Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Antiproliferative Activity and Apoptotic Efficiency of Syzygium cumini Bark Methanolic Extract against EAC Cells In Vivo

Author(s): Ayesha Siddika, Plabon K. Das, Saharia Y. Asha, Suraiya Aktar, Abu R.M. Tareq, Ayesha Siddika, Abdur Rakib, Farhadul Islam* and Jahan Ara Khanam*

Volume 21, Issue 6, 2021

Published on: 11 August, 2020

Page: [782 - 792] Pages: 11

DOI: 10.2174/1871520620666200811122137

Price: $65

Abstract

Background: Syzygium cumini is one of the evidence-based traditional medicinal plant used in the treatment of various ailments.

Objectives: Herein, the antioxidant property and anticancer property of Syzygium cumini against Ehrlich Ascites Carcinoma (EAC) cells were examined to find effective chemotherapeutics.

Methods: In vitro assays, and phytochemical and chromatographic analyses were used to determine antioxidant properties and chemical constituents of Syzygium cummini Bark Methanolic Extract (SCBME). Functional assays were used to measure the anticancer activity of SCBME. Fluorescence microscopy and RT-PCR were used to examine morphological and molecular changes of EAC cells followed by SCBME treatment.

Results: Phytochemical and GC-MS analyses confirmed the presence of compounds with antioxidant and anticancer activities. Accordingly, we have noted a strong antioxidant activity of SCBME with an IC50 value of ~10μg/ml. Importantly, SCBME exerted a dose-dependent anticancer activity with significant inhibition of EAC cell growth (71.08±3.53%; p<0.001), reduction of tumor burden (69.50%; p<0.01) and increase of life span (73.13%; p<0.001) of EAC-bearing mice at 75mg/kg/day. Besides, SCBME restored the blood toxicity towards normal in EAC-bearing mice (p<0.05).

Discussion: SCBME treated EAC cells showed apoptotic features under a fluorescence microscope and fragmented DNA in DNA laddering assay. Moreover, up-regulation of the tumor suppressor p53 and pro-apoptotic Bax and down-regulation of NF-κB and anti-apoptotic Bcl-2 genes implied induction of apoptosis followed by SCBME treatment.

Conclusion: The antiproliferative activity of SCBME against EAC cells is likely due to apoptosis, mediated by regulation of p53 and NF-κB signaling. Thus, SCBME can be considered as a useful resource in cancer chemotherapy.

Keywords: Syzygium cumini, bark, anticancer agents, EAC cells, apoptosis, p53.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Zhang, Q.Y.; Wang, F.X.; Jia, K.K.; Kong, L.D. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front. Pharmacol., 2018, 9, 1253.
[http://dx.doi.org/10.3389/fphar.2018.01253] [PMID: 30459615]
[3]
Cleeland, C.S.; Allen, J.D.; Roberts, S.A.; Brell, J.M.; Giralt, S.A.; Khakoo, A.Y.; Kirch, R.A.; Kwitkowski, V.E.; Liao, Z.; Skillings, J. Reducing the toxicity of cancer therapy: Recognizing needs, taking action. Nat. Rev. Clin. Oncol., 2012, 9(8), 471-478.
[http://dx.doi.org/10.1038/nrclinonc.2012.99] [PMID: 22751283]
[4]
Safarzadeh, E.; Sandoghchian Shotorbani, S.; Baradaran, B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv. Pharm. Bull., 2014, 4(1)(Suppl. 1), 421-427.
[PMID: 25364657]
[5]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[6]
Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci., 2015, 11(8), 982-991.
[http://dx.doi.org/10.7150/ijbs.12096] [PMID: 26157352]
[7]
Saxena, A.; Saxena, A.K.; Singh, J.; Bhushan, S. Natural antioxidants synergistically enhance the anticancer potential of AP9-cd, a novel lignan composition from Cedrus deodara in human leukemia HL-60 cells. Chem. Biol. Interact., 2010, 188(3), 580-590.
[http://dx.doi.org/10.1016/j.cbi.2010.09.029] [PMID: 20932957]
[8]
Alam, A.K.; Hossain, A.S.; Khan, M.A.; Kabir, S.R.; Reza, M.A.; Rahman, M.M.; Islam, M.S.; Rahman, M.A.; Rashid, M.; Sadik, M.G. The antioxidative fraction of white mulberry induces apoptosis through regulation of p53 and NFκB in EAC cells. PLoS One, 2016, 11(12)e0167536
[http://dx.doi.org/10.1371/journal.pone.0167536]] [PMID: 27936037]
[9]
Haque, M.A.; Islam, M.U.A. Pleurotus highking Mushroom induces apoptosis by altering the balance of proapoptotic and antiapoptotic genes in breast cancer cells and inhibits tumour sphere formation. Medicina (B. Aires), 2019, 55(11), 716.
[http://dx.doi.org/10.3390/medicina55110716]
[10]
Deepa, M.; Sureshkumar, T.; Satheeshkumar, P.K.; Priya, S. Antioxidant rich Morus alba leaf extract induces apoptosis in human colon and breast cancer cells by the downregulation of nitric oxide produced by inducible nitric oxide synthase. Nutr. Cancer, 2013, 65(2), 305-310.
[http://dx.doi.org/10.1080/01635581.2013.748924] [PMID: 23441618]
[11]
Islam, M.S.; Rahi, M.S.; Jahangir, C.A.; Rahman, M.H.; Jerin, I.; Amin, R.; Hoque, K.M.F.; Reza, M.A. In vivo anticancer activity of Basella alba leaf and seed extracts against Ehrlich’s Ascites Carcinoma (EAC) cell line. Evid. Based Complement. Alternat. Med., 2018, 20181537896
[http://dx.doi.org/10.1155/2018/1537896]] [PMID: 30581479]
[12]
Ayyanar, M.; Subash-Babu, P. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pac. J. Trop. Biomed., 2012, 2(3), 240-246.
[http://dx.doi.org/10.1016/S2221-1691(12)60050-1] [PMID: 23569906]
[13]
Srivastava, S.; Chandra, D. Pharmacological potentials of Syzygium cumini: A review. J. Sci. Food Agric., 2013, 93(9), 2084-2093.
[http://dx.doi.org/10.1002/jsfa.6111] [PMID: 23460190]
[14]
Baliga, M.S. Anticancer, chemopreventive and radioprotective potential of black plum (Eugenia jambolana lam.). Asian Pac. J. Cancer Prev., 2011, 12(1), 3-15.
[PMID: 21517226]
[15]
Charepalli, V.; Reddivari, L.; Vadde, R.; Walia, S.; Radhakrishnan, S.; Vanamala, J.K. Eugenia jambolana (Java Plum) fruit extract exhibits anti-cancer activity against early stage human HCT-116 colon cancer cells and colon cancer stem cells. Cancers (Basel), 2016, 8(3), 29.
[http://dx.doi.org/10.3390/cancers8030029] [PMID: 26927179]
[16]
Das, P.K.; Siddika, M.A.; Asha, S.Y.; Aktar, S.; Islam, F.; Khanam, J.A.; Rakib, M.A. Investigation of phytochemicals and antioxidant activities in the leaves methanolic extract from Moringa oleifera plants grown in Bangladesh. J. Pharmacogn. Phytochem., 2019, 8(4), 2502-2508.
[17]
Yesmin, R.; Das, P.K.; Belal, H.; Aktar, S.; Ayesha, M.A.; Rakib, M.A.; Islam, F.; Khanam, J.A. In vitro antioxidant and antidiabetic assessment of extracts from the bark of Michelia champaca, a medicinal plant in Bangladesh. W.J. PS (Wash., D.C.), 2019, 8(9), 1505-1526.
[18]
Vats, S.; Gupta, T. Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiol. Mol. Biol. Plants, 2017, 23(1), 239-248.
[http://dx.doi.org/10.1007/s12298-016-0407-6] [PMID: 28250599]
[19]
Islam, F.; Raihan, O.; Chowdhury, D.; Khatun, M.; Zuberi, N.; Khatun, L.; Brishti, A.; Bahar, E. Apoptotic and antioxidant activities of methanol extract of Mussaenda roxburghii leaves. Pak. J. Pharm. Sci., 2015, 28(6), 2027-2034.
[PMID: 26639496]
[20]
Islam, F.; Khatun, H.; Ghosh, S.; Ali, M.M.; Khanam, J.A. Bioassay of Eucalyptus extracts for anticancer activity against Ehrlich Ascites Carcinoma (EAC) cells in Swiss albino mice. Asian Pac. J. Trop. Biomed., 2012, 2(5), 394-398.
[http://dx.doi.org/10.1016/S2221-1691(12)60063-X] [PMID: 23569937]
[21]
Islam, F.; Khanam, J.A.; Khatun, M.; Zuberi, N.; Khatun, L.; Kabir, S.R.; Reza, M.A.; Ali, M.M.; Rabbi, M.A.; Gopalan, V.; Lam, A.K. A p-menth-1-ene-4,7-diol (EC-1) from Eucalyptus camaldulensis Dhnh. triggers apoptosis and cell cycle changes in Ehrlich ascites carcinoma cells. Phytother. Res., 2015, 29(4), 573-581.
[http://dx.doi.org/10.1002/ptr.5288] [PMID: 25583285]
[22]
Islam, F.; Khatun, H.; Khatun, M.; Ali, S.M.; Khanam, J.A. Growth inhibition and apoptosis of Ehrlich ascites carcinoma cells by the methanol extract of Eucalyptus camaldulensis. Pharm. Biol., 2014, 52(3), 281-290.
[http://dx.doi.org/10.3109/13880209.2013.834365] [PMID: 24102623]
[23]
Yesmin, R.; Das, P.K.; Belal, H.; Aktar, S.; Siddika, M.A.; Asha, S.; Habib, F.; Rakib, M.A.; Islam, F. Anticancer potential of Michelia champaca Linn. bark against Ehrlich Ascites Carcinoma (EAC) cells in Swiss albino mice. Nat. Prod. J., 2020, 10, 1-5.
[24]
Mandelkow, R.; Gümbel, D.; Ahrend, H.; Kaul, A.; Zimmermann, U.; Burchardt, M.; Stope, M.B. Detection and quantification of nuclear morphology changes in apoptotic cells by fluorescence microscopy and subsequent analysis of visualized fluorescent signals. Anticancer Res., 2017, 37(5), 2239-2244.
[http://dx.doi.org/10.21873/anticanres.11560] [PMID: 28476788]
[25]
Zahan, R.; Rahi, M.S.; Sheikh, M.C.; Miyatake, R.; Zangrando, E.; Naz, T.; Islam, M.A.; Reza, M.A. Design, synthesis and X‐ray structural studies of novel [acetonitrile‐benzyl‐3‐N‐(2, 4 dihydroxyphenylmethylene) hydrazinecarbodithioato‐κ3‐N′, S, O] nickel (ll) complex that potently inhibit cell proliferation through regulation of apoptosis related genes. Appl. Organomet. Chem., 2019, 33(1)e4601
[http://dx.doi.org/10.1002/aoc.4601]]
[26]
Lamoral-Theys, D.; Pottier, L.; Dufrasne, F.; Nève, J.; Dubois, J.; Kornienko, A.; Kiss, R.; Ingrassia, L. Natural polyphenols that display anticancer properties through inhibition of kinase activity. Curr. Med. Chem., 2010, 17(9), 812-825.
[http://dx.doi.org/10.2174/092986710790712183] [PMID: 20156174]
[27]
Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr., 2005, 45(4), 287-306.
[http://dx.doi.org/10.1080/1040869059096] [PMID: 16047496]
[28]
Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9), 552.
[http://dx.doi.org/10.3390/nu8090552] [PMID: 27618095]
[29]
Jayachandra, K. In vitro antioxidant activity of methanolic extract of Syzygium cumini Linn. Bark. A.J.B.P.S., 2012, 2(12), 45.
[30]
Wang, G.; Wang, Y.; Wang, L.; Han, L.; Hou, X.; Fu, H.; Fang, H. Design, synthesis and preliminary bioactivity studies of imidazolidine-2,4-dione derivatives as Bcl-2 inhibitors. Bioorg. Med. Chem., 2015, 23(23), 7359-7365.
[http://dx.doi.org/10.1016/j.bmc.2015.10.023] [PMID: 26558516]
[31]
Grubbs, C.J.; Eto, I.; Juliana, M.M.; Whitaker, L.M. Effect of canthaxanthin on chemically induced mammary carcinogenesis. Oncology, 1991, 48(3), 239-245.
[http://dx.doi.org/10.1159/000226935] [PMID: 1902560]
[32]
Hou, J.; Cui, H.L. In vitro antioxidant, antihemolytic, and anticancer activity of the carotenoids from Halophilic Archaea. Curr. Microbiol., 2018, 75(3), 266-271.
[http://dx.doi.org/10.1007/s00284-017-1374-z] [PMID: 29038844]
[33]
Efferth, T.; Sauerbrey, A.; Halatsch, M.E.; Ross, D.D.; Gebhart, E. Molecular modes of action of cephalotaxine and homoharringtonine from the coniferous tree Cephalotaxus hainanensis in human tumor cell lines. Naunyn Schmiedebergs Arch. Pharmacol., 2003, 367(1), 56-67.
[http://dx.doi.org/10.1007/s00210-002-0632-0] [PMID: 12616342]
[34]
Trendowski, M. Recent advances in the development of antineoplastic agents derived from natural products. Drugs, 2015, 75(17), 1993-2016.
[http://dx.doi.org/10.1007/s40265-015-0489-4] [PMID: 26501980]
[35]
Wei, G.; Chen, H.; Nie, F.; Ma, X.; Jiang, H. 1, 3, 6-Trihydroxy-7-methyl-9, 10-anthracenedione isolated from genus Lindera with anti-cancer activity. Anticancer. Agents Med. Chem., 2017, 17(11), 1604-1607.
[http://dx.doi.org/10.2174/1871520615666150914114649] [PMID: 27291048]
[36]
Zhang, L.; Chen, Q.; Hou, G.; Zhao, W.; Hou, Y. Hydroxyl-substituted double Schiff-base condensed 4-piperidone/cyclohexanones as potential anticancer agents with biological evaluation. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 264-271.
[http://dx.doi.org/10.1080/14756366.2018.1501042] [PMID: 30734613]
[37]
Bonner, M.Y.; Arbiser, J.L. The antioxidant paradox: What are antioxidants and how should they be used in a therapeutic context for cancer. Future Med. Chem., 2014, 6(12), 1413-1422.
[PMID: 27019364]
[38]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[39]
Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci., 2018, 19(2), 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[40]
Ozaki, T.; Nakagawara, A. Role of p53 in cell death and human cancers. Cancers (Basel), 2011, 3(1), 994-1013.
[http://dx.doi.org/10.3390/cancers3010994] [PMID: 24212651]
[41]
Perkins, N.D. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer, 2012, 12(2), 121-132.
[http://dx.doi.org/10.1038/nrc3204] [PMID: 22257950]
[42]
Karin, M.; Cao, Y.; Greten, F.R.; Li, Z.W. NF-kappaB in cancer: From innocent bystander to major culprit. Nat. Rev. Cancer, 2002, 2(4), 301-310.
[http://dx.doi.org/10.1038/nrc780] [PMID: 12001991]
[43]
Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med., 2016, 6(3)a026104
[http://dx.doi.org/10.1101/cshperspect.a026104]] [PMID: 26931810]
[44]
Srivastava, S.K.; Singh, S.V. Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis, 2004, 25(9), 1701-1709.
[http://dx.doi.org/10.1093/carcin/bgh179] [PMID: 15117814]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy