بررسی پیامد کاربرد آنتی بیوتیک ها بر فراوانی باکتری ها و قارچ های بومی خاک تیمار شده با بهسازهای آلی و کانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه خاکشناسی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان

2 استاد گروه گروه خاکشناسی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان

چکیده

امروزه کاربرد گسترده پادزیست­ها در پزشکی برای درمان بیماری­های مردم و در کشاورزی و دامپزشکی، مایه آلودگی آب و خاک گردیده و پیامد منفی بر ریزجانداران خاک و تندی فرآیندهای زیستی داشته است. در این پژوهش پیامد رها شدن پادزیست­های پرکاربرد در خاک (جنتامایسین، اکسی تتراسایکلین و پنی­سیلین) در اندازه­های گوناگون (50، 100 و 200 میلی­گرم بر کیلوگرم خاک خشک) با و بدون بهسازهای آلی و کانی (کود گاوی، بیوچار و نانوزئولیت) بر فراوانی قارچ­ها، باکتری­ها، کلیفرم­ها و شناسه­های پایداری و بازگشت­پذیری آنها در سه بازه زمانی 7-1، 30-7 و 90-30 روز در دوره گرماگذاری 90- روزه در قالب طرح اسپلیت-فاکتوریل ارزیابی شد که بهساز بکاررفته کرت اصلی و گونه پادزیست و اندازه کاربرد آن به عنوان فاکتورهای آزمایش بودند. شناسه­های پایداری و بازگشت­پذیری نیز برای گروه­های میکروبی برآورد گردید. بر پایه برآوردهای آزمایش، افزودن پادزیست­ها و در میان آنها جنتامایسن مایه کاهش فراوانی ریزجانداران شد. از سوی دیگر خاک­های دارای بهساز کود گاوی بیشترین لگاریتم فراوانی قارچی را در بازه زمانی 7-1 داشت که از دیدگاه آماری ناهمانندی چشمگیری با خاک­های دارای بیوچار نداشت. در بازه 30-7 روز، فراوانی همه باکتری­ها در تیمارهای کاربرد پادزیست به گونه چشمگیری افزایش پیدا کرد که اندازه افزایش برای پادزیست جنتامایسین و اکسی­تتراسایکلین، بؤیژه در اندازه­های بیشتر کاربرد در برابر در کاربرد پادزیست پنی سیلین بالاتر بود. در بازه­های زمانی 30-7 و 90-30 روز، تیمارهای بهره­گیری از بهساز کود گاوی و پادزیست­های جنتامایسین و اکسی تتراسایکلین در اندازه­های کاربرد 100 و 200 میلی­گرم بر کیلوگرم بیشترین اندازه لگاریتم فراوانی باکتری­های روده­ای را داشتند. رو هم رفته این پژوهش نشان داد که کاربرد بهسازها بویژه کود گاوی و زغال آن می­تواند از پیامد زهری پادزیست­ها کاسته و مایه افزایش شناسه­های پایداری و بازگشت پذیری فراوانی ریزجانداران در خاک گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Antibiotics on ferequency of Native Fungi and Bacteria in Soils Treated by Organic and Mineral Conditioners

نویسندگان [English]

  • Mehdi Rashtbari 1
  • A. A. Safari Sinegani 2
1 Ph.D. student. Soil Science College of Agriculture, Bu-Ali Sina University. Hamadan
2 Professor. Soil Science College of Agriculture, Bu-Ali Sina University. Hamadan
چکیده [English]

Nowadays, extensive application of antibiotics in medicine for treating people and in agriculture and veterinary caused soil and water contamination and also have negative impacts on soil microorganisms and biological processes rate. In the present study, the effect of releasing the mostly used antibiotic in soil (gentamicin, oxytetracycline, and penicillin) and different concentrations (50, 100 and 200 mg/kg dry soil) with and without organic and mineral conditioner (cow manure, biochar, and nano-zeolite) on total soil fungi, total cultivable bacteria and coliforms and their resistance and resilience indices at three time periods including 1-7, 7-30 and 30-90 days during a 90-day incubation time was evaluated in a split-factorial design which soil conditioners were considered as main plots and antibiotic types and concentration were as experimental factors. Resistance and resilience indices were calculated for microbial groups, as well. The addition of antibiotics, including gentamicin, reduced the abundance of microorganisms. Based on the results, cow manure had the highest total fungi count at 1-7 days which had no significant difference with biochar application. At 7-30 days, total bacteria count in antibiotic-treated soil significantly increased which the increase rate for gentamicin and oxytetracycline, especially at higher concentrations was more than penicillin. At 7-30 and 30-90 days, the application of cow manure and gentamicin and oxytetracycline at 100 and 200 mg/kg soil resulted in the highest total coliforms count. Generally, the results of the present study showed that the application of conditioners, especially cow manure, could decrease the toxic effects of antibiotics in soils and causes an increase in resistance and resilience indices of soil microorganisms.

کلیدواژه‌ها [English]

  • coliforms
  • antibiotic resistance
  • biochar
  • nano-zeolite
  1. صفری سنجانی، ع.ا.، شریفی، ز.، سفری سنجانی، م. 1389. روش­های آزمایشگاهی در میکروبیولوژی. انتشارات دانشگاه بوعلی سینا، 562 صفحه.
  2. قربان زاده، ن.، شعبانی روفچائی، ع.، پندی، ح. 1396. تأثیر دو نوع آنتی بیوتیک دارویی بر ویژگی های زیستی دو خاک رسی و لوم شنی. نشریه مدیریت خاک و تولید پایدار. 7(4): 113-99.
  3. مولایی، ع.، لکزیان، ا.، حق نیا، غ.ح.، آستارایی، ع.ر.، رسولی صدقیانی، میرحسین، چکرینی، م.ت. 1397. ک های اکسی تتراسایکلین (OTC) و سولفامتاکسازول (SMX) بر نیتریفیکاسیون بالقوه و فعالیت آنزیم های فسفاتاز قلیایی و اوره آز در یک خاک آهکی. تحقیقات کاربردی خاک، 6(2): 14-1.
  4. یونسی ن، صفری سنجانی ع.ا. a1396. پایداری پازیستی ازتوباکترها، انتروباکترها و سودوموناس‌ها در خاک‌های معدن، چراگاه و کشاورزی پیرامون سه معدن در استان همدان، ایران. نشریه زیست شناسی خاک.5 (1):  67-81.
  5. یونسی ن، صفری سنجانی ع.ا. و خداکرمیان غ. b1396. ردیابی ژن بتالاکتاماز در باکتری های جدا شده از خاک­های کشاورزی، چراگاه و معدن پیرامون معادن همدان، ایران. نشریه زیست شناسی خاک. 23: 35-48.
  6. Akimenko, Y. V., Kazeev, K. S., Kolesnikov, S. I., Myasnikova, M. A., and Minnikova, T. 2017. Assessing resistance of the microbial community in soils to pollution with antibiotics. Asian Journal of Pharmaceutics 11(4): S798-S804.
  7. Ameloot, N., Sleutel, S., Das, K. C., Kanagaratnam, J., and de Neve, S. 2015. Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties. GCB Bioenergy 7(1): 135-144.
  8. Ansari, F. 2001. Use of systemic anti-infective agents in Iran during 1997-1998. Eur J Clin Pharmacol 57(6-7): 547-551.
  9. Cadena, M., Durso, L. M., Miller, D. N., Waldrip, H. M., Castleberry, B. L., Drijber, R. A., and Wortmann, C. 2018. Tetracycline and Sulfonamide Antibiotic Resistance Genes in Soils From Nebraska Organic Farming Operations. Frontiers in Microbiology 9(1283): 1-10.
  10. Chessa, L., Pusino, A., Garau, G., Mangia, N. P., and Pinna, M. V. 2016. Soil microbial response to tetracycline in two different soils amended with cow manure. Environ Sci Pollut Res Int 23(6): 5807-5817.
  11. Chiou, M.-S., and Li, H.-Y. 2002. Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. Journal of Hazardous Materials 93(2): 233-248.
  12. Cycoń, M., Mrozik, A., and Piotrowska-Seget, Z. 2019. Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Frontiers in microbiology 10: 338-338.
  13. Dantas, G., Sommer, M. O., Oluwasegun, R. D., and Church, G. M. 2008. Bacteria subsisting on antibiotics. Science 320(5872): 100-103.
  14. Ding, G.-C., Radl, V., Schloter-Hai, B., Jechalke, S., Heuer, H., Smalla, K., and Schloter, M. 2014. Dynamics of Soil Bacterial Communities in Response to Repeated Application of Manure Containing Sulfadiazine. PLOS ONE 9(3): e92958.
  15. Duan, M., Li, H., Gu, J., Tuo, X., Sun, W., Qian, X., and Wang, X. 2017. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ Pollut 224: 787-795.
  16. Gao, M., Song, W., Zhou, Q., Ma, X., and Chen, X. 2013. Interactive effect of oxytetracycline and lead on soil enzymatic activity and microbial biomass. Environmental Toxicology and Pharmacology 36(2): 667-674.
  17. Hammesfahr, U., Kotzerke, A., Lamshöft, M., Wilke, B.-M., Kandeler, E., and Thiele-Bruhn, S. 2011. Effects of sulfadiazine-contaminated fresh and stored manure on a soil microbial community. European Journal of Soil Biology 47(1): 61-68.
  18. Jiao, W., Du, R., Ye, M., Sun, M., Feng, Y., Wan, J., . . . Jiang, X. 2018. 'Agricultural Waste to Treasure' - Biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L. Environ Pollut 242(Pt B): 2088-2095.
  19. Kang, A. J., Brown, A. K., Wong, C. S., Huang, Z., and Yuan, Q. 2018. Variation in bacterial community structure of aerobic granular and suspended activated sludge in the presence of the antibiotic sulfamethoxazole. Bioresour Technol 261: 322-328.
  20. Kauri S., Rao R., and S., N. 2011. Amoxicillin: A broad spectrum antibiotic. Journal of Pharmaceutical Sciences 34: 401-417.
  21. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., and Crowley, D. 2011. Biochar effects on soil biota – A review. Soil Biology and Biochemistry 43(9): 1812-1836.
  22. Lin, H., Jin, D., Freitag, T. E., Sun, W., Yu, Q., Fu, J., and Ma, J. 2016. A compositional shift in the soil microbiome induced by tetracycline, sulfamonomethoxine and ciprofloxacin entering a plant-soil system. Environ Pollut 212: 440-448.
  23. Livermore, D. M., Warner, M., Hall, L. M., Enne, V. I., Projan, S. J., Dunman, P. M., . . . Harrison, G. 2001. Antibiotic resistance in bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) from west Wales. Environ Microbiol 3(10): 658-661.
  24. Lopatto, E., Choi, J., Colina, A., Ma, L., Howe, A., and Hinsa-Leasure, S. 2019. Characterizing the soil microbiome and quantifying antibiotic resistance gene dynamics in agricultural soil following swine CAFO manure application. PLOS ONE 14(8): e0220770.
  25. Meredith, H. R., Andreani, V., Ma, H. R., Lopatkin, A. J., Lee, A. J., Anderson, D. J., . . . You, L. 2018. Applying ecological resistance and resilience to dissect bacterial antibiotic responses. Science Advances 4(12): eaau1873.
  26. Mokni-Tlili, S., Jedidi, N., and Hassen, A. 2013. Antagonistic interactions among cultivable actinomycetes isolated from agricultural soil amended with organic residues. African Journal of Microbiology Research 7(26): 3304-3320.
  27. Orwin, K. H., and Wardle, D. A. 2004. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biology and Biochemistry 36(11): 1907-1912.
  28. Pimm, S. L. 1984. The complexity and stability of ecosystems. Nature 307(5949): 321-326.
  29. Pires, D. P., Melo, L., Vilas Boas, D., Sillankorva, S., and Azeredo, J. 2017. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 39: 48-56.
  30. Riesenfeld, C. S., Goodman, R. M., and Handelsman, J. 2004. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6(9): 981-989.
  31. Schmitt, H., van Beelen, P., Tolls, J., and van Leeuwen, C. L. 2004. Pollution-Induced Community Tolerance of Soil Microbial Communities Caused by the Antibiotic Sulfachloropyridazine. Environmental Science & Technology 38(4): 1148-1153.
  32. Singer, R. S., and Hofacre, C. L. 2006. Potential impacts of antibiotic use in poultry production. Avian Dis 50(2): 161-172.
  33. Sparks, D. L., Page, A. L., Helmke, P. A., and Leoppert, R. H. (1996). Methods of Soil Analysis Part 3—Chemical Methods (D. L. Sparks, A. L. Page, P. A. Helmke, & R. H. Loeppert Eds.). Madison, WI: Soil Science Society of America, American Society of Agronomy.
  34. Sun, J., Qian, X., Gu, J., Wang, X., and Gao, H. 2016. Effects of oxytetracycline on the abundance and community structure of nitrogen-fixing bacteria during cattle manure composting. Bioresour Technol 216: 801-807.
  35. Telesiski, M. M., Przytarska, J. E., Sternal, B., Forwick, M., Szczuci, ski, W., . . . czkowski, M. (2018). IRD record of sediment core JM07-015. Retrieved from: https://doi.org/10.1594/PANGAEA.895465
  36. Walkley, A., and Black, I. A. 1934. An examination of the method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Science 37(1): 29-38.
  37. Yadav, A. N., Verma, P., Kumar, V., Sangwan, P., Mishra, S., Panjiar, N., . . . Saxena, A. K. (2018). Chapter 1 - Biodiversity of the Genus Penicillium in Different Habitats. In V. K. Gupta & S. Rodriguez-Couto (Eds.), New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 3-18). Amsterdam: Elsevier.
  38. Ye, M., Sun, M., Huang, D., Zhang, Z., Zhang, H., Zhang, S., . . . Jiao, W. 2019. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. Environment International 129: 488-496.
  39. Younessi, N., Safari Sinegani, A. A., and Khodakaramian, G. 2019. Detection of antibiotic resistance genes in culturable bacteria isolated from soils around mines in Hamedan, Iran. International Journal of Environmental Science and Technology 16(12): 7643-7652.
  40. Zablotni, A., and Jaworski, A. 2014. Sources of antibiotics in natural environments and their biological role. Postepy Hig Med Dosw (Online) 68: 1040-1049.