Document Type : Final File

Authors

1 1 Department of geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran

2 2 Geological Survey of Iran, Mashhad Branch, Mashhad, Islamic Republic of Iran

Abstract

The upper part of Shirgesht (UPS) and lower part of Niur (LPN) formations (Ordovician-Silurian) consist of sandstone, shale and limestone, respectively. The petrography and geochemical analysis conducted to evaluate provenance of siliciclastic deposits in order to understand the paleogeography of Central Iran during the Early Paleozoic time. This study shows that quartz and K-feldspar are the most abundant minerals in these siliciclastic rocks and the felsic igneous rock, probably granite, is the possible source rock. The average CIA (71) value and rare earth elements diagram, such as Th/U ratio versus Th, reveal a high degree of paleo-weathering in the source area. The craton interior and transitional continent were interpreted as a tectonic setting for UPS and LPN formations, respectively. Furthermore, the geochemical analysis revealed active continental margin and mostly passive margin during deposition of these two formations, respectively. Rifting in Central Iran during Ordovician-Silurian time generated normal faults at the edge of platform which had a major role in production of siliciclastic deposits. 

Keywords

Main Subjects

  1. 1. Yan Z., Wang Z., Chen J., Yan Q. and Wang T. Detrital record of Neoproterozoic arc-magmatism along the NW margin of the Yangtze Block, China: U–Pb geochronology and petrography of sandstones. J. ASI. Earth Sci. 37: 322­–334 (2010).

    2. Kundu A., Matin A. and Mukul M. Depositional environment and provenance of Middle Siwalik sediments in Tista valley, Darjiling District, Eastern Himalaya, India. J. Earth. Syst. Sci. 121(1):73–89 (2012).

    1. 3.  Pantoppoulos G., and Zelilidis A. Petrographic and geochemical characteristics of Paleogene turbidite deposits in the southern Aegean (Karpathos Island, SE Greece): implications for provenance and tectonic setting. Che. der Er. 72:153–166 (2013).
    2. 4.  Wang L., Liu C., Gao X. and Zhang H. Provenance and paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, southeastern Tibetan Plateau: Whole-rock geochemistry, U–Pb geochronology, and Hf isotopic constraints. Sed. Geol. 304: 44–58 (2014).
    3. 5.  Zhang X., Pease V., Omma J. and Benedictus A. Provenance of Late Carboniferous to Jurassic sandstones for southern Taimyr, Arctic Russia: A comparison of heavy mineral analysis by optical and QEMSCAN methods. Sed. Geol. 329: 166–176 (2015).
    4. 6.  Zhang J., Ye T., Li S., Yuan G., Dai C., Zhang H. and Ma Y. The provenance and tectonic setting of the Lower Devonian sandstone of the Danlin Formation in southeast Yangtze Plate, with implications for the Wuyi-Yunkai orogeny in South China Block. Sed. Geol. 346: 25–34 (2016).

    7. Najafzadeh A., Jafarzadeh M. and Moussavi-Harami R. Provenance and tectonic setting of Upper Devonian sandstones from Ilanqareh Formation (NW Iran). Re. Mexic. Cien. Geológ. 27 (3): 545–561 (2010).

    8. Tao H., Sun S., Wang Q., Yang X. and Jiang, L. Petrography and geochemistry of lower Carboniferous greywacke and mudstones in Northeast Junggar, China: implications for provenance, source weathering, and tectonic setting. J. Asi. Earth Sci. 87: 11–25 (2014). 

    9. Nowrouzi Z., Moussavi-Harami R., Mahboubi A., Gharaie M.H. and Ghaemi F. Petrography and geochemistry of Silurian Niur sandstones, Derenjal Mountains, East Central Iran: implications for tectonic setting, provenance and weathering. Arab. J. Geosci. 7: 2793–2813 (2014). 

    10. Oghenekome M.E., Chatterjee T.K., Hammond N.Q. and Bever Donker J.M. Provenance study from petrography of the late Permian – Early Triassic sandstones of the Balfour Formation Karoo Supergroup, South Africa. J. Afr. Earth Sci. 114: 125–132 (2016).

    11. Fatima S., Khan M.S. Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: implications for provenance, tectonic setting, and crustal evolution. Int. Geol. Rev. 54: 1113–1144 (2012).

    12. Armstrong-Altrin J.S., Nagarajan R., Madhavaraju J., Rosalez-Hoz L., Lee Y.I., Balaram V., Cruz-Martínez A. and Avila-Ramírez G. Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: implications for source-area weathering, provenance, and tectonic setting. C. R. Geosci. 345:185–202 (2013).

    1. 13.  Zaid S.M. Provenance, diagenesis, tectonic setting and reservoir quality of the sandstones of the Kareem Formation, Gulf of Suez, Egypt. J. Afr. Earth. Sci. 85:31–52 (2013).

    14. Zaid S.M. Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: implication for provenance, weathering and tectonic setting. J. Afr. Earth. Sci. 102: 1–17 (2015).

    15. Bhatia M.R. and Crook K.A.W.Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Con. Mineral. Petrol. 92: 181–193 (1986).

    1. 16.  Purevjav N. and Roser B. Geochemistry of Devonian-Carboniferous clastic sediments of the Tsetserleg terrane, Hangay Basin, central Mongolia: provenance, source weathering, and tectonic setting. Isl. Arc 21:270–287 (2012).

    17. Armstrong-Altrin J.S., Nagarajan R., Lee Y.I., Kasper-Zubillaga J.J. and Córdoba-Saldaña L.P. Geochemistry of sands along the San Nicolás and San Carlos beaches, Gulf of California, Mexico: implication for provenance. Turk. J. Earth. Sci. 23:533–558 (2014).

    18. Xie X., O'Connor P. M. and Alsleben H. Carboniferous sediment dispersal in the Appalachian–Ouachita juncture: Provenance of selected late Mississippian sandstones in the Black Warrior Basin, Mississippi, United States. Sed. Geol. 342: 191–201 (2016).

    19. Ghazi S. and Mountney N. P. Petrography and provenance of the Early Permian Fluvial Warchha Sandstone, Salt Range, Pakistan. Sed. Geol. 233: 88–110 (2011).

    20. Abrantes Jr F.R., Nogueira A.C.R. and Soares J. L. Permian paleogeography of west-central Pangea: reconstruction using sabkhatype gypsum-bearing deposits of Parna´ıba Basin, Northern Brazil. Sed. Geol. 341: 175–188 (2016).

    21. Bassis A., Hinderer M. and Meinhold G. New insights into the provenance of Saudi Arabian Palaeozoic sandstones from heavy mineral analysis and single-grain geochemistry. Sed. Geol. 333: 100–114 (2016).

    22. Shaikh M., Lasemi Y., Aghanabati A. and Jahani D. Facies and depositional environment of Shirgesht Formation in type section, NE Tabas. SQJG 1: 27–33 (2010).

    23. Hairapetian V., Ghobadi Pour M., Popov L. and Modzalevskaya T.L. Stegocornu and associated brachiopods from the Silurian (Llandovery) of Central Iran. Eston J. Earth Sci. 61 (2): 82–104 (2012).

    24. Bayatgol A. Depositional environment and diagenesis of Shirgesht Formation in Kuh-e-Asheghan and Radar, Tabas, Master thesis, Shahid Beheshti University, 117 p. (2011).

    25. Nowrouzi Z. Moussavi-Harami R. Mahboubi A. Petrography and geochemistry of Silurian Niur sandstones, Derenjal Mountains, East Central Iran: implications for tectonic setting, provenance and weathering. Arab J Geosci, 7:2793–2813 (2014).

    26. Saheb Jamee S. Palinology and palinostratigraphy of deposits of member 2 in Niur Formation in SW Kashmahr at Chah-e-Tajri section, Master thesis, Islamic University of Iran, Mashhad Branch, 231 p. (2012).

    27. Ruttner A. Nabavi M.H., Hajian J. Geology of Shirgesht area (Tabas area, East Iran). Geological Society of Iran, Tehran, 4: 133p. (1968).  

    28. Khazaei E., Mahmoudi Gharaei M.H., Mahboubi A., Taheri J. Facies analysis in transitional from Ordovician deposits (Upper part of Shirgesht Formation) to Silurian (Lower part of Niur Formation) in SW Kashmar, North of Tabas block. J. Geosci. 26 (101): 111–126 (In Persian) (2016).

    29. Taheri J.Geological map of the Kashmar sheet (1:100000).Geological Survey of Iran, 40 p. (2001).

    30. Pettijohn F.J., Potter P.E., Siever R. Sand and Sandstone. Springer-Verlag, Berlin, 553p. (1987).

    31. Taylor S.R., McLennan S.M.The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, 312 p. (1985).

    32. Caracciolo L., Le Pera E., Muto F and Perri F. Sandstone petrology and mudstone geochemistry of the Peruc–Korycany Formation (Bohemian Cretaceous Basin, Czech Republic). Int. Geo. Rev. 53: 1003–1031 (2011).

    33. Nesbitt, H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature. 299: 715–717 (1982).  

    34. McLennan S. M. Weathering and global denudation. J. Geol. 101: 295–303 (1993).

    35. Maravelis A., Zelilidis A. Petrography and geochemistry of the late Eoceneearly Oligocene submarine fans and shelf deposits on Lemnos Island, NE Greece. Implications for provenance and tectonic setting. Geol. J. 45: 412–433 (2010).

    36. Basu A., Young S.W., Suttner L.J., James W.C., Mack G. H.Re-evaluation of the use of adulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. J. Sediment. Petrol. 45: 873–882 (1975).

    37. Roser B.P., Korsch, R.J.Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol. 67: 119–139 (1988).  

    38. Cullers R.L. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemic. Geol. 191 (4): 305–327 (2002).

    39. Braccialli L., Marroni M., Pandolfi L., Rocchi S.Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins. In: Arribas J., Critelli S., Johnsson M.J. (Eds.), Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry. Geol. Soc. Am. Special Paper. 420: 73–93 (2007).

    40. Dickinson W.R., Beard L.S., Brakenridge G.R., Evjavec J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A. and Ryberg P.T. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull. 94: 222–235 (1983).

    41. McLennan S. M., Taylor S. R., McCulloch M. T. and Maynard J. B. Geochemical and Nd–Sr isotopic composition of deep-sea turbidite: crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta. 54: 2015–2050 (1990).

    42. Kroonenberg S.B. Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. Proceedings of the 29th International Geological Congress, Part A, Kyoto, Oct. 17-18: 69-81 (1994).

    43. Lasemi Y. Facies analysis, depositional environments and sequence stratigraphy of the Upper Pre-Cambrian and Paleozoic rocks of Iran. Iran Geological Survey Publications, Tehran 180 p. (In Persian) (2001).

    44. Stampfli G. M., Raumer J. V. and Wilhem C. The distribution of Gondwana-derived terranes in the Early Paleozoic. In: Gutierrez-Marco J.C., Rabano I. and Garcia-Bellido, D. (Eds.), Ordovician of the world. Instituto Geologic y Minero de Espana, Madrid. 567–574 (2011).

    45. Golonka J. Phanerozoic Paleoenvironment and Paleolithofacies Maps of Gondwana. AGH University of Science and Technology Press. Krakow 87p. (2012).

    46. Berra F. and Angiolini L. The evolution of the Tethys region throughout the Phanerozoic: A brief tectonic reconstruction, In: Marlow L., Kendall C. and Yose L. (Eds.), Petroleum systems of the Tethyan region. A.A.P.G. Memoir, 106: 1–27 (2014).