Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Role of Mitochondria-Targeting miRNAs in Intracerebral Hemorrhage

Author(s): Ilgiz Gareev, Ozal Beylerli*, Yanchao Liang, Enzhou Lu, Tatiana Ilyasova, Albert Sufianov, Galina Sufianova, Huaizhang Shi, Aamir Ahmad* and Guang Yang*

Volume 21, Issue 5, 2023

Published on: 08 November, 2022

Page: [1065 - 1080] Pages: 16

DOI: 10.2174/1570159X20666220507021445

Price: $65

Abstract

Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Arterial hypertension (AH) is most often the cause of ICH, followed by atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication and vitamin deficiencies. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. AH is difficult to treat, requires surgery and can lead to disability or death. One of the important directions in the study of the pathogenesis of ICH is mitochondrial dysfunction and its regulation. The key role of mitochondrial dysfunction in AH and atherosclerosis, as well as in the development of brain damage after hemorrhage, has been acknowledged. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that regulate a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., primarily through gene repression. There is growing evidence to support dysregulated miRNAs in various cardiovascular diseases, including ICH. Further, the realization of miRNAs within mitochondrial compartment has challenged the traditional knowledge of signaling pathways involved in the regulatory network of cardiovascular diseases. However, the role of miRNAs in mitochondrial dysfunction for ICH is still under-appreciated, with comparatively much lesser studies and investigations reported, than those in other cardiovascular diseases. In this review, we summarize the up-to-date findings on the published role miRNAs in mitochondrial function for ICH, and the potential use of miRNAs in clinical settings, such as potential therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.

Keywords: Intracerebral hemorrhage, miRNA, therapeutic target, biomarker, pathogenesis, mitochondria, mitochondrial dysfunction.

Graphical Abstract
[1]
Sallinen, H.; Putaala, J.; Strbian, D. Triggering factors in non-traumatic intracerebral hemorrhage. J. Stroke Cerebrovasc. Dis., 2020, 29(8), 104921.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104921] [PMID: 32689642]
[2]
Hostettler, I.C.; Seiffge, D.J.; Werring, D.J. Intracerebral hemorrhage: An update on diagnosis and treatment. Expert Rev. Neurother., 2019, 19(7), 679-694.
[http://dx.doi.org/10.1080/14737175.2019.1623671] [PMID: 31188036]
[3]
Aguilar, M.; Freeman, W.D. Spontaneous intracerebral hemorrhage. Semin. Neurol., 2010, 30(5), 555-564.
[http://dx.doi.org/10.1055/s-0030-1268865] [PMID: 21207348]
[4]
Zaidi, H.A.; Zabramski, J.M.; Safavi-Abbasi, S.; Preul, M.C. Spontaneous intracerebral hemorrhage. World Neurosurg., 2015, 84(5), 1191-1192.
[http://dx.doi.org/10.1016/j.wneu.2015.06.015] [PMID: 26100165]
[5]
Chen, W.; Guo, C.; Feng, H.; Chen, Y. Mitochondria: Novel mechanisms and therapeutic targets for secondary brain injury after intracerebral hemorrhage. Front. Aging Neurosci., 2021, 12, 615451.
[http://dx.doi.org/10.3389/fnagi.2020.615451] [PMID: 33584246]
[6]
Li, L.; Wang, P.; Zhao, H.; Luo, Y. Noncoding RNAs and intracerebral hemorrhage. CNS Neurol. Disord. Drug Targets, 2019, 18(3), 205-211.
[http://dx.doi.org/10.2174/1871527318666190204102604] [PMID: 30714535]
[7]
Kong, F.; Zhou, J.; Zhou, W.; Guo, Y.; Li, G.; Yang, L. Protective role of microRNA-126 in intracerebral hemorrhage. Mol. Med. Rep., 2017, 15(3), 1419-1425.
[http://dx.doi.org/10.3892/mmr.2017.6134] [PMID: 28112373]
[8]
Nie, H.; Hu, Y.; Guo, W.; Wang, W.; Yang, Q.; Dong, Q.; Tang, Y.; Li, Q.; Tang, Z. miR-331-3p inhibits inflammatory response after intracerebral hemorrhage by directly targeting NLRP6. BioMed Res. Int., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/6182464] [PMID: 32596340]
[9]
Gareev, I.; Beylerli, O.; Yang, G.; Sun, J.; Pavlov, V.; Izmailov, A.; Shi, H.; Zhao, S. The current state of MiRNAs as biomarkers and therapeutic tools. Clin. Exp. Med., 2020, 20(3), 349-359.
[http://dx.doi.org/10.1007/s10238-020-00627-2] [PMID: 32399814]
[10]
Cheng, X.; Ander, B.P.; Jickling, G.C.; Zhan, X.; Hull, H.; Sharp, F.R.; Stamova, B. MicroRNA and their target mRNAs change expression in whole blood of patients after intracerebral hemorrhage. J. Cereb. Blood Flow Metab., 2020, 40(4), 775-786.
[http://dx.doi.org/10.1177/0271678X19839501] [PMID: 30966854]
[11]
Michlewski, G.; Cáceres, J.F. Post-transcriptional control of miRNA biogenesis. RNA, 2019, 25(1), 1-16.
[http://dx.doi.org/10.1261/rna.068692.118] [PMID: 30333195]
[12]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[13]
Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev., 2015, 87, 3-14.
[http://dx.doi.org/10.1016/j.addr.2015.05.001] [PMID: 25979468]
[14]
van der Bliek, A.M.; Sedensky, M.M.; Morgan, P.G. Cell biology of the mitochondrion. Genetics, 2017, 207(3), 843-871.
[http://dx.doi.org/10.1534/genetics.117.300262] [PMID: 29097398]
[15]
Boyman, L.; Karbowski, M.; Lederer, W.J. Regulation of mitochondrial ATP production: Ca2+ signaling and quality control. Trends Mol. Med., 2020, 26(1), 21-39.
[http://dx.doi.org/10.1016/j.molmed.2019.10.007] [PMID: 31767352]
[16]
Dan Dunn, J.; Alvarez, L.A.J.; Zhang, X.; Soldati, T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol., 2015, 6, 472-485.
[http://dx.doi.org/10.1016/j.redox.2015.09.005] [PMID: 26432659]
[17]
Annesley, S.J.; Fisher, P.R. Mitochondria in health and disease. Cells, 2019, 8(7), 680.
