Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Extraction of Trace Quantities of Copper Using Novel Modified Magnetite Nanoparticles for Atomic Absorption Spectrometry Analysis

Author(s): Eslam Pourbasheer*, Somayeh Morsali, Samira Ansari, Babak Mirtamizdoust, Hossein Vojoudi and Mohammad Reza Ganjali

Volume 18, Issue 8, 2022

Published on: 02 August, 2022

Page: [907 - 913] Pages: 7

DOI: 10.2174/1573411018666220606123507

Price: $65

Abstract

Background: Copper is one of several heavy metals. A low concentration of copper is vital for animals and plants, whereas it is highly toxic to aquatic plants and bacteria in a high concentration. Therefore, copper ions in water and food must be controlled, and as a result, the development of novel methods for the determination of copper in water samples is of interest.

Objective: Different techniques have been proposed for copper ions extraction and determination. The magnetic solid-phase extraction method is considered superior to the other method for simplicity, its higher enrichment, and the need for lower quantities of solvents. The novel modified magnetite nanoparticles as the sorbent, along with the atomic absorption spectrometry analysis, can be a low-cost, simple and rapid method for this propose.

Methods: Traces of Cu(II) in environmental samples were preconcentrated using a novel magnetic adsorbent developed based on 2,2´-((1E,1´E)-hydrazine-1,2-diylidenebis(methanylylidene)) diphenol coated magnetite nanoparticles. The influence of ligand concentration, amount of adsorbent, pH, type of eluent, sample volume, and effects of interfering ions were optimized. The adsorbed species were eluted for analysis through atomic absorption spectrometry.

Results: A linear calibration curve was recorded from 2 to 40 μg ml-1 (r2= 0.999) under optimal conditions, and the detection limit of the method was as low as 1.6 μg ml-1. Also, good recoveries were obtained for the real sample analysis.

Conclusion: The developed procedure constituted a rapid extraction, a low-cost and efficient method, and was used for the analysis of copper ions in the tap, river, and lake water.

Keywords: MSPE, extraction, AAS, nanoparticles, copper ions, water samples.

