Pantoea agglomerans, Klebsiella pneumoniae, and Shigella flexneri isolated from the Cisadane River as multiresistant bacteria to copper and dyes

https://doi.org/10.22146/ijbiotech.66103

Wahyu Irawati(1*), Candra Yulius Tahya(2), Greisnaningsi Greisnaningsi(3)

(1) Department of Biology Education, Faculty of Education, Pelita Harapan University. Jl. MH Thamrin Boulevard 1100, Lippo Karawaci, Tangerang 15811, Banten, Indonesia
(2) Department of Chemistry Education, Faculty of Education, Pelita Harapan University. Jl. MH Thamrin Boulevard 1100, Lippo Karawaci, Tangerang 15811, Banten, Indonesia
(3) Department of Biology Education, Faculty of Education, Pelita Harapan University. Jl. MH Thamrin Boulevard 1100, Lippo Karawaci, Tangerang 15811, Banten, Indonesia
(*) Corresponding Author

Abstract


Copper pollution in Cisadane is a serious environmental issue that needs to be resolved immediately due to its negative impacts on river ecosystems. Bioremediation utilising indigenous bacteria offers excellent potential to restore copper‐contaminated river water. This study aimed to obtain indigenous copper‐resistant bacteria isolated from the Cisadane River as copper bioremediation agents. Bacteria from Cisadane River water samples were isolated by the spread plate method on Luria Bertani medium containing 3 mM CuSO4. Resistance was determined based on the minimum inhibitory concentration value, while copper concentration was measured using an atomic absorption spec‐ trophotometer. The results presented a total of 13 bacterial isolates with a minimum inhibitory concentration of up to 8 mM CuSO4. Sequence alignment analysis was performed on three selected copper‐resistant bacteria, i.e. isolate IrCis1, IrCis4 and IrCis13, which were identified as Pantoea agglomerans, Klebsiella pneumoniae and Shigella flexneri based on 16S rRNA, respectively. Each isolate accumulated copper at 1.19 mg, 1.34 mg and 0.92 mg/g DW of cells, with copper biosorption potentials of 73.74%, 70.17% and 67.73%, respectively. In conclusion, P. agglomerans strain IrCis1, K. pneu‐ moniae strain IrCis4 and S. flexneri strain IrCis5 isolated from the Cisadane River can be used as copper bioremediation agents.


Keywords


accumulation; biosorption; Cisadane isolates; copper; resistance

Full Text:

PDF


References

Abbas SZ, Rafatullah M, Ismail N, Lalung J. 2014. Isolation, identification, and characterization of cadmium resistant Pseudomonas sp. M3 from industrial wastewater . J. Waste Manag. 2014:1–6. doi:10.1155/2014/160398.

Acioly LML, Cavalcanti D, Luna MC, V Júnior JC, S Andrade RF, de Lima e Silva TA, La Rotta CE, CamposTakaki GM. 2018. Cadmium removal from aqueous solutions by strain of Pantoea agglomerans UCP1320 isolated from laundry effluent. Open Microbiol. J. 12(1):297–307. doi:10.2174/1874285801812010297.

Ahmad BS, Hassan T, Majid S. 2019. Heavy metal toxicity and their harmful effects on living organisms­a review. Int. J. Med. Sci. Diagnosis Res. 3(1):106–122. doi:10.32553/JMSDR.

Aktas F. 2019. Bioremediation techniques and strategies on removal of polluted environment. J. Eng. Res. Appl. Sci. 2(1):107–115. Alam M, Imran M. 2017. Metal tolerance analysis of Gram negative bacteria from hospital effluents of Northern India. J. Appl. Pharm. Sci. 7(4):174–180. doi:10.7324/JAPS.2017.70426.

Audu KE, Adeniji SE, Obidah JS. 2020. Bioremediation of toxic metals in mining site of Zamfara metropolis using resident bacteria (Pantoea agglomerans): A optimization approach. Heliyon 6(8):E04704. doi:10.1016/j.heliyon.2020.e04704.

Biswas K. 2015. Biological agents of bioremediation. Front. Environ. Microbiol. 1(3):39–43. doi:10.11648/j.fem.20150103.11.

Bondarczuk K, Piotrowska­Seget Z. 2013. Molecular basis of active copper resistance mechanisms in Gramnegative bacteria. Cell Biol. Toxicol. 29(6):397–405. doi:10.1007/s10565­013­9262­1.

Cismasiu CM. 2011. The adaptation of Gram­negative bacteria to acidic environmental conditions with implication in heavy metals removal processes. Rom. Biotechnol. Lett. 16(6):10–18.

Corsini G, Valdés N, Pradel P, Tello M, Cottet L, Muiño L, Karahanian E, Castillo A, Gonzalez AR. 2016. Draft genome sequence of a copperresistant marine bacterium, Pantoea agglomerans strain LMAE­2, a bacterial strain with potential use in bioremediation. Genome Announc. 4(3):3–4. doi:10.1128/genomeA.00525­16.

Dawud M, Namara I, Chayati N, Taqwa F. 2016. Analisis sistem pengendalian pencemaran air Sungai Cisadane Kota Tangerang berbasis masyarakat. Semin. Nas. Sains dan Teknol. 6(November):1–8. Diep P, Mahadevan R, Yakunin AF. 2018. Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front. Bioeng. Biotechnol. 6(OCT):157. doi:10.3389/fbioe.2018.00157.

Donde OO. 2017. Wastewater management techniques: A review of advancement on the appropriate wastewater treatment principles for sustainability. Environ. Manag. Sustain. Dev. 6(1):40. doi:10.5296/emsd.v6i1.10137.

El Baz S, Baz M, Barakate M, Hassani L, El Gharmali A, Imziln B. 2015. Resistance to and accumulation of heavy metals by Actinobacteria isolated from abandoned mining areas. Sci. World J. 2015:1–14. doi:10.1155/2015/761834.

El­Sherbiny GM, Shehata ME. 2014. Antimicrobial susceptibility, heavy metals tolerance and plasmid curing of Shigella species isolated from El­ Dakahlia, Egypt. Am. J. Microbiol. Res. 2(6):211–216. doi:10.12691/ajmr­2­6­7.

Fidiastuti HR, Suarsini E. 2017. Potensi bakteri indigen dalam mendegradasi limbha cair pabrik kulit secara in vitro. Bioeksperimen J. Penelit. Biol. 3(1):1. doi:10.23917/bioeksperimen.v3i1.3665.

Fowler L, Engqvist H, Öhman­Mägi C. 2019. Effect of copper ion concentration on bacteria and cells. Materials (Basel). 12(22):1–13. doi:10.3390/ma12223798.

Giovanella P, Cabral L, Costa AP, de Oliveira Camargo FA, Gianello C, Bento FM. 2017. Metal resistance mechanisms in Gram­negative bacteria and their potential to remove Hg in the presence of other metals. Ecotoxicol. Environ. Saf. 140:162–169. doi:10.1016/j.ecoenv.2017.02.010.

Irawan DE, Puradimaja DJ, Yeni D, Kuntoro AA, Julian MM. 2016. Decreasing groundwater quality at Cisadane riverbanks: groundwater­surface water approach. arXiv: Geophysics p. 1–7. doi:10.48550/arXiv.1603.09380.

Irawati W, Hasthosaputro A, Kusumawati L. 2020a. Multiresistensi dan akumulasi Acinetobacter sp. IrC2 terhadap logam berat. J. Biol. Papua 12(2):114–122. doi:10.31957/jbp.1207.

Irawati W, Ompusunggu NP, Susilowati DN, Yuwono T. 2019. Molecular and physiological characterization of indigenous copper­resistant bacteria from Cikapundung River, West Java, Indonesia. Biodiversitas 20(2):344–349. doi:10.13057/biodiv/d200206.

Irawati W, Pinontoan R, Yuwono T. 2020b. Indigenous copper resistant bacteria isolated from activated sludge of water treatment plant in Surabaya, Indonesia. Biodiversitas 21(11):5077–5084. doi:10.13057/biodiv/d211112.

Irawati W, Tahya CY. 2021. Copper removal by Enterobacter cloacae strain IrSuk1, Enterobacter cloacae strain IrSuk4a, and Serratia nematodiphila strain IrSuk13 isolated from Sukolilo River­Indonesia. IOP Conf. Ser. Mater. Sci. Eng. 1053(1):1–9. doi:10.1088/1757­899x/1053/1/012038.

Kang CH, Kwon YJ, So JS. 2016. Bioremediation of heavy metals by using bacterial mixtures. Ecol. Eng. 89:64–69. doi:10.1016/j.ecoleng.2016.01.023.

Kapahi M, Sachdeva S. 2019. Bioremediation options for heavy metal pollution. doi:10.5696/2156­9614­ 9.24.191203.

Kurnia K, Sadi NH, Jumianto S. 2015. Isolation and characterization of Pb resistant bacteria from Cilalay Lake, Indonesia. Aceh Int. J. Sci. Technol. 4(3):83– 87. doi:10.13170/aijst.4.3.3016.

Mazalan NZS, Oyeleye A, Rahman RNZRA, Aris AZ, Salleh AB, Normi YM. 2020. Isolation and characterization of an acid and metal tolerant Enterobacter cloacae NZS strain from former mining lake in Selangor, Malaysia. Beni­Suef Univ. J. Basic Appl. Sci. 9(1):1–12. doi:10.1186/s43088­020­00051­1.

Neethu CS, Rahiman KM, Saramma AV, Hatha AA. 2015. Heavy­metal resistance in gram­negative bacteria isolated from kongsfjord, Arctic. Can. J. Microbiol. 61(6):429–435. doi:10.1139/cjm­2014­0803.

Noman M, Ahmed T, Hussain S, Niazi MBK, Shahid M, Song F. 2020. Biogenic copper nanoparticles synthesized by using a copper­resistant strain Shigella flexneri SNT22 reduced the translocation of cadmium from soil to wheat plants. J. Hazard. Mater. 398:123175. doi:10.1016/j.jhazmat.2020.123175.

Park JH, Chon HT. 2016. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu­Pb­Zn mine. Environ. Sci. Pollut. Res. 23(12):11814–11822. doi:10.1007/s11356­ 016­6335­8.

Paulina P, Corsini G, Mario T, González A. 2014. Pantoea agglomerans an agent to remove residual copper from aquaculture activity. Adv. Mater. Res. 945­949:3479–3482. doi:10.4028/www.scientific.net/AMR.945­949.3479.

Rochyatun E, Kaisupy MT, Rozak A. 2010. Distribusi logam berat dalam air dan sedimen di perairan muara Sungai Cisadane. MAKARA Sci. Ser. 10(1):35–40. doi:10.7454/mss.v10i1.151.

Sarma H, Deka S, Deka H, Saikia RR. 2011. Accumulation of heavy metals in selected medicinal plants. Rev. Environ. Contam. Toxicol. 214:63–86. doi:10.1007/978­ 1­4614­0668­6_4.

Siahaan R, Indrawan A, Soedharma D, Prasetyo LB. 2011. Kualitas air Sungai Cisadane, Jawa Barat, Banten. J. Ilm. SAINS 15(1):268. doi:10.35799/jis.11.2.2011.218.

Tahya CY, Irawati W, Purba FJ. 2019. Phenol biodegradation and catechol 2,3­dioxygenase gene sequencing of Bacillus cereus IrC2 isolated from rungkut Indonesia. J. Kim. Terap. Indones. 21(1):23–30. doi:10.14203/jkti.v21i1.415.

Yetunde Mutiat FB, Gbolahan B, Olu O. 2018. A comparative study of the wild and mutated heavy metal resistant Klebsiella variicola generated for cadmium bioremediation. Bioremediat. J. 22(1­2):1–15. doi:10.1080/10889868.2018.1445695.

Zhu DY, Zhu YQ, Huang RH, Xiang Y, Yang N, Lu HX, Li GP, Jin Q, Wang DC. 2005. Crystal structure of the copper homeostasis protein (CutCm) from Shigella flexneri at 1.7 Å resolution: The first structure of a new sequence family of TIM barrels. Proteins Struct. Funct. Genet. 58(3):764–768. doi:10.1002/prot.20362.



DOI: https://doi.org/10.22146/ijbiotech.66103

Article Metrics

Abstract views : 938 | views : 1052

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.