[http://dx.doi.org/10.3390/cells8070680] [PMID: 31284394]
[18]
Kluge, M.A.; Fetterman, J.L.; Vita, J.A. Mitochondria and endothelial function. Circ. Res., 2013, 112(8), 1171-1188.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.300233] [PMID: 23580773]
[19]
Macgregor-Das, A.M.; Das, S. A microRNA’s journey to the center of the mitochondria. Am. J. Physiol. Heart Circ. Physiol., 2018, 315(2), H206-H215.
[http://dx.doi.org/10.1152/ajpheart.00714.2017] [PMID: 29570349]
[20]
Sripada, L.; Tomar, D.; Singh, R. Mitochondria: One of the destinations of miRNAs. Mitochondrion, 2012, 12(6), 593-599.
[http://dx.doi.org/10.1016/j.mito.2012.10.009] [PMID: 23085198]
[21]
Liu, H.; Lei, C.; He, Q.; Pan, Z.; Xiao, D.; Tao, Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol. Cancer, 2018, 17(1), 64.
[http://dx.doi.org/10.1186/s12943-018-0765-5] [PMID: 29471827]
[22]
Chu, Y.; Yokota, S.; Liu, J.; Kilikevicius, A.; Johnson, K.C.; Corey, D.R. Argonaute binding within human nuclear RNA and its impact on alternative splicing. RNA, 2021, 27(9), 991-1003.
[http://dx.doi.org/10.1261/rna.078707.121] [PMID: 34108230]
[23]
Liang, H.; Zhang, J.; Zen, K.; Zhang, C.Y.; Chen, X. Nuclear microRNAs and their unconventional role in regulating non-coding RNAs. Protein Cell, 2013, 4(5), 325-330.
[http://dx.doi.org/10.1007/s13238-013-3001-5] [PMID: 23584808]
[24]
Wan, G.; Zhang, X.; Langley, R.R.; Liu, Y.; Hu, X.; Han, C.; Peng, G.; Ellis, L.M.; Jones, S.N.; Lu, X. DNA-damage-induced nuclear export of precursor microRNAs is regulated by the ATM-AKT pathway. Cell Rep., 2013, 3(6), 2100-2112.
[http://dx.doi.org/10.1016/j.celrep.2013.05.038] [PMID: 23791529]
[25]
Park, D.; Lee, S.; Min, K.T. Techniques for investigating mitochondrial gene expression. BMB Rep., 2020, 53(1), 3-9.
[http://dx.doi.org/10.5483/BMBRep.2020.53.1.272] [PMID: 31818361]
[26]
Duarte, F.; Palmeira, C.; Rolo, A. The role of microRNAs in mitochondria: Small players acting wide. Genes (Basel), 2014, 5(4), 865-886.
[http://dx.doi.org/10.3390/genes5040865] [PMID: 25264560]
[27]
Das, S.; Ferlito, M.; Kent, O.A.; Fox-Talbot, K.; Wang, R.; Liu, D.; Raghavachari, N.; Yang, Y.; Wheelan, S.J.; Murphy, E.; Steenbergen, C. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ. Res., 2012, 110(12), 1596-1603.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.267732] [PMID: 22518031]
[28]
Wang, X.; Song, C.; Zhou, X.; Han, X.; Li, J.; Wang, Z.; Shang, H.; Liu, Y.; Cao, H. Mitochondria associated MicroRNA expression profiling of heart failure. BioMed Res. Int., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/4042509] [PMID: 29147650]
[29]
Zhang, X.; Ji, R.; Liao, X.; Castillero, E.; Kennel, P.J.; Brunjes, D.L.; Franz, M.; Möbius-Winkler, S.; Drosatos, K.; George, I.; Chen, E.I.; Colombo, P.C.; Schulze, P.C. MicroRNA-195 regulates metabolism in failing myocardium via alterations in sirtuin 3 expression and mitochondrial protein acetylation. Circulation, 2018, 137(19), 2052-2067.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030486] [PMID: 29330215]
[30]
Das, S.; Bedja, D.; Campbell, N.; Dunkerly, B.; Chenna, V.; Maitra, A.; Steenbergen, C. miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One, 2014, 9(5), e96820.
[http://dx.doi.org/10.1371/journal.pone.0096820] [PMID: 24810628]
[31]
Zhao, W.; Zhang, H.; Su, J.Y. MicroRNA 29a contributes to intracranial aneurysm by regulating the mitochondrial apoptotic pathway. Mol. Med. Rep., 2018, 18(3), 2945-2954.
[http://dx.doi.org/10.3892/mmr.2018.9257] [PMID: 30015903]
[32]
Zhang, H.; Wang, Y.; Bian, X.; Yin, H. MicroRNA-194 acts as a suppressor during abdominal aortic aneurysm via inhibition of KDM3A-mediated BNIP3. Life Sci., 2021, 277, 119309.
[http://dx.doi.org/10.1016/j.lfs.2021.119309] [PMID: 33662431]
[33]
He, J.; Zhang, X. miR-668 inhibitor attenuates mitochondrial membrane potential and protects against neuronal apoptosis in cerebral ischemic stroke. Folia Neuropathol., 2020, 58(1), 22-29.
[http://dx.doi.org/10.5114/fn.2020.94003] [PMID: 32337954]
[34]
Li, L.; Voloboueva, L.; Griffiths, B.B.; Xu, L.; Giffard, R.G.; Stary, C.M. MicroRNA-338 inhibition protects against focal cerebral ischemia and preserves mitochondrial function in vitro in astrocytes and neurons via COX4I1. Mitochondrion, 2021, 59, 105-112.
[http://dx.doi.org/10.1016/j.mito.2021.04.013] [PMID: 33933660]
[35]
Liu, E.; Sun, H.; Wu, J.; Kuang, Y. MiR‐92b‐3p regulates oxygen and glucose deprivation–reperfusion‐mediated apoptosis and inflammation by targeting TRAF3 in PC12 cells. Exp. Physiol., 2020, 105(10), 1792-1801.
[http://dx.doi.org/10.1113/EP088708] [PMID: 32818322]
[36]
Wacquier, B.; Combettes, L.; Dupont, G. Dual dynamics of mitochondrial permeability transition pore opening. Sci. Rep., 2020, 10(1), 3924.
[http://dx.doi.org/10.1038/s41598-020-60177-1] [PMID: 32127570]
[37]
Bauer, T.M.; Murphy, E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ. Res., 2020, 126(2), 280-293.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316306] [PMID: 31944918]
[38]
Mnatsakanyan, N.; Beutner, G.; Porter, G.A.; Alavian, K.N.; Jonas, E.A. Physiological roles of the mitochondrial permeability transition pore. J. Bioenerg. Biomembr., 2017, 49(1), 13-25.
[http://dx.doi.org/10.1007/s10863-016-9652-1] [PMID: 26868013]
[39]
Rao, V.K.; Carlson, E.A.; Yan, S.S. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1267-1272.
[http://dx.doi.org/10.1016/j.bbadis.2013.09.003] [PMID: 24055979]
[40]
Sullivan, P.G.; Rabchevsky, A.G.; Waldmeier, P.C.; Springer, J.E. Mitochondrial permeability transition in CNS trauma: Cause or effect of neuronal cell death? J. Neurosci. Res., 2005, 79(1-2), 231-239.
[http://dx.doi.org/10.1002/jnr.20292] [PMID: 15573402]
[41]
Hu, L.; Cao, Y.; Chen, H.; Xu, L.; Yang, Q.; Zhou, H.; Li, J.; Yu, Q.; Dou, Z.; Li, Y.; Yan, F.; Liu, F.; Chen, G. The novel Nrf2 activator omaveloxolone regulates microglia phenotype and ameliorates secondary brain injury after intracerebral hemorrhage in mice. Oxid. Med. Cell. Longev., 2022, 2022, 1-18.
[http://dx.doi.org/10.1155/2022/4564471] [PMID: 35308167]
[42]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[43]
Liu, X.; Yang, Y.; Song, J.; Li, D.; Liu, X.; Li, C.; Ma, Z.; Zhong, J.; Wang, L. Knockdown of forkhead box protein P1 alleviates hypoxia reoxygenation injury in H9c2 cells through regulating Pik3ip1/Akt/eNOS and ROS/mPTP pathway. Bioengineered, 2022, 13(1), 1320-1334.
[http://dx.doi.org/10.1080/21655979.2021.2016046] [PMID: 35000528]
[44]
Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev., 2016, 2016, 1-18.
[http://dx.doi.org/10.1155/2016/4350965] [PMID: 26998193]
[45]
Rottenberg, H.; Hoek, J.B. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell, 2017, 16(5), 943-955.
[http://dx.doi.org/10.1111/acel.12650] [PMID: 28758328]
[46]
Chaudhuri, A.D.; Choi, D.C.; Kabaria, S.; Tran, A.; Junn, E. MicroRNA-7 regulates the function of mitochondrial permeability transition pore by targeting VDAC1 expression. J. Biol. Chem., 2016, 291(12), 6483-6493.
[http://dx.doi.org/10.1074/jbc.M115.691352] [PMID: 26801612]
[47]
Chen, X.; Deng, S.; Lei, Q.; He, Q.; Ren, Y.; Zhang, Y.; Nie, J.; Lu, W. miR-7-5p affects brain edema after intracerebral hemorrhage and its possible mechanism. Front. Cell Dev. Biol., 2020, 8, 598020.
[http://dx.doi.org/10.3389/fcell.2020.598020] [PMID: 33392188]
[48]
Zhang, X.D.; Fan, Q.Y.; Qiu, Z.; Chen, S. MiR-7 alleviates secondary inflammatory response of microglia caused by cerebral hemorrhage through inhibiting TLR4 expression. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(17), 5597-5604.
[http://dx.doi.org/10.26355/eurrev_201809_15824] [PMID: 30229834]
[49]
Qian, H.; Hu, K.; Xie, M.; Wu, H.; Li, W.; Wu, B.; Man, R.; Nie, M. Intracerebroventricular injection of miR-7 inhibits secondary brain injury induced by intracerebral hemorrhage via EGFR/STAT3 pathway in rats. Xibao Yu Fenzi Mianyixue Zazhi, 2018, 34(2), 141-147.
[PMID: 29673456]
[50]
Fu, F.; Wu, D.; Qian, C. The microRNA-224 inhibitor prevents neuronal apoptosis via targeting spastic paraplegia 7 after cerebral ischemia. J. Mol. Neurosci., 2016, 59(3), 421-429.
[http://dx.doi.org/10.1007/s12031-016-0769-9] [PMID: 27165196]
[51]
Bravo-Sagua, R.; Parra, V.; López-Crisosto, C.; Díaz, P.; Quest, A.F.; Lavandero, S. Calcium transport and signaling in mitochondria. Compr. Physiol., 2017, 7(2), 623-634.
[http://dx.doi.org/10.1002/cphy.c160013] [PMID: 28333383]
[52]
Rossi, A.; Pizzo, P.; Filadi, R. Calcium, mitochondria and cell metabolism: A functional triangle in bioenergetics. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(7), 1068-1078.
[http://dx.doi.org/10.1016/j.bbamcr.2018.10.016] [PMID: 30982525]
[53]
Olson, M.L.; Chalmers, S.; McCarron, J.G. Mitochondrial organization and Ca2+ uptake. Biochem. Soc. Trans., 2012, 40(1), 158-167.
[http://dx.doi.org/10.1042/BST20110705] [PMID: 22260683]
[54]
Augustynek, B.; Kudin, A.P.; Bednarczyk, P.; Szewczyk, A.; Kunz, W.S. Hemin inhibits the large conductance potassium channel in brain mitochondria: A putative novel mechanism of neurodegeneration. Exp. Neurol., 2014, 257, 70-75.
[http://dx.doi.org/10.1016/j.expneurol.2014.04.022] [PMID: 24792919]
[55]
Cabral-Costa, J.V.; Kowaltowski, A.J. Neurological disorders and mitochondria. Mol. Aspects Med., 2020, 71, 100826.
[http://dx.doi.org/10.1016/j.mam.2019.10.003] [PMID: 31630771]
[56]
Li, Y.; Sun, J.; Wu, R.; Bai, J.; Hou, Y.; Zeng, Y.; Zhang, Y.; Wang, X.; Wang, Z.; Meng, X. Mitochondrial MPTP: A novel target of ethnomedicine for stroke treatment by apoptosis inhibition. Front. Pharmacol., 2020, 11, 352.
[http://dx.doi.org/10.3389/fphar.2020.00352] [PMID: 32269527]
[57]
Jaquenod De Giusti, C.; Roman, B.; Das, S. The influence of microRNAs on mitochondrial calcium. Front. Physiol., 2018, 9, 1291.
[http://dx.doi.org/10.3389/fphys.2018.01291] [PMID: 30298016]
[58]
Ouyang, Y.B.; Giffard, R.G. microRNAs affect BCL-2 family proteins in the setting of cerebral ischemia. Neurochem. Int., 2014, 77, 2-8.
[http://dx.doi.org/10.1016/j.neuint.2013.12.006] [PMID: 24373752]
[59]
Qiu, Y.; Cheng, R.; Liang, C.; Yao, Y.; Zhang, W.; Zhang, J.; Zhang, M.; Li, B.; Xu, C.; Zhang, R. MicroRNA-20b promotes cardiac hypertrophy by the inhibition of mitofusin 2-mediated inter-organelle Ca2+ cross-talk. Mol. Ther. Nucleic Acids, 2020, 19, 1343-1356.
[http://dx.doi.org/10.1016/j.omtn.2020.01.017] [PMID: 32160705]
[60]
Formisano, L.; Guida, N.; Mascolo, L.; Serani, A.; Laudati, G.; Pizzorusso, V.; Annunziato, L. Transcriptional and epigenetic regulation of ncx1 and ncx3 in the brain. Cell Calcium, 2020, 87, 102194.
[http://dx.doi.org/10.1016/j.ceca.2020.102194] [PMID: 32172011]
[61]
Vinciguerra, A.; Formisano, L.; Cerullo, P.; Guida, N.; Cuomo, O.; Esposito, A.; Di Renzo, G.; Annunziato, L.; Pignataro, G. MicroRNA-103-1 selectively downregulates brain NCX1 and its inhibition by anti-miRNA ameliorates stroke damage and neurological deficits. Mol. Ther., 2014, 22(10), 1829-1838.
[http://dx.doi.org/10.1038/mt.2014.113] [PMID: 24954474]
[62]
Woods, J.J.; Wilson, J.J. Inhibitors of the mitochondrial calcium uniporter for the treatment of disease. Curr. Opin. Chem. Biol., 2020, 55, 9-18.
[http://dx.doi.org/10.1016/j.cbpa.2019.11.006] [PMID: 31869674]
[63]
Alevriadou, B.R.; Patel, A.; Noble, M.; Ghosh, S.; Gohil, V.M.; Stathopulos, P.B.; Madesh, M. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am. J. Physiol. Cell Physiol., 2021, 320(4), C465-C482.
[http://dx.doi.org/10.1152/ajpcell.00502.2020] [PMID: 33296287]
[64]
Palaiodimou, L.; Lioutas, V.A.; Lambadiari, V.; Theodorou, A.; Themistocleous, M.; Aponte, L.; Papagiannopoulou, G.; Foska, A.; Bakola, E.; Quispe, R.; Mendez, L.; Selim, M.; Novak, V.; Tzavellas, E.; Halvatsiotis, P.; Voumvourakis, K.; Tsivgoulis, G. Glycemic variability of acute stroke patients and clinical outcomes: A continuous glucose monitoring study. Ther. Adv. Neurol. Disord., 2021, 14.
[http://dx.doi.org/10.1177/17562864211045876] [PMID: 34589140]
[65]
Camara-Lemarroy, C.R. Glucose and stroke: What about glycemic variability? J. Neurol. Sci., 2017, 373, 242-243.
[http://dx.doi.org/10.1016/j.jns.2017.01.015] [PMID: 28131196]
[66]
Wang, B.; Li, Y.; You, C. miR-129-3p targeting of MCU protects against glucose fluctuation-mediated neuronal damage via a mitochondrial-dependent intrinsic apoptotic pathway. Diabetes Metab. Syndr. Obes., 2021, 14, 153-163.
[http://dx.doi.org/10.2147/DMSO.S285179] [PMID: 33488104]
[67]
Castellazzi, M.; Tamborino, C.; De Santis, G.; Garofano, F.; Lupato, A.; Ramponi, V.; Trentini, A.; Casetta, I.; Bellini, T.; Fainardi, E. Timing of serum active MMP-9 and MMP-2 levels in acute and subacute phases after spontaneous intracerebral hemorrhage. Acta Neurochir. Suppl. (Wien), 2010, 106, 137-140.
[http://dx.doi.org/10.1007/978-3-211-98811-4_24] [PMID: 19812936]
[68]
Fang, Y.; Gao, S.; Wang, X.; Cao, Y.; Lu, J.; Chen, S.; Lenahan, C.; Zhang, J.H.; Shao, A.; Zhang, J. Programmed cell deaths and potential crosstalk with blood–brain barrier dysfunction after hemorrhagic stroke. Front. Cell. Neurosci., 2020, 14, 68.
[http://dx.doi.org/10.3389/fncel.2020.00068] [PMID: 32317935]
[69]
Wang, Z.; Zhou, F.; Dou, Y.; Tian, X.; Liu, C.; Li, H.; Shen, H.; Chen, G. Melatonin alleviates intracerebral hemorrhage-induced secondary brain injury in rats via suppressing apoptosis, inflammation, oxidative stress, DNA damage, and mitochondria injury. Transl. Stroke Res., 2018, 9(1), 74-91.
[http://dx.doi.org/10.1007/s12975-017-0559-x] [PMID: 28766251]
[70]
Pan, J.; Qu, M.; Li, Y.; Wang, L.; Zhang, L.; Wang, Y.; Tang, Y.; Tian, H.L.; Zhang, Z.; Yang, G.Y. MicroRNA-126-3p/-5p overexpression attenuates blood-brain barrier disruption in a mouse model of middle cerebral artery occlusion. Stroke, 2020, 51(2), 619-627.
[http://dx.doi.org/10.1161/STROKEAHA.119.027531] [PMID: 31822249]
[71]
Bernstein, D.L.; Zuluaga-Ramirez, V.; Gajghate, S.; Reichenbach, N.L.; Polyak, B.; Persidsky, Y.; Rom, S. miR-98 reduces endothelial dysfunction by protecting blood–brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model. J. Cereb. Blood Flow Metab., 2020, 40(10), 1953-1965.