Graphical Abstract
[1]
Mayr, T.; Klimant, I.; Wolfbeis, O.S.; Werner, T. Dual lifetime referenced optical sensor membrane for the determination of copper (II) ions. Anal. Chim. Acta, 2002, 462(1), 1-10.
[http://dx.doi.org/10.1016/S0003-2670(02)00234-9]
[2]
Moore, J.W.; Ramamoorthy, S. Heavy metals in natural waters: Applied monitoring and impact assessment; Springer Science & Business Media, 2012.
[3]
Müller, T.; van de Sluis, B.; Müller, W.; Pearson, P.; Wijmenga, C. Non-Indian childhood cirrhosis. Eur. J. Med. Res., 1999, 4(7), 293-297.
[PMID: 10425268]
[4]
Barreto, S.R.; Nozaki, J.; Barreto, W.J. Spectrophotometric determination of copper in metallic alloy using a bidithiolene: A comparative study. Microchem. J., 1999, 62(2), 223-228.
[http://dx.doi.org/10.1006/mchj.1999.1708]
[5]
Chimpalee, N.; Chimpalee, D.; Lohwithee, S.; Nakwatchara, L.; Burns, D.T. Spectrophotometric determination of copper after extraction of its chelate with bis (acetylacetone) ethylenediimine. Anal. Chim. Acta, 1996, 329(3), 315-318.
[http://dx.doi.org/10.1016/0003-2670(96)00141-9]
[6]
Thakur, M.; Deb, M.K. The use of 1-[pyridyl-(2)-azo]-naphthol-(2) in the presence of TX-100 and N,N′-diphenylbenzamidine for the spectrophotometric determination of copper in real samples. Talanta, 1999, 49(3), 561-569.
[http://dx.doi.org/10.1016/S0039-9140(99)00054-5] [PMID: 18967631]
[7]
Pourbasheer, E.; Morsali, S.; Azari, Z.; Karimi, M.A.; Ganjali, M.R. Design of a novel optical sensor for determination of trace amounts of copper by UV-visible spectrophotometry in real samples. Appl. Organomet. Chem., 2017, 32(3), 1-8.
[http://dx.doi.org/10.1002/aoc.4110]
[8]
Cassella, R.J.; Magalhães, O.I.; Couto, M.T.; Lima, E.L.S.; Neves, M.A.F.; Coutinho, F.M.B. Synthesis and application of a functionalized resin for flow injection/F AAS copper determination in waters. Talanta, 2005, 67(1), 121-128.
[http://dx.doi.org/10.1016/j.talanta.2005.02.019] [PMID: 18970145]
[9]
Duran, C.; Gundogdu, A.; Bulut, V.N.; Soylak, M.; Elci, L.; Sentürk, H.B.; Tüfekci, M. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS). J. Hazard. Mater., 2007, 146(1-2), 347-355.
[http://dx.doi.org/10.1016/j.jhazmat.2006.12.029] [PMID: 17223260]
[10]
Mashhadizadeh, M.H.; Pesteh, M.; Talakesh, M.; Sheikhshoaie, I.; Ardakani, M.M.; Karimi, M.A. Solid phase extraction of copper (II) by sorption on octadecyl silica membrane disk modified with a new Schiff base and determination with atomic absorption spectrometry. Spectrochim. Acta B At. Spectrosc., 2008, 63(8), 885-888.
[http://dx.doi.org/10.1016/j.sab.2008.03.018]
[11]
Ferreira, S.L.; Queiroz, A.S.; Fernandes, M.S.; dos Santos, H.C. Application of factorial designs and Doehlert matrix in optimization of experimental variables associated with the preconcentration and determination of vanadium and copper in seawater by inductively coupled plasma optical emission spectrometry. Spectrochim. Acta B At. Spectrosc., 2002, 57(12), 1939-1950.
[http://dx.doi.org/10.1016/S0584-8547(02)00160-X]
[12]
Mohadesi, A.; Taher, M.A. Voltammetric determination of Cu(II) in natural waters and human hair at a meso-2,3-dimercaptosuccinic acid self-assembled gold electrode. Talanta, 2007, 72(1), 95-100.
[http://dx.doi.org/10.1016/j.talanta.2006.09.031] [PMID: 19071587]
[13]
Akar, S.T.; Akar, T.; Kaynak, Z.; Anilan, B.; Cabuk, A.; Tabak, Ö.; Demir, T.A.; Gedikbey, T. Removal of copper (II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy, 2009, 97(1), 98-104.
[http://dx.doi.org/10.1016/j.hydromet.2009.01.009]
[14]
Divrikli, U.; Kartal, A.A.; Soylak, M.; Elci, L. Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations. J. Hazard. Mater., 2007, 145(3), 459-464.
[http://dx.doi.org/10.1016/j.jhazmat.2006.11.040] [PMID: 17175100]
[15]
Mikuła, B.; Puzio, B.; Feist, B. Application of 1, 10-phenanthroline for preconcentration of selected heavy metals on silica gel. Mikrochim. Acta, 2009, 166(3-4), 337-341.
[http://dx.doi.org/10.1007/s00604-009-0199-2]
[16]
Akl, M.; Kenawy, I.; Lasheen, R. Organically modified silica gel and flame atomic absorption spectrometry: employment for separation and preconcentration of nine trace heavy metals for their determination in natural aqueous systems. Microchem. J., 2004, 78(2), 143-156.
[http://dx.doi.org/10.1016/j.microc.2004.03.019]
[17]
Mohammadi, S.; Afzali, D.; Pourtalebi, D. Flame atomic absorption spectrometric determination of trace amounts of lead, cadmium and nickel in different matrixes after solid phase extraction on modified multiwalled carbon nanotubes. Open Chem., 2010, 8(3), 662-668.
[http://dx.doi.org/10.2478/s11532-010-0029-8]
[18]
Sun, Z.; Liang, P. Determination of Cr (III) and total chromium in water samples by cloud point extraction and flame atomic absorption spectrometry. Mikrochim. Acta, 2008, 162(1-2), 121-125.
[http://dx.doi.org/10.1007/s00604-007-0942-0]
[19]
Henglein, A. Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev., 1989, 89(8), 1861-1873.
[http://dx.doi.org/10.1021/cr00098a010]
[20]
Rao, G.P.; Lu, C.; Su, F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separ. Purif. Tech., 2007, 58(1), 224-231.
[http://dx.doi.org/10.1016/j.seppur.2006.12.006]
[21]
Pourbasheer, E.; Fathi Majd, S.; Azari, Z.; Ansari, S.; Ganjali, M.R. Magnetic solid-phase extraction and spectrophotometric determination of pseudoephedrine in real samples. J. Chin. Chem. Soc. (Taipei), 2022, 69(3), 532-539.
[http://dx.doi.org/10.1002/jccs.202100542]
[22]
Ganjali, M.R.; Nejad, F.G.; Tajik, S.; Beitollahi, H.; Pourbasheer, E.; Larijanii, B. Determination of salicylic acid by differential pulse voltammetry using ZnO/Al2O3 nanocomposite modified graphite screen printed electrode. Int. J. Electrochem. Sci., 2017, 12(11), 9972-9982.
[http://dx.doi.org/10.20964/2017.11.49]
[23]
Abdolmohammad-Zadeh, H.; Azari, Z.; Pourbasheer, E. Fluorescence resonance energy transfer between carbon quantum dots and silver nanoparticles: Application to mercuric ion sensing. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 245, 118924.
[http://dx.doi.org/10.1016/j.saa.2020.118924] [PMID: 32950856]
[24]
Huang, C.; Hu, B. Silica-coated magnetic nanoparticles modified with γ-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochim. Acta B At. Spectrosc., 2008, 63(3), 437-444.
[http://dx.doi.org/10.1016/j.sab.2007.12.010]
[25]
White, B.R.; Stackhouse, B.T.; Holcombe, J.A. Magnetic γ-Fe(2)O(3) nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). J. Hazard. Mater., 2009, 161(2-3), 848-853.
[http://dx.doi.org/10.1016/j.jhazmat.2008.04.105] [PMID: 18571848]
[26]
Ganjali, M.R.; Pourbasheer, E.; Rezapour, M. Dextran capped Gd3+-doped Fe3O4 nanoparticles: Electrochemical synthesis and character-ization. Anal. Bioanal. Electrochem., 2018, 10(3), 394-403.
[27]
Azari, Z.; Pourbasheer, E.; Beheshti, A. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 153, 599-604.
[http://dx.doi.org/10.1016/j.saa.2015.09.013] [PMID: 26439525]
[28]
Kaur, M.; Johnson, A.; Tian, G.; Jiang, W.; Rao, L.; Paszczynski, A.; Qiang, Y. Separation nanotechnology of diethylenetriaminepent-aacetic acid bonded magnetic nanoparticles for spent nuclear fuel. Nano Energy, 2013, 2(1), 124-132.
[http://dx.doi.org/10.1016/j.nanoen.2012.08.005]
[29]
Koehler, F.M.; Rossier, M.; Waelle, M.; Athanassiou, E.K.; Limbach, L.K.; Grass, R.N.; Günther, D.; Stark, W.J. Magnetic EDTA: Coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water. Chem. Commun. (Camb.), 2009, (32), 4862-4864.
[http://dx.doi.org/10.1039/b909447d] [PMID: 19652806]
[30]
Liu, Y.; Chen, M.; Yongmei, H. Study on the adsorption of Cu (II) by EDTA functionalized Fe 3 O 4 magnetic nano-particles. Chem. Eng. J., 2013, 218, 46-54.
[http://dx.doi.org/10.1016/j.cej.2012.12.027]
[31]
Jang, J.; Lim, H. Characterization and analytical application of surface modified magnetic nanoparticles. Microchem. J., 2010, 94(2), 148-158.
[http://dx.doi.org/10.1016/j.microc.2009.10.011]
[32]
Morel, A-L.; Nikitenko, S.I.; Gionnet, K.; Wattiaux, A.; Lai-Kee-Him, J.; Labrugere, C.; Chevalier, B.; Deleris, G.; Petibois, C.; Brisson, A.; Simonoff, M. Sonochemical approach to the synthesis of Fe(3)O(4)@SiO(2) core-shell nanoparticles with tunable properties. ACS Nano, 2008, 2(5), 847-856.
[http://dx.doi.org/10.1021/nn800091q] [PMID: 19206481]
[33]
Banaei, A.; Samadi, S.; Karimi, S.; Vojoudi, H.; Pourbasheer, E.; Badiei, A. Synthesis of silica gel modified with 2,2 '-(hexane-1,6-diylbis(oxy)) dibenzaldehyde as a new adsorbent for the removal of reactive yellow 84 and reactive blue 19 dyes from aqueous solutions: Equilibrium and thermodynamic studies. Powder Technol., 2017, 319, 60-70.
[http://dx.doi.org/10.1016/j.powtec.2017.06.044]
[34]
Banaei, A.; Ebrahimi, S.; Vojoudi, H.; Karimi, S.; Badiei, A.; Pourbasheer, E. Adsorption equilibrium and thermodynamics of anionic reactive dyes from aqueous solutions by using a new modified silica gel with 2,2 '-(pentane-1,5-diylbis(oxy))dibenzaldehyde. Chem. Eng. Res. Des., 2017, 123, 50-62.
[http://dx.doi.org/10.1016/j.cherd.2017.04.032]
[35]
Banaei, A.; Vojoudi, H.; Karimi, S.; Bahar, S.; Pourbasheer, E. Synthesis and characterization of new modified silica coated magnetite nanoparticles with bisaldehyde as selective adsorbents of Ag(I) from aqueous samples. RSC Advances, 2015, 5(101), 83304-83313.
[http://dx.doi.org/10.1039/C5RA11765H]
[36]
Kassim, K.; Hamali, M.A.; Yamin, B. A new alternative synthesis of Salicylaldazine via microwave irradiation method. J. Chem., 2019, 2019, 9546373.
[http://dx.doi.org/10.1155/2019/9546373]
[37]
Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater., 2004, 270(1), 1-6.
[http://dx.doi.org/10.1016/j.jmmm.2003.07.006]
[38]
Zhang, F.; Zhu, Z.; Dong, Z.; Cui, Z.; Wang, H.; Hu, W.; Zhao, P.; Wang, P.; Wei, S.; Li, R.; Ma, J. Magnetically recoverable facile nano-materials: Synthesis, characterization and application in remediation of heavy metals. Microchem. J., 2011, 98(2), 328-333.
[http://dx.doi.org/10.1016/j.microc.2011.03.005]
[39]
Vojoudi, H.; Badiei, A.; Amiri, A.; Banaei, A.; Ziarani, G.M.; Schenk-Joß, K. Pre-concentration of Zn(II) ions from aqueous solutions using meso-porous pyridine-enrobed magnetite nanostructures. Food Chem., 2018, 257, 189-195.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.126] [PMID: 29622197]
[40]
Vojoudi, H.; Badiei, A.; Banaei, A.; Bahar, S.; Karimi, S.; Mohammadi Ziarani, G.; Ganjali, M.R. Extraction of gold, palladium and silver ions using organically modified silica-coated magnetic nanoparticles and silica gel as a sorbent. Mikrochim. Acta, 2017, 184(10), 3859-3866.
[http://dx.doi.org/10.1007/s00604-017-2414-x]
[41]
Shishehbore, M.R.; Afkhami, A.; Bagheri, H. Salicylic acid functionalized silica-coated magnetite nanoparticles for solid phase extraction and preconcentration of some heavy metal ions from various real samples. Chem. Cent. J., 2011, 5(1), 41.
[http://dx.doi.org/10.1186/1752-153X-5-41] [PMID: 21762480]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy