Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

The Co-Use of Stromal Vascular Fraction and Bone Marrow Concentrate for Tendon Healing

Author(s): Emin Yusuf Aydın, Mehmet Aşık, Halil Murat Aydın, Nurdan Çay, Berrak Gümüşkaya, Ayça Çağlayan, Ali Torabi, Sümeyye Yüksel, Enejd Veizi and Murat Bozkurt*

Volume 18, Issue 8, 2023

Published on: 16 March, 2023

Page: [1150 - 1159] Pages: 10

DOI: 10.2174/1574888X18666230221141743

Price: $65

Abstract

Objective: The Achilles tendon is the most frequently injured tendon in the human body, despite being the strongest. Many conventional treatments including medication, surgical interventions, and physical therapy are available, however, the desired results are often not achieved. Stromal vascular fraction (SVF) and bone marrow concentrate (BMC) are two additional cellular treatment options. The purpose of this study is to evaluate the effect of SVF and BMC, used as a combination, for the treatment of Achilles tendon injuries.

Methods: Five male New Zealand rabbits were used for each of the 6 study groups. A 3-mm of SVF and BMC were injected on the Achilles tendons at certain ratios. The histological results were classified by the Movin grading system for tendon healing. The collagen type-I and type-III structures in the tendons were examined by immunohistochemical evaluation. The expressions of tendon-specific genes were also examined by using the RT-PCR method to analyze tendon healing.

Results: Histological and immunohistochemical evaluation indicated that tendons receiving the SVF and BMAC mixture performed better than control and individual groups (p < 0.05). Moreover, RT-PCR evaluation showed that mixture-receiving groups were the closest similar to the uninjured group (p < 0.05).

Conclusion: The combined use of BMC and SVF improved Achilles tendon healing when compared to the individual use of each mixture.

Keywords: Stromal vascular fraction, bone marrow concentrate, achilles tendons, hypervascularity, collagen, tendinopathies.

Graphical Abstract
[1]
Pierre-Jerome C, Moncayo V, Terk MR. MRI of the achilles tendon: A comprehensive review of the anatomy, biomechanics, and imaging of overuse tendinopathies. Acta Radiol 2010; 51(4): 438-54.
[http://dx.doi.org/10.3109/02841851003627809] [PMID: 20380605]
[2]
Asplund CA, Best TM. Achilles tendon disorders. BMJ 2013; 346(mar12 1): f1262.
[http://dx.doi.org/10.1136/bmj.f1262] [PMID: 23482943]
[3]
Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: Clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today 2013; 99(3): 203-22.
[http://dx.doi.org/10.1002/bdrc.21041] [PMID: 24078497]
[4]
Järvinen TAH, Kannus P, Maffulli N, Khan KM. Achilles tendon disorders: Etiology and epidemiology. Foot Ankle Clin 2005; 10(2): 255-66.
[http://dx.doi.org/10.1016/j.fcl.2005.01.013] [PMID: 15922917]
[5]
Kurt B, Ozaydin I, Sozmen M, et al. Hyaluronic acid and synovial fluid in preventing adhesion formation after tenorrhaphy: An in vivo study on rabbit Achilles tendon. Cienc Rural 2018; 48(7): 48.
[http://dx.doi.org/10.1590/0103-8478cr20170206]
[6]
Alfredson H, Lorentzon R. Chronic achilles tendinosis: Recommendations for treatment and prevention. Sports Med 2000; 29(2): 135-46.
[http://dx.doi.org/10.2165/00007256-200029020-00005] [PMID: 10701715]
[7]
Paavola M, Kannus P, Järvinen TAH, Khan K, Józsa L, Järvinen M. Achilles tendinopathy. J Bone Joint Surg Am 2002; 84(11): 2062-76.
[http://dx.doi.org/10.2106/00004623-200211000-00024] [PMID: 12429771]
[8]
Paredes JJ, Andarawis-Puri N. Therapeutics for tendon regeneration: A multidisciplinary review of tendon research for improved healing. Ann N Y Acad Sci 2016; 1383(1): 125-38.
[http://dx.doi.org/10.1111/nyas.13228] [PMID: 27768813]
[9]
Desando G, Giavaresi G, Cavallo C, et al. Autologous bone marrow concentrate in a sheep model of osteoarthritis: New perspectives for cartilage and meniscus repair. Tissue Eng Part C Methods 2016; 22(6): 608-19.
[http://dx.doi.org/10.1089/ten.tec.2016.0033] [PMID: 27151837]
[10]
Uehara K, Zhao C, Gingery A, Thoreson AR, An KN, Amadio PC. Effect of fibrin formulation on initial strength of tendon repair and migration of bone marrow stromal cells in vitro. J Bone Joint Surg Am 2015; 97(21): 1792-8.
[http://dx.doi.org/10.2106/JBJS.O.00292] [PMID: 26537167]
[11]
Riordan NH, Ichim TE, Min WP, et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 2009; 7(1): 29.
[http://dx.doi.org/10.1186/1479-5876-7-29] [PMID: 19393041]
[12]
Uysal CA, Tobita M, Hyakusoku H, Mizuno H. Adipose-derived stem cells enhance primary tendon repair: Biomechanical and immunohistochemical evaluation. J Plast Reconstr Aesthet Surg 2012; 65(12): 1712-9.
[http://dx.doi.org/10.1016/j.bjps.2012.06.011] [PMID: 22771087]
[13]
Longo UG, Ronga M, Maffulli N. Achilles tendinopathy. Sports Med Arthrosc Rev 2018; 26(1): 16-30.
[http://dx.doi.org/10.1097/JSA.0000000000000185] [PMID: 29300224]
[14]
Lipman K, Wang C, Ting K, Soo C, Zheng Z. Tendinopathy: Injury, repair, and current exploration. Drug Des Devel Ther 2018; 12: 591-603.
[http://dx.doi.org/10.2147/DDDT.S154660] [PMID: 29593382]
[15]
Wu YS, Chen SN. Apoptotic cell: Linkage of inflammation and wound healing. Front Pharmacol 2014; 5(1): 1.
[http://dx.doi.org/10.3389/fphar.2014.00001] [PMID: 24478702]
[16]
Meier BG, Calcagni M, Bachmann E, et al. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery. Biol Open 2016; 5(9): 1324-33.
[http://dx.doi.org/10.1242/bio.020644] [PMID: 27635037]
[17]
Wan Mohammad WMZ, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci 2017; 24(5): 101-5.
[http://dx.doi.org/10.21315/mjms2017.24.5.11] [PMID: 29386977]
[18]
Ouyang HW, Goh JCH, Thambyah A, Teoh SH, Lee EH. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng 2003; 9(3): 431-9.
[http://dx.doi.org/10.1089/107632703322066615] [PMID: 12857411]
[19]
Muraoka K, Le W, Behn AW, Yao J. The effect of growth differentiation factor 8 (Myostatin) on bone marrow–derived stem cell–coated bioactive sutures in a rabbit tendon repair model. Hand 2020; 15(2): 264-70.
[http://dx.doi.org/10.1177/1558944718792708] [PMID: 30079783]
[20]
Cai J, Yang Y, Ai C, et al. Bone marrow stem cells‐seeded polyethylene terephthalate scaffold in repair and regeneration of Rabbit Achilles Tendon. Artif Organs 2018; 42(11): 1086-94.
[http://dx.doi.org/10.1111/aor.13298] [PMID: 30294929]
[21]
Behfar M, Javanmardi S, Sarrafzadeh-Rezaei F. Comparative study on functional effects of allotransplantation of bone marrow stromal cells and adipose derived stromal vascular fraction on tendon repair: A biomechanical study in rabbits. Cell J 2014; 16(3): 263-70.
[PMID: 24611149]
[22]
Tang L, Yang Y, Li Y, et al. Knitted silk mesh-like scaffold incorporated with sponge-like regenerated silk fibroin/collagen I and seeded with mesenchymal stem cells for repairing Achilles tendon in rabbits. Acta Bioeng Biomech 2018; 20(4): 77-87.
[PMID: 30520436]
[23]
Louis KS, Siegel AC. Cell viability analysis using trypan blue: Manual and automated methods. In: Stoddart M, Ed. Mammalian cell viability. Totowa, New Jersey: Humana Press: Springer 2011; pp. 7-12.
[http://dx.doi.org/10.1007/978-1-61779-108-6_2]
[24]
Movin T, Gad A, Reinholt FP, Rolf C. Tendon pathology in long-standing achillodynia: Biopsy findings in 40 patients. Acta Orthop Scand 1997; 68(2): 170-5.
[http://dx.doi.org/10.3109/17453679709004002] [PMID: 9174456]
[25]
Genç E, Beytemur O, Yuksel S, et al. Investigation of the biomechanical and histopathological effects of autologous conditioned serum on healing of Achilles tendon. Acta Orthop Traumatol Turc 2018; 52(3): 226-31.
[http://dx.doi.org/10.1016/j.aott.2018.01.005] [PMID: 29454565]
[26]
Xie S, Zhou Y, Tang Y, et al. ¬Book‐shaped decellularized tendon matrix scaffold combined with bone marrow mesenchymal stem cells‐sheets for repair of achilles tendon defect in rabbit. J Orthop Res 2019; 37(4): 887-97.
[http://dx.doi.org/10.1002/jor.24255] [PMID: 30816590]
[27]
Romero A, Barrachina L, Ranera B, et al. Comparison of autologous bone marrow and adipose tissue derived mesenchymal stem cells, and platelet rich plasma, for treating surgically induced lesions of the equine superficial digital flexor tendon. Vet J 2017; 224: 76-84.
[http://dx.doi.org/10.1016/j.tvjl.2017.04.005] [PMID: 28697880]
[28]
Tao X, Liu J, Chen L, Zhou Y, Tang K. EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair. Cell Physiol Biochem 2015; 35(2): 699-709.
[http://dx.doi.org/10.1159/000369730] [PMID: 25592085]
[29]
Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 2013; 3(3): 71-85.
[PMID: 25558171]
[30]
Mohamed-Ahmed S, Fristad I, Lie SA, et al. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Res Ther 2018; 9(1): 168.
[http://dx.doi.org/10.1186/s13287-018-0914-1] [PMID: 29921311]
[31]
Noël D, Caton D, Roche S, et al. Cell specific differences between human adipose-derived and mesenchymal–stromal cells despite similar differentiation potentials. Exp Cell Res 2008; 314(7): 1575-84.
[http://dx.doi.org/10.1016/j.yexcr.2007.12.022] [PMID: 18325494]
[32]
Ivanova-Todorova E, Bochev I, Mourdjeva M, et al. Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunol Lett 2009; 126(1-2): 37-42.
[http://dx.doi.org/10.1016/j.imlet.2009.07.010] [PMID: 19647021]
[33]
Bochev I, Elmadjian G, Kyurkchiev D, et al. Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol Int 2008; 32(4): 384-93.
[http://dx.doi.org/10.1016/j.cellbi.2007.12.007] [PMID: 18262807]
[34]
Urciuolo F, Casale C, Imparato G, Netti PA. Bioengineered skin substitutes: The role of extracellular matrix and vascularization in the healing of deep wounds. J Clin Med 2019; 8(12): 2083.
[http://dx.doi.org/10.3390/jcm8122083] [PMID: 31805652]
[35]
Xue M, Jackson CJ. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care 2015; 4(3): 119-36.
[http://dx.doi.org/10.1089/wound.2013.0485] [PMID: 25785236]
[36]
Maffulli N, Longo UG, Gougoulias N, Denaro V. Ipsilateral free semitendinosus tendon graft transfer for reconstruction of chronic tears of the Achilles tendon. BMC Musculoskelet Disord 2008; 9(1): 100.
[http://dx.doi.org/10.1186/1471-2474-9-100] [PMID: 18611249]
[37]
Yilmaz G, Doral MN, Turhan E, Dönmez G, Atay AÖ, Kaya D. Surgical treatment of achilles tendon ruptures: The comparison of open and percutaneous methods in a rabbit model. Ulus Travma Acil Cerrahi Derg 2014; 20(5): 311-8.
[http://dx.doi.org/10.5505/tjtes.2014.42716] [PMID: 25541841]
[38]
Chong AKS, Ang AD, Goh JCH, et al. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J Bone Joint Surg Am 2007; 89(1): 74-81.
[http://dx.doi.org/10.2106/JBJS.E.01396] [PMID: 17200313]
[39]
Kajikawa Y, Morihara T, Sakamoto H, et al. Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing. J Cell Physiol 2008; 215(3): 837-45.
[http://dx.doi.org/10.1002/jcp.21368] [PMID: 18181148]
[40]
Eriksen HA, Pajala A, Leppilahti J, Risteli J. Increased content of type III collagen at the rupture site of human Achilles tendon. J Orthop Res 2002; 20(6): 1352-7.
[http://dx.doi.org/10.1016/S0736-0266(02)00064-5] [PMID: 12472252]
[41]
Tang JB, Xu Y, Ding F, Wang XT. Expression of genes for collagen production and NF-κB gene activation of in vivo healing flexor tendons. J Hand Surg Am 2004; 29(4): 564-70.
[http://dx.doi.org/10.1016/j.jhsa.2003.12.019] [PMID: 15249077]
[42]
Juncosa-Melvin N, Matlin KS, Holdcraft RW, Nirmalanandhan VS, Butler DL. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng 2007; 13(6): 1219-26.
[http://dx.doi.org/10.1089/ten.2006.0339] [PMID: 17518715]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy