25933

Keywords:

Actinomycetes, Arthrobacter, Diseases, Therapeutic enzymes, Therapies

Abstract

Therapeutic enzymes are proteins which can be used to treat rare and deadly diseases. They represent a small but profitable market. Therapeutic enzymes are superior to non-enzymatic drugs owing to their high specificity toward the target and also their ability to multiple substrate conversion. They are essential for speeding up all the metabolic processes and many a life-supporting chemical inter-conversions. Actinomycetes including Arthrobacter form an enormous reservoir of secondary metabolites and enzymes. The characterization of L-asparaginase, β-glucosidase, urate oxidase, methionine γ-lyase, acetyl cholinesterase, and arginase activities from actinomycetes Arthrobacter clearly demonstrate the potential of Arthrobacter as potent producer of therapeutic enzymes. These metabolic enzymes can be used either separately or in combination with other therapies for the treatment of several diseases such as leukemia, gout, asthma, and neurological disorders. The objective of this review is to compile the information on the application of therapeutic enzymes produced by Arthrobacter and their future prospects as drugs.

Downloads

Download data is not yet available.

References

Sakarkar DM, Kshirsagar RV, Tadavi SA, Pawde PK. Tableting compression behaviour of enzyme trypsin-¬chymotrypsin. Int J Appl Pharm 2009;1:30-43.

Mane P, Tale V. Overview of microbial therapeutic enzymes. Int J Curr Microbiol Appl Sci 2015;4:17-26.

Bull AT. Microbial diversity and bioprospecting. ASM Press: Washington DC; 2004. p. 496.

Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 1947;54:291-303.

Kiran S, Swarnkar MK, Pal M, Thakur R, Twari R, Singh AK, et al. Complete genome sequencing of protease-producing novel Arthrobacter sp. strain IHBB 11108 using PacBio single-molecule real-time sequencing technology. Genome Announc 2015;3:1-2.

Mullakhanbhai MF, Bhat JV. Morphogenesis in Arthrobacter species. Proc Ind Acad Sci 1967;65:231-7.

Holt JG, Krieg NR, Sneath PHA, Stanley JT, Williams ST. Bergey’s manual of determinative bacteriology. 9th ed. Baltimore: Williams and Wilkins; 1994.

Stanlake GJ, Clark JB. Motility as a morphogenic character in the genus Arthrobacter. J Bacteriol 1976;127:1524-8.

Mongodin EF, Shapir N, Daugherty SC, DeBoy RT, Emerson JB, Shvartzbeyn A, et al. Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2006;2:2094-106.

Chauhan A, Pathak A, Jaswal R, Edwards B, Chappell D, Ball C, et al. Physiological and comparative genomic analysis of Arthrobacter sp. SRS-W-1-2016 provides insights on niche adaptation for survival in uraniferous soils. Genes 2018;9:31-50.

Powthong P, Sripean A, Suntornthiticharoen P. Screening of active antimicrobial and biological enzymes of microbial isolated from soil in Thailand Pannapa. Asian J Pharma Clin Res 2017;10:73-8.

Cacciari I, Lippi D. Arthrobacters: successful arid soil bacteria: a review. Arid Soil Res Rehabil 1987;1:1-30.

Coker JA, Brenchley JE. Protein engineering of a cold-active-galactosidase from Arthrobacter sp. SB to increase lactose hydrolysis reveals new sites affecting low-temperature activity. Extremophiles 2006;10:515-24.

Pawlak A, Wicka M, Krajewska E. β-galactosidases from a psychrotolerant Arthrobacter isolates and their potential use. Pi J 2013;3:42-6.

Peng R, Lin W. Optimization of lipase production from Arthrobacter sp. SD5. Adv Mater Res 2013;791-3:116-9.

Ferrareze PAG, Vailati VH, Petry MV, Brandelli A, Medina LFC. Characterization of antarctic keratinolytic Arthrobacter sp. Ann Act Rep 2015;11:68-70.

Hildebrandt P, Wanarska M, Kur J. A new cold-adapted β-D-galactosidase from the antarctic Arthrobacter sp. 32c-gene cloning, overexpression, purification, and properties. BMC Microbiol 2009;9:151-60.

Huidrom S, Singh RK, Chaudhary V. Bacteriotherapy: a novel therapeutic approach. Int J Curr Pharma Res 2016;8:12-6.

Wang D, Lu M, Wang X, Jiao Y, Fang Y, Liu Z, et al. Improving stability of a novel dextran-degrading enzyme from marine Arthrobacter oxydans KQ11. Carbohydr Polym 2014;103:294-9.

Kale V, Friojonsson O, Jonsson JO, Kristinsson HG, Omarsdottir S, Hreggviosson GO. Chondroitin lyase from a marine Arthrobacter sp. MAT3885 for the production of chondroitin sulfate disaccharides. Mar Biotechnol 2015;17:479-92.

Linhardt RJ, Avci FY, Toida T, Kim YS, Cygler M. CS lyases: structure, activity, and applications in analysis and the treatment of diseases. Adv Pharmacol 2006;53:187-215.

Mohapatra BR, Bapuji M. Characterization of acetyl-cholinesterase from Arthrobacter ilicis associated with the marine sponge Spirastrella sp. J Appl Microbiol 1998;84:393-8.

Lonhienne T, Mavromatis K, Vorgias CE, Buchon L, Gerday C, Bouriotis V. Cloning, sequences and characterization of two chitinase genes from the antarctic Arthrobacter sp. strain TAD20: isolation and partial characterization of the enzymes. J Bacteriol 2001;183:1773-9.

Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, et al. Chitinases: an update. J Pharm Bio Allied Sci 2013;5:21-9.

Muvva V, Munaganti RK, Indupalli MD. Studies on optimization of L-asparaginase production by Arthrobacter kerguelensis VL-RK_09 isolated from mango orchards. Int J Pharm Pharm Sci 2015;7:112-5.

El-Naggar NEA. Isolation, screening, and identification of actinobacteria with urate oxidase activity: statistical optimization of fermentation conditions for improved production of urate oxidase by Streptomyces rochei NEAE-25. Int J Pharmacol 2015;11:644-58.

Dwivedi H, Agrawal K, Saraf SA. Screening of urate oxidase producing microorganisms and urate oxidase estimation: a simple and novel approach. Int J Pharm Pharm Sci 2012;4:422-4.

Newcombe DS. Gout: basic science and clinical practice. Springer, Heidelberg; 2012. p. 356-7.

Park MK, Cui CH, Park SC, Park SK, Kim JK, Jung MS, et al. Characterization of recombinant β-glucosidase from Arthrobacter chlorophenolicus and biotransformation of ginsenosides Rb1, Rb2, Rc and Rd. J Microbiol 2014;52:399-406.

Sato D, Nozaki T. Methionine gamma-lyase: the unique reaction mechanism, physiological roles and therapeutic application against infectious diseases and cancers. IUBMB Life 2009;61:1019-28.

Sumithra M, Arunachalam G, Chitra V, Gowri K. Neuroprotective effect of Sargassum ilicifolium turner C. Agardh on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rodents. Asian J Pharma Clin Res 2016;9:93-6.

Silva AD, Bottari NB, Carmo GM, Baldissera MD, Souza CF, Machado VS, et al. Chagas disease: modulation of the inflammatory response by acetylcholinesterase in hematological cells and brain tissue. Mol Cell Biochem 2018;438:59-65.

Baktir A, Zaini NC, Murdiyatmo U, Kuntaman. The potency of dextranase from Arthrobacter sp. strain B7 as dental plaque removal. Catatan Penelitian 2005;12:162-6.

Jiao YL, Wang SJ, Lv MS, Jiao BH, Li WJ, Fang YW, et al. Characterization of a marine-derived dextranase and its application to the prevention of dental caries. J Ind Microbiol Biotechnol 2014;41:17-26.

Ren W, Cai R, Yan W, Lyu M, Fang Y, Wang S. Purification and characterization of a biofilm-degradable dextranase from a marine bacterium. Mar Drugs 2018;16:51-67.

Unissa R, Sudhakar M, Reddy ASK. A review of biochemical and therapeutic aspects of arginase. Int J Life Sci Pharma Res 2014;4:72-97.

Yokota A, Hirayama S, Enomoto K, Miura Y, Takao S, Tomita F. Production of inulin fructotransferase (depolymerizing) by Arthrobacter sp. H65-7 and preparation of DFA III from inulin by the enzyme. J Ferment Bioeng 1991;72:258-61.

Tomita K, Shiomi T, Okuhara Y, Tamura A, Shigematsu N, Hara H. Ingestion of difructose anhydride III enhances absorption and retention of calcium in healthy men. Biosci Biotechnol Biochem 2007;71:681-7.

Zhu C, Zhang J, Li L, Zhang J, Jiang Y, Shen Z, et al. Purification and characterization of hyaluronate lyase from Arthrobacter globiformis A152. Appl Biochem Biotechnol 2016;182:216-28.

Buhren BA, Schrumpf H, Hoff NP, Bolke E, Hilton S, Gerber PA. Hyaluronidase: from clinical applications to molecular and cellular mechanisms. Eur J Med Res 2016;21:5-11.

Rajesh Y, Narayanan K, Reddy MS, Bhaskar VK, Shenoy GG, Subrahmanyam VM, et al. Production of β-cyclodextrin from pH and thermostable cyclodextrin glycosyltransferase, obtained from Arthrobacter mysorens and its evaluation as a drug carrier for irbesartan. Curr Drug Delivery 2015;12:444-53.

Guan L, Ohtsuka J, Okai M, Miyakawa T, Mase T, Zhi Y, et al. A new target region for changing the substrate specificity of amine transaminases. Sci Rep 2015;5:1-11.

Morrissey RF, Dugan EP, Koths JS. Chitinase production by an Arthrobacter sp. lysing cells of Fusarium roseum. Soil Biol Biochem 1976;8:23-8.

Kumari L, Shamsher KS. Cholesterol oxidase: role in the biotransformation of cholesterol. J Appl Biol Biotechnol 2015;3:53-65.

Dai J, Zhang L, Kang Z, Chen J, Du G. High-level production of creatine amidinohydrolase from Arthrobacter nicotianae 23710 in Escherichia coli. Appl Biochem Biotechnol 2015;175:2564-73.

Medici R, Lewkowicz ES, Iribarren AM. Arthrobacter oxydans as a biocatalyst for purine deamination. FEMS Microbiol Lett 2008;289:20-6.

Zhang H, Tian Y, Wang J, Li Y, Wang H, Mao S, et al. Construction of engineered Arthrobacter simplex with improved performance for cortisone acetate biotransformation. Appl Microbiol Biotechnol 2013;97:9503-14.

Liu JQ, Odani M, Dairi T, Itoh N, Shimizu S, Yamada H. A new route to L-threo-3[4-(methylthio)phenylserine], a key intermediate for the synthesis of antibiotics: recombinant low-specificity d-threonine aldolase-catalyzed stereospecific resolution. Appl Microbiol Biotechnol 1999;51:586-91.

Ota H, Tamezane H, Sasano Y, Hokazona E, Yasuda Y, Sakasewage S. Enzymatic characterization of an amine oxidase from Arthrobacter sp. used to measure phosphatidy-lethanolamine. Biosci Biotechnol Biochem 2008;72:2732-8.

Ming Z, Haihong H, GaoXue W. Optimization on fermentation of Arthrobacter aurescens strain DR-536 to secrete a novel fibrinolytic enzyme FA-I. J NWAFU Nat Sci Ed 2010;38:33-9.

Selvam K, Vishnupriya B. Biochemical and molecular characterization of microbial keratinase and its remarkable applications. Int J Pharm Biol Arch 2012;3:267-75.

Fu H, Wei Y, Zou Y, Li M, Wang F, Chen J, et al. Research progress on the actinomyces Arthrobacter. Adv Microbiol 2014;4:747-53.

Kim CH, Jang EK, Kim SH, Jang KH, Kang SA, Song KB, et al. Molecular cloning of levan fructotransferase gene from Arthrobacter ureafaciens K2032 and its expression in Escherichia coli for the production of difructose dianhydride IV. Lett Appl Microbiol 2005;40:228-34.

Chaubey A, Parshad R, Koul S, Taneja SC, Qazi GN. Arthrobacter sp. lipase immobilization for improvement in stability and enantioselectivity. Appl Microbiol Biotechnol 2006;73:598-606.

Park SY, Lee SJ, Oh TK, Koo BT, Yum DY, Lee JK. AhlD, an N-acyl homoserine lactonase in Arthrobacter sp. and predicted homologues in other bacteria. J Microbiol 2003;149:1541-50.

Araujo LS, Kagohara E, Garcia TP, Pellizari VH, Andrade LH. Screening of microorganisms producing cold-active oxidoreductases to be applied in enantioselective alcohol oxidation. An Antarctic survey. Mar Drugs 2011;9:889-905.

Ohashi H, Katsuta Y, Hashizume T, Abe SN, Kajiura H, Hattori H, et al. Molecular cloning of the penicillin G acylase gene from Arthrobacter viscosus. Appl Environ Microbiol 1988;54:2603-7.

Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998;62:597-635.

Adamitsch BF, Karner F, Hampel W. Proteolytic activity of a yeast cell wall lytic Arthrobacter species. Lett Appl Microbiol 2003;36:227-9.

Huang J, Chen L, Hu N, Jiang W, Wu G, Liu Z. Characterization of a novel serine hydroxymethyltransferase isolated from marine bacterium Arthrobacter sp. and its application on l-serine production. Ann Microbiol 2015;65:1689-98.

Garofalo K, Penno A, Schmidt BP, Lee HJ, Frosch MP, Eckardstein AV, et al. Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory, autonomic neuropathy type 1. J Clin Invest 2016;121:4735-45.

Yoshino E, Matsuura K, Misaki H. Process for the production of tyramine oxidase. US 4496655 A; 1985.

Suzuki K, Sakasegawa SI, Misaki H, Sugiyama M. Molecular cloning and expression of urate oxidase gene from Arthrobacter globiformis in Escherichia coli and characterization of the gene product. J Biosci Bioeng 2004; 98:153-8.

Xin Y, Yang H, Xia X, Zhang L, Zhang Y, Cheng C, et al. Expression, purification and partial characterization of a xanthine oxidase (XOD) in Arthrobacter sp. Process Biochem 2012;47:1539-44.

Jose C, Klein N, Wyss S, Fieck A, Hurwitz I, Durvasula R. Recombinant Arthrobacter β-1, 3-glucanase as a potential effector molecule for paratransgenic control of chagas disease. Parasites Vectors 2013;6:65-73.

Nakagawa T, Fujimoto Y, Ikehata R, Miyaji T, Tomizuka N. Purification and molecular characterization of cold-active β-galactosidase from Arthrobacter psychrolactophilus Strain F2. Appl Microbiol Biotechnol 2006;72:720-5.

Published

01-11-2018

How to Cite

Shabnam, and W. Azmi. “ARTHROBACTER AS BIOFACTORY OF THERAPEUTIC ENZYMES”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 10, no. 11, Nov. 2018, pp. 1-5, doi:10.22159/ijpps.2018v10i11.25933.

Issue

Section

Review Article(s)