[http://dx.doi.org/10.1177/0271678X19882264] [PMID: 31601141]
[72]
Bukeirat, M.; Sarkar, S.N.; Hu, H.; Quintana, D.D.; Simpkins, J.W.; Ren, X. MiR-34a regulates blood–brain barrier permeability and mitochondrial function by targeting cytochrome c. J. Cereb. Blood Flow Metab., 2016, 36(2), 387-392.
[http://dx.doi.org/10.1177/0271678X15606147] [PMID: 26661155]
[73]
Bhasin, R.R.; Xi, G.; Hua, Y.; Keep, R.F.; Hoff, J.T. Experimental intracerebral hemorrhage: Effect of lysed erythrocytes on brain edema and blood-brain barrier permeability. Acta Neurochir. Suppl. (Wien), 2002, 81, 249-251.
[http://dx.doi.org/10.1007/978-3-7091-6738-0_65] [PMID: 12168318]
[74]
Xi, G.; Hua, Y.; Bhasin, R.R.; Ennis, S.R.; Keep, R.F.; Hoff, J.T. Mechanisms of edema formation after intracerebral hemorrhage: Effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke, 2001, 32(12), 2932-2938.
[http://dx.doi.org/10.1161/hs1201.099820] [PMID: 11739998]
[75]
Li, Y.; Wang, J.; Chen, S.; Wu, P.; Xu, S.; Wang, C.; Shi, H.; Bihl, J. miR-137 boosts the neuroprotective effect of endothelial progenitor cell-derived exosomes in oxyhemoglobin-treated SH-SY5Y cells partially via COX2/PGE2 pathway. Stem Cell Res. Ther., 2020, 11(1), 330.
[http://dx.doi.org/10.1186/s13287-020-01836-y] [PMID: 33100224]
[76]
Prabhakaran, S.; Naidech, A.M. Ischemic brain injury after intracerebral hemorrhage: A critical review. Stroke, 2012, 43(8), 2258-2263.
[http://dx.doi.org/10.1161/STROKEAHA.112.655910] [PMID: 22821611]
[77]
Wilkinson, D.A.; Pandey, A.S.; Thompson, B.G.; Keep, R.F.; Hua, Y.; Xi, G. Injury mechanisms in acute intracerebral hemorrhage. Neuropharmacology, 2018, 134(Pt B), 240-248.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.033] [PMID: 28947377]
[78]
Wu, T.; Liang, X.; Liu, X.; Li, Y.; Wang, Y.; Kong, L.; Tang, M. Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part. Fibre Toxicol., 2020, 17(1), 30.
[http://dx.doi.org/10.1186/s12989-020-00363-1] [PMID: 32652997]
[79]
Indrieri, A.; Carrella, S.; Carotenuto, P.; Banfi, S.; Franco, B. The pervasive role of the miR-181 family in development, neurodegeneration, and cancer. Int. J. Mol. Sci., 2020, 21(6), 2092.
[http://dx.doi.org/10.3390/ijms21062092] [PMID: 32197476]
[80]
Yang, Z.; Wan, X.; Gu, Z.; Zhang, H.; Yang, X.; He, L.; Miao, R.; Zhong, Y.; Zhao, H. Evolution of the mir-181 microRNA family. Comput. Biol. Med., 2014, 52, 82-87.
[http://dx.doi.org/10.1016/j.compbiomed.2014.06.004] [PMID: 25016292]
[81]
Ouyang, Y.B.; Lu, Y.; Yue, S.; Giffard, R.G. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion, 2012, 12(2), 213-219.
[http://dx.doi.org/10.1016/j.mito.2011.09.001] [PMID: 21958558]
[82]
Xu, L.J.; Ouyang, Y.B.; Xiong, X.; Stary, C.M.; Giffard, R.G. Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia. Exp. Neurol., 2015, 264, 1-7.
[http://dx.doi.org/10.1016/j.expneurol.2014.11.007] [PMID: 25433215]
[83]
Hamilton, C.; Fox, J.P.; Longley, D.B.; Higgins, C.A. Therapeutics targeting the core apoptotic machinery. Cancers (Basel), 2021, 13(11), 2618.
[http://dx.doi.org/10.3390/cancers13112618] [PMID: 34073507]
[84]
Zhang, L.; Dong, L.Y.; Li, Y.J.; Hong, Z.; Wei, W.S. The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. J. Neuroinflammation, 2012, 9(1), 211.
[http://dx.doi.org/10.1186/1742-2094-9-211] [PMID: 22950459]
[85]
Horita, M.; Farquharson, C.; Stephen, L.A. The role of miR‐29 family in disease. J. Cell. Biochem., 2021, 122(7), 696-715.
[http://dx.doi.org/10.1002/jcb.29896] [PMID: 33529442]
[86]
Sun, Y.; Zhou, Y.; Shi, Y.; Zhang, Y.; Liu, K.; Liang, R.; Sun, P.; Chang, X.; Tang, W.; Zhang, Y.; Li, J.; Wang, S.; Zhu, Y.; Han, X. Expression of miRNA-29 in pancreatic β cells promotes inflammation and diabetes via TRAF3. Cell Rep., 2021, 34(1), 108576.
[http://dx.doi.org/10.1016/j.celrep.2020.108576] [PMID: 33406428]
[87]
Thounaojam, M.C.; Kaushik, D.K.; Kundu, K.; Basu, A. MicroRNA-29b modulates Japanese encephalitis virus-induced microglia activation by targeting tumor necrosis factor alpha-induced protein 3. J. Neurochem., 2014, 129(1), 143-154.
[http://dx.doi.org/10.1111/jnc.12609] [PMID: 24236890]
[88]
Kole, A.J.; Swahari, V.; Hammond, S.M.; Deshmukh, M. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev., 2011, 25(2), 125-130.
[http://dx.doi.org/10.1101/gad.1975411] [PMID: 21245165]
[89]
Shi, G.; Liu, Y.; Liu, T.; Yan, W.; Liu, X.; Wang, Y.; Shi, J.; Jia, L. Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp. Brain Res., 2012, 216(2), 225-230.
[http://dx.doi.org/10.1007/s00221-011-2925-3] [PMID: 22094713]
[90]
Sturgeon, J.D.; Folsom, A.R.; Longstreth, W.T., Jr; Shahar, E.; Rosamond, W.D.; Cushman, M. Risk factors for intracerebral hemorrhage in a pooled prospective study. Stroke, 2007, 38(10), 2718-2725.
[http://dx.doi.org/10.1161/STROKEAHA.107.487090] [PMID: 17761915]
[91]
Sato, S.; Uehara, T.; Hayakawa, M.; Nagatsuka, K.; Minematsu, K.; Toyoda, K. Intra and extracranial atherosclerotic disease in acute spontaneous intracerebral hemorrhage. J. Neurol. Sci., 2013, 332(1-2), 116-120.
[http://dx.doi.org/10.1016/j.jns.2013.06.031] [PMID: 23859180]
[92]
Veglio, F.; Paglieri, C.; Rabbia, F.; Bisbocci, D.; Bergui, M.; Cerrato, P. Hypertension and cerebrovascular damage. Atherosclerosis, 2009, 205(2), 331-341.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.10.028] [PMID: 19100549]
[93]
Zhang, D.X.; Gutterman, D.D. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(5), H2023-H2031.
[http://dx.doi.org/10.1152/ajpheart.01283.2006] [PMID: 17237240]
[94]
Qu, J.; Chen, W.; Hu, R.; Feng, H. The injury and therapy of reactive oxygen species in intracerebral hemorrhage looking at mitochondria. Oxid. Med. Cell. Longev., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/2592935] [PMID: 27293511]
[95]
Aryal, B.; Singh, A.K.; Rotllan, N.; Price, N.; Fernández-Hernando, C. MicroRNAs and lipid metabolism. Curr. Opin. Lipidol., 2017, 28(3), 273-280.
[http://dx.doi.org/10.1097/MOL.0000000000000420] [PMID: 28333713]
[96]
Movafagh, S.; Crook, S.; Vo, K. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: New developments in an old debate. J. Cell. Biochem., 2015, 116(5), 696-703.
[http://dx.doi.org/10.1002/jcb.25074] [PMID: 25546605]
[97]
Zhang, C.; Shen, M.; Teng, F.; Li, P.; Gao, F.; Tu, J.; Luo, L.; Yeh, C.K.; Zhang, D. Ultrasound-enhanced protective effect of tetramethylpyrazine via the ROS/HIF-1A signaling pathway in an in vitro cerebral ischemia/reperfusion injury model. Ultrasound Med. Biol., 2018, 44(8), 1786-1798.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2018.04.005] [PMID: 29793852]
[98]
Kitajima, Y.; Miyazaki, K. The critical impact of HIF-1a on gastric cancer biology. Cancers (Basel), 2013, 5(4), 15-26.
[http://dx.doi.org/10.3390/cancers5010015] [PMID: 24216696]
[99]
Zhao, X.; Liu, L.; Li, R.; Wei, X.; Luan, W.; Liu, P.; Zhao, J. Hypoxia-inducible factor 1-α (HIF-1α) induces apoptosis of human uterosacral ligament fibroblasts through the death receptor and mitochondrial pathways. Med. Sci. Monit., 2018, 24, 8722-8733.
[http://dx.doi.org/10.12659/MSM.913384] [PMID: 30504760]
[100]
Poblete, J.M.S.; Ballinger, M.N.; Bao, S.; Alghothani, M.; Nevado, J.B., Jr; Eubank, T.D.; Christman, J.W.; Magalang, U.J. Macrophage HIF-1α mediates obesity-related adipose tissue dysfunction via interleukin-1 receptor-associated kinase M. Am. J. Physiol. Endocrinol. Metab., 2020, 318(5), E689-E700.
[http://dx.doi.org/10.1152/ajpendo.00174.2019] [PMID: 32154744]
[101]
Karshovska, E.; Wei, Y.; Subramanian, P.; Mohibullah, R.; Geißler, C.; Baatsch, I.; Popal, A.; Corbalán Campos, J.; Exner, N.; Schober, A. HIF-1α (Hypoxia-Inducible Factor-1α) promotes macrophage necroptosis by regulating miR-210 and miR-383. Arterioscler. Thromb. Vasc. Biol., 2020, 40(3), 583-596.
[http://dx.doi.org/10.1161/ATVBAHA.119.313290] [PMID: 31996026]
[102]
Wang, G.; Yang, Y.; Ma, H.; Shi, L.; Jia, W.; Hao, X.; Liu, W. LncRNA FENDRR inhibits ox-LDL induced mitochondrial energy metabolism disorder in aortic endothelial cells via miR-18a-5p/PGC-1α signaling pathway. Front. Endocrinol. (Lausanne), 2021, 12, 622665.
[http://dx.doi.org/10.3389/fendo.2021.622665] [PMID: 33912133]
[103]
Jiang, Q.; Ji, A.; Li, D.; Shi, L.; Gao, M.; Lv, N.; Zhang, Y.; Zhang, R.; Chen, R.; Chen, W.; Zheng, Y.; Cui, L. Mitochondria damage in ambient particulate matter induced cardiotoxicity: Roles of PPAR alpha/PGC-1 alpha signaling. Environ. Pollut., 2021, 288, 117792.
[http://dx.doi.org/10.1016/j.envpol.2021.117792] [PMID: 34280742]
[104]
Fu, X.; Huang, X.; Li, P.; Chen, W.; Xia, M. 7-Ketocholesterol inhibits isocitrate dehydrogenase 2 expression and impairs endothelial function via microRNA-144. Free Radic. Biol. Med., 2014, 71, 1-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.010] [PMID: 24642088]
[105]
Bao, Q.; Jia, H. A, R.; Cao, Z.; Zhang, Y. MiR-210 inhibits hypoxia-induced apoptosis of smooth muscle cells via targeting MEF2C. Int. J. Clin. Exp. Pathol., 2019, 12(5), 1846-1858.
[PMID: 31934008]
[106]
Karunakaran, D.; Thrush, A.B.; Nguyen, M.A.; Richards, L.; Geoffrion, M.; Singaravelu, R.; Ramphos, E.; Shangari, P.; Ouimet, M.; Pezacki, J.P.; Moore, K.J.; Perisic, L.; Maegdefessel, L.; Hedin, U.; Harper, M.E.; Rayner, K.J. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circ. Res., 2015, 117(3), 266-278.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.305624] [PMID: 26002865]
[107]
Katta, S.; Karnewar, S.; Panuganti, D.; Jerald, M.K.; Sastry, B.K.S.; Kotamraju, S. Mitochondria‐targeted esculetin inhibits PAI‐1 levels by modulating STAT3 activation and miR‐19b via SIRT3: Role in acute coronary artery syndrome. J. Cell. Physiol., 2018, 233(1), 214-225.
[http://dx.doi.org/10.1002/jcp.25865] [PMID: 28213977]
[108]
Xue, Y.; Wei, Z.; Ding, H.; Wang, Q.; Zhou, Z.; Zheng, S.; Zhang, Y.; Hou, D.; Liu, Y.; Zen, K.; Zhang, C.Y.; Li, J.; Wang, D.; Jiang, X. MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis. Atherosclerosis, 2015, 241(2), 671-681.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.06.031] [PMID: 26117405]
[109]
Zhang, Y.; Qin, W.; Zhang, L.; Wu, X.; Du, N.; Hu, Y.; Li, X.; Shen, N.; Xiao, D.; Zhang, H.; Li, Z.; Zhang, Y.; Yang, H.; Gao, F.; Du, Z.; Xu, C.; Yang, B. MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis. Sci. Rep., 2015, 5(1), 9401.
[http://dx.doi.org/10.1038/srep09401] [PMID: 25801675]
[110]
Zhang, X.; Wang, Z.; Li, W.; Huang, R.; Zheng, D.; Bi, G. MicroRNA-217-5p ameliorates endothelial cell apoptosis induced by ox-LDL by targeting CLIC4. Nutr. Metab. Cardiovasc. Dis., 2020, 30(3), 523-533.
[http://dx.doi.org/10.1016/j.numecd.2019.09.027] [PMID: 31744714]
[111]
Zhaolin, Z.; Jiaojiao, C.; Peng, W.; Yami, L.; Tingting, Z.; Jun, T.; Shiyuan, W.; Jinyan, X.; Dangheng, W.; Zhisheng, J.; Zuo, W. OxLDL induces vascular endothelial cell pyroptosis through miR‐125a‐5p/TET2 pathway. J. Cell. Physiol., 2019, 234(5), 7475-7491.
[http://dx.doi.org/10.1002/jcp.27509] [PMID: 30370524]
[112]
Zhong, X.; Li, P.; Li, J.; He, R.; Cheng, G.; Li, Y. Downregulation of microRNA 34a inhibits oxidized low density lipoprotein induced apoptosis and oxidative stress in human umbilical vein endothelial cells. Int. J. Mol. Med., 2018, 42(2), 1134-1144.
[http://dx.doi.org/10.3892/ijmm.2018.3663] [PMID: 29750293]
[113]
Nandi, S.S.; Katsurada, K.; Mahata, S.K.; Patel, K.P. Neurogenic hypertension mediated mitochondrial abnormality leads to cardiomyopathy: Contribution of UPRmt and norepinephrine-miR- 18a-5p-HIF-1α axis. Front. Physiol., 2021, 12, 718982.
[http://dx.doi.org/10.3389/fphys.2021.718982] [PMID: 34912235]
[114]
Guan, X.; Wang, L.; Liu, Z.; Guo, X.; Jiang, Y.; Lu, Y.; Peng, Y.; Liu, T.; Yang, B.; Shan, H.; Zhang, Y.; Xu, C. miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J. Mol. Cell. Cardiol., 2016, 99, 207-217.
[http://dx.doi.org/10.1016/j.yjmcc.2016.08.016] [PMID: 27565029]
[115]
Li, H.; Zhang, X.; Wang, F.; Zhou, L.; Yin, Z.; Fan, J.; Nie, X.; Wang, P.; Fu, X.D.; Chen, C.; Wang, D.W. MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation. Circulation, 2016, 134(10), 734-751.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.023926] [PMID: 27542393]
[116]
Tan, K.; Ge, Y.; Tian, J.; Li, S.; Lian, Z. miRNA-9 inhibits apoptosis and promotes proliferation in angiotensin II-induced human umbilical vein endothelial cells by targeting MDGA2. Rev. Cardiovasc. Med., 2019, 20(2), 101-108.
[http://dx.doi.org/10.31083/j.rcm.2019.02.514] [PMID: 31345003]
[117]
Wang, K.; Liang, Q.; Li, X.; Tsoi, H.; Zhang, J.; Wang, H.; Go, M.Y.Y.; Chiu, P.W.Y.; Ng, E.K.W.; Sung, J.J.Y.; Yu, J. MDGA2 is a novel tumour suppressor cooperating with DMAP1 in gastric cancer and is associated with disease outcome. Gut, 2016, 65(10), 1619-1631.
[http://dx.doi.org/10.1136/gutjnl-2015-309276] [PMID: 26206665]
[118]
Liu, J.; Zuo, X.; Han, J.; Dai, Q.; Xu, H.; Liu, Y.; Cui, S. MiR-9-5p inhibits mitochondrial damage and oxidative stress in AD cell models by targeting GSK-3β. Biosci. Biotechnol. Biochem., 2020, 84(11), 2273-2280.
[http://dx.doi.org/10.1080/09168451.2020.1797469] [PMID: 32713252]
[119]
Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the blood–brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[120]
Halaby, R.; Popma, C.J.; Cohen, A.; Chi, G.; Zacarkim, M.R.; Romero, G.; Goldhaber, S.Z.; Hull, R.; Hernandez, A.; Mentz, R.; Harrington, R.; Lip, G.; Peacock, F.; Welker, J.; Martin-Loeches, I.; Daaboul, Y.; Korjian, S.; Gibson, C.M. d-Dimer elevation and adverse outcomes. J. Thromb. Thrombolysis, 2015, 39(1), 55-59.
[http://dx.doi.org/10.1007/s11239-014-1101-6] [PMID: 25006010]
[121]
Backes, C.; Meese, E.; Keller, A. Specific miRNA disease biomarkers in blood, serum and plasma: Challenges and prospects. Mol. Diagn. Ther., 2016, 20(6), 509-518.
[http://dx.doi.org/10.1007/s40291-016-0221-4] [PMID: 27378479]
[122]
Wang, Z.; Lu, G.; Sze, J.; Liu, Y.; Lin, S.; Yao, H.; Zhang, J.; Xie, D.; Liu, Q.; Kung, H.; Lin, M.C.; Poon, W.S. Plasma miR-124 is a promising candidate biomarker for human intracerebral hemorrhage stroke. Mol. Neurobiol., 2018, 55(7), 5879-5888.
[http://dx.doi.org/10.1007/s12035-017-0808-8] [PMID: 29101647]
[123]
Gareev, I.; Yang, G.; Sun, J.; Beylerli, O.; Chen, X.; Zhang, D.; Zhao, B.; Zhang, R.; Sun, Z.; Yang, Q.; Li, L.; Pavlov, V.; Safin, S.; Zhao, S. Circulating microRNAs as potential noninvasive biomarkers of spontaneous intracerebral hemorrhage. World Neurosurg., 2020, 133, e369-e375.
[http://dx.doi.org/10.1016/j.wneu.2019.09.016] [PMID: 31525485]
[124]
Chen, H.; Zhang, S.; Yu, B.; Xu, Y.; Rappold, A.G.; Diaz-Sanchez, D.; Samet, J.M.; Tong, H. Circulating microRNAs as putative mediators in the association between short-term exposure to ambient air pollution and cardiovascular biomarkers. Ecotoxicol. Environ. Saf., 2022, 239, 113604.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113604] [PMID: 35576800]
[125]
Zheng, H.W.; Wang, Y.L.; Lin, J.X.; Li, N.; Zhao, X.Q.; Liu, G.F.; Liu, L.P.; Jiao, Y.; Gu, W.K.; Wang, D.Z.; Wang, Y.J. Circulating MicroRNAs as potential risk biomarkers for hematoma enlargement after intracerebral hemorrhage. CNS Neurosci. Ther., 2012, 18(12), 1003-1011.
[http://dx.doi.org/10.1111/cns.12019] [PMID: 23190933]
[126]
Cepparulo, P.; Cuomo, O.; Vinciguerra, A.; Torelli, M.; Annunziato, L.; Pignataro, G. Hemorrhagic stroke induces a time-dependent upregulation of miR-150-5p and miR-181b-5p in the bloodstream. Front. Neurol., 2021, 12, 736474.
[http://dx.doi.org/10.3389/fneur.2021.736474] [PMID: 34777204]
[127]
Gareev, I.; Beylerli, O.; Yang, G.; Izmailov, A.; Shi, H.; Sun, J.; Zhao, B.; Liu, B.; Zhao, S. Diagnostic and prognostic potential of circulating miRNAs for intracranial aneurysms. Neurosurg. Rev., 2021, 44(4), 2025-2039.
[http://dx.doi.org/10.1007/s10143-020-01427-8] [PMID: 33094424]
[128]
Beylerli, O.; Beeraka, N.M.; Gareev, I.; Pavlov, V.; Yang, G.; Liang, Y.; Aliev, G. MiRNAs as noninvasive biomarkers and therapeutic agents of pituitary adenomas. Int. J. Mol. Sci., 2020, 21(19), 7287.
[http://dx.doi.org/10.3390/ijms21197287] [PMID: 33023145]
[129]
Wu, J.; Gareev, I.; Beylerli, O.; Mukhamedzyanov, A.; Pavlov, V.; Khasanov, D.; Khasanova, G. Circulating miR-126 as a potential non-invasive biomarker for intracranial aneurysmal rupture: A pilot study. Curr. Neurovasc. Res., 2021, 18(5), 525-534.
[http://dx.doi.org/10.2174/1567202619666211217142116] [PMID: 34923944]
[130]
Qin, D.; Wang, J.; Le, A.; Wang, T.J.; Chen, X.; Wang, J. Traumatic brain injury: Ultrastructural features in neuronal ferroptosis, glial cell activation and polarization, and blood–brain barrier breakdown. Cells, 2021, 10(5), 1009.
[http://dx.doi.org/10.3390/cells10051009] [PMID: 33923370]
[131]
Prakash, C.; Soni, M.; Kumar, V. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. J. Appl. Toxicol., 2016, 36(2), 179-188.
[http://dx.doi.org/10.1002/jat.3256] [PMID: 26510484]
[132]
Cheng, Y.; Zhang, C. MicroRNA-21 in cardiovascular disease. J. Cardiovasc. Transl. Res., 2010, 3(3), 251-255.
[http://dx.doi.org/10.1007/s12265-010-9169-7] [PMID: 20560046]
[133]
Wang, J.; Zhu, Y.; Jin, F.; Tang, L.; He, Z.; He, Z. Differential expression of circulating microRNAs in blood and haematoma samples from patients with intracerebral haemorrhage. J. Int. Med. Res., 2016, 44(3), 419-432.
[http://dx.doi.org/10.1177/0300060516630852] [PMID: 27020596]
[134]
Liu, D.Z.; Tian, Y.; Ander, B.P.; Xu, H.; Stamova, B.S.; Zhan, X.; Turner, R.J.; Jickling, G.; Sharp, F.R. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J. Cereb. Blood Flow Metab., 2010, 30(1), 92-101.
[http://dx.doi.org/10.1038/jcbfm.2009.186] [PMID: 19724284]
[135]
Xi, J.; Rong, Y.; Zhao, Z.; Huang, Y.; Wang, P.; Luan, H.; Xing, Y.; Li, S.; Liao, J.; Dai, Y.; Liang, J.; Wu, F. Scutellarin ameliorates high glucose-induced vascular endothelial cells injury by activating PINK1/Parkin-mediated mitophagy. J. Ethnopharmacol., 2021, 271, 113855.
[http://dx.doi.org/10.1016/j.jep.2021.113855] [PMID: 33485979]
[136]
Zhang, J.Y.; Ma, J.; Yu, P.; Tang, G.J.; Li, C.J.; Yu, D.M.; Zhang, Q.M. Reduced beta 2 glycoprotein I prevents high glucose-induced cell death in HUVECs through miR-21/PTEN. Am. J. Transl. Res., 2017, 9(9), 3935-3949.
[PMID: 28979671]
[137]
La Sala, L.; Mrakic-Sposta, S.; Micheloni, S.; Prattichizzo, F.; Ceriello, A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovasc. Diabetol., 2018, 17(1), 105.
[http://dx.doi.org/10.1186/s12933-018-0748-2] [PMID: 30037352]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy