Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Anti-DENV and Anti-Dengue Vector Activity of Some Heterocyclic Scaffolds

Author(s): Deepika Purohit, Neelima Dhingra, Rohit Dutt and Sahil Kumar*

Volume 20, Issue 12, 2020

Page: [1062 - 1071] Pages: 10

DOI: 10.2174/1389557520666200414162408

Price: $65

Abstract

Dengue is a major health threat related to arbovirus and is endemic in more than 100 countries with an annual estimated above 390 million incidences of infection all around the world. During the period 1996-2015, a considerable increase in the number of dengue cases (more than 500%) was reported in India. Information about dengue disease burden, its prevalence, incidence and geographic distribution is critical in planning appropriate control measures against dengue fever. Till date, no specific treatment for dengue fever is available in any system of medicine, which can be accepted globally. Therefore, safe, cost-effective, and efficacious agents possessing anti-viral potential against dengue virus are needed to be searched in order to fight the dengue infection globally. The aim of the present review is to systematically revise the published research work available concerning the development and evaluation of some heterocyclic scaffolds in the management of dengue.

Keywords: Arbovirus, anti-viral, dengue infection, heterocyclic, NTDs, DENV.

Graphical Abstract
[1]
Neglected tropical diseases: becoming less neglected. Lancet, 2014, 383(9925), 1269-1269.https://www.ncbi.nlm.nih.gov/pubmed/24725560
[http://dx.doi.org/10.1016/S0140-6736(14)60629-2] [PMID: 24725560]
[2]
Hotez, P.J.; Molyneux, D.H.; Fenwick, A.; Ottesen, E.; Ehrlich Sachs, S.; Sachs, J.D. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria. PLoS Med., 2006, 3(5)e102
[http://dx.doi.org/10.1371/journal.pmed.0030102] [PMID: 16435908]
[3]
LaBeaud, A.D. Why arboviruses can be neglected tropical diseases. PLoS Negl. Trop. Dis., 2008, 2(6)e247
[http://dx.doi.org/10.1371/journal.pntd.0000247] [PMID: 18575597]
[4]
Bhakat, S.; Karubiu, W.; Jayaprakash, V.; Soliman, M.E.S. A perspective on targeting non-structural proteins to combat neglected tropical diseases: Dengue, West Nile and Chikungunya viruses. Eur. J. Med. Chem., 2014, 87, 677-702.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.010] [PMID: 25305334]
[5]
Halstead, S.B. Dengue. Lancet, 2007, 370(9599), 1644-1652.
[http://dx.doi.org/10.1016/S0140-6736(07)61687-0] [PMID: 17993365]
[6]
Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India, 2015, 71(1), 67-70.
[http://dx.doi.org/10.1016/j.mjafi.2014.09.011] [PMID: 25609867]
[7]
World Health Organization (WHO). Global Strategy for Dengue Prevention and Control, 2012–2020; WHO: Geneva, Switzerland, 2012.
[8]
Gubler, D.J. Dengue, urbanization and globalization: The unholy trinity of the 21(st) century. Trop. Med. Health, 2011, 39(4)(Suppl.), 3-11.
[http://dx.doi.org/10.2149/tmh.2011-S05] [PMID: 22500131]
[9]
Dengue, countries or areas at risk. (2011). Available online. http://gamapserver.who.int/mapLibrary/Files/Maps/Global_DengueTransmission_ITHRiskMap.png
[10]
Gibbons, R.V.; Vaughn, D.W. Dengue: an escalating problem. BMJ, 2002, 324(7353), 1563-1566.
[http://dx.doi.org/10.1136/bmj.324.7353.1563] [PMID: 12089096]
[11]
Murray, N.E.A.; Quam, M.B.; Wilder-Smith, A. Epidemiology of dengue: past, present and future prospects. Clin. Epidemiol., 2013, 5, 299-309.
[PMID: 23990732]
[12]
Chakravarti, A.; Arora, R.; Luxemburger, C. Fifty years of dengue in India. Trans. R. Soc. Trop. Med. Hyg., 2012, 106(5), 273-282.
[http://dx.doi.org/10.1016/j.trstmh.2011.12.007] [PMID: 22357401]
[13]
Traditional medicine. Available online:. http://www.who.int/mediacentre/factsheets/ 2003/fs134/en/
[14]
Halstead, S.B.; Nimmannitya, S.; Yamarat, C.; Russell, P.K. Hemorrhagic fever in Thailand; recent knowledge regarding etiology. Jpn. J. Med. Sci. Biol., 1967, 20(Suppl.), 96-103.
[PMID: 5301574]
[15]
Chambers, T.J.; Hahn, C.S.; Galler, R.; Rice, C.M. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol., 1990, 44, 649-688.
[http://dx.doi.org/10.1146/annurev.mi.44.100190.003245] [PMID: 2174669]
[16]
Oliveira, A.S.; Silva, M.L.; Oliveira, A.F.C. NS3 and NS5 proteins: Important targets for anti-dengue drug design. J. Brazil. Chem. Soc., 2014, 25, 1759-1769.
[http://dx.doi.org/10.5935/0103-5053.20140057]
[17]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[18]
Mahmood, S.U.; Mushtaq, M.; Syed, M.J. Anti-dengue drug: viral polyprotein, a potential target. Drug Des. Devel. Ther., 2016, 10, 2047-2048.
[http://dx.doi.org/10.2147/DDDT.S113373] [PMID: 27445456]
[19]
de Oliveira, A.S.; da Silva, M.L.; Oliveira, A.F.C.S.; da Silva, C.C.; Teixeira, R.R.; De Paula, S.O. NS3 and NS5 proteins: important targets for anti-dengue drug design. J. Braz. Chem. Soc., 2014, 25(10)
[http://dx.doi.org/10.5935/0103-5053.20140057]
[20]
Dengue Virus Non-structural Protein NS1. https://www.rcsb.org/structure/4OIG
[21]
Dengue vaccine: WHO position paper – July 2016. Wkly. Epidemiol. Rec., 2016, 91(30), 349-364.
[PMID: 27476189]
[23]
Nielsch, U.; Fuhrmann, U.; Jaroch, S., Eds.; New Approaches to Drug Discovery; Springer International Publishing: Switzerland, 2016.
[http://dx.doi.org/10.1007/978-3-319-28914-4]
[24]
Venkatesham, A.; Saudi, M.; Kaptein, S.; Neyts, J.; Rozenski, J.; Froeyen, M.; Van Aerschot, A. Aminopurine and aminoquinazoline scaffolds for development of potential dengue virus inhibitors. Eur. J. Med. Chem., 2017, 126, 101-109.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.008] [PMID: 27750144]
[25]
Bardiot, D.; Koukni, M.; Smets, W.; Carlens, G.; McNaughton, M.; Kaptein, S.; Dallmeier, K.; Chaltin, P.; Neyts, J.; Marchand, A. Discovery of indole derivatives as novel and potent dengue virus inhibitors. J. Med. Chem., 2018, 61(18), 8390-8401.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00913] [PMID: 30149709]
[26]
Wang, Q-Y.; Patel, S.J.; Vangrevelinghe, E.; Xu, H.Y.; Rao, R.; Jaber, D.; Schul, W.; Gu, F.; Heudi, O.; Ma, N.L.; Poh, M.K.; Phong, W.Y.; Keller, T.H.; Jacoby, E.; Vasudevan, S.G. A small molecule dengue virus entry inhibitor. Antimicrob. Agents Chemother., 2009, 53(5), 1823-1831.
[http://dx.doi.org/10.1128/AAC.01148-08] [PMID: 19223625]
[27]
Na, Y.M.; Le Borgne, M.; Pagniez, F.; Le Baut, G.; Le Pape, P. Synthesis and antifungal activity of new 1-halogenobenzyl-3-imidazolylmethylindole derivatives. Eur. J. Med. Chem., 2003, 38(1), 75-87.
[http://dx.doi.org/10.1016/S0223-5234(02)00005-3] [PMID: 12593918]
[28]
Galgiani, J.N.; Lewis, M.L. In vitro studies of activities of the antifungal triazoles SCH56592 and itraconazole against Candida albicans, Cryptococcus neoformans, and other pathogenic yeasts. Antimicrob. Agents Chemother., 1997, 41(1), 180-183.
[http://dx.doi.org/10.1128/AAC.41.1.180] [PMID: 8980776]
[29]
Andreani, A.; Leoni, A.; Rambaldi, M. Synthesis and cardiotonic activity of imidazo[2,l-b]thiazoles bearing a lactam ring. Eur. J. Med. Chem., 1996, 31, 383-387.
[http://dx.doi.org/10.1016/0223-5234(96)89164-1]
[30]
Tozkoparan, B.; Ertan, M.; Kelicen, P.; Demirdamar, R. Synthesis and anti-inflammatory activities of some thiazolo[3,2-a]pyrimidine derivatives. Farmaco, 1999, 54(9), 588-593.
[http://dx.doi.org/10.1016/S0014-827X(99)00068-3] [PMID: 10555260]
[31]
Collin, X.; Sauleau, A.; Coulon, J. 1,2,4-Triazolo mercapto and aminonitriles as potent antifungal agents. Bioorg. Med. Chem. Lett., 2003, 13(15), 2601-2605.
[http://dx.doi.org/10.1016/S0960-894X(03)00378-0] [PMID: 12852975]
[32]
Barradas, J.S.; Errea, M.I.; D’Accorso, N.B.; Sepúlveda, C.S.; Talarico, L.B.; Damonte, E.B. Synthesis and antiviral activity of azoles obtained from carbohydrates. Carbohydr. Res., 2008, 343(14), 2468-2474.
[http://dx.doi.org/10.1016/j.carres.2008.06.028] [PMID: 18692179]
[33]
Benmansour, F.; Eydoux, C.; Querat, G. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase. Eur. J. Med. Chem., 2016, 109, 146-56.
[34]
Lai, H.; Dou, D.; Aravapalli, S.; Teramoto, T.; Lushington, G.H.; Mwania, T.M.; Alliston, K.R.; Eichhorn, D.M.; Padmanabhan, R.; Groutas, W.C. Design, synthesis and characterization of novel 1,2-benzisothiazol-3(2H)-one and 1,3,4-oxadiazole hybrid derivatives: potent inhibitors of Dengue and West Nile virus NS2B/NS3 proteases. Bioorg. Med. Chem., 2013, 21(1), 102-113.
[http://dx.doi.org/10.1016/j.bmc.2012.10.058] [PMID: 23211969]
[35]
De Clercq, E.; Neyts, J. Antiviral agents acting as DNA or RNA chain terminators. Handb. Exp. Pharmacol., 2009, (189), 53-84.
[http://dx.doi.org/10.1007/978-3-540-79086-0_3] [PMID: 19048197]
[36]
Lee, J.C.; Tseng, C.K.; Wu, Y.H.; Kaushik-Basu, N.; Lin, C.K.; Chen, W.C.; Wu, H.N. Characterization of the activity of 2′-C-methylcytidine against dengue virus replication. Antiviral Res., 2015, 116, 1-9.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.002] [PMID: 25614455]
[37]
Latour, D.R.; Jekle, A.; Javanbakht, H.; Henningsen, R.; Gee, P.; Lee, I.; Tran, P.; Ren, S.; Kutach, A.K.; Harris, S.F.; Wang, S.M.; Lok, S.J.; Shaw, D.; Li, J.; Heilek, G.; Klumpp, K.; Swinney, D.C.; Deval, J. Biochemical characterization of the inhibition of the dengue virus RNA polymerase by beta-d-2′-ethynyl-7-deaza-adenosine triphosphate. Antiviral Res., 2010, 87(2), 213-222.
[http://dx.doi.org/10.1016/j.antiviral.2010.05.003] [PMID: 20470829]
[38]
Tichý, M.; Pohl, R.; Xu, H.Y.; Chen, Y.L.; Yokokawa, F.; Shi, P.Y.; Hocek, M. Synthesis and antiviral activity of 4,6-disubstituted pyrimido[4,5-b]indole ribonucleosides. Bioorg. Med. Chem., 2012, 20(20), 6123-6133.
[http://dx.doi.org/10.1016/j.bmc.2012.08.021] [PMID: 22985963]
[39]
Nauš, P.; Caletková, O.; Perlíková, P.; Poštová Slavětínská, L.; Tloušťová, E.; Hodek, J.; Weber, J.; Džubák, P.; Hajdúch, M.; Hocek, M. Synthesis and biological profiling of 6- or 7-(het)aryl-7-deazapurine 4′-C-methylribonucleosides. Bioorg. Med. Chem., 2015, 23(23), 7422-7438.
[http://dx.doi.org/10.1016/j.bmc.2015.10.040] [PMID: 26558518]
[40]
McGuigan, C.; Serpi, M.; Slusarczyk, M.; Ferrari, V.; Pertusati, F.; Meneghesso, S.; Derudas, M.; Farleigh, L.; Zanetta, P.; Bugert, J. Anti-flavivirus activity of different tritylated pyrimidine and purine nucleoside analogues. ChemistryOpen, 2016, 5(3), 227-235.
[http://dx.doi.org/10.1002/open.201500216] [PMID: 27551659]
[41]
Saudi, M.; Zmurko, J.; Kaptein, S.; Rozenski, J.; Neyts, J.; Van Aerschot, A. In search of Flavivirus inhibitors part 2: tritylated, diphenylmethylated and other alkylated nucleoside analogues. Eur. J. Med. Chem., 2014, 76, 98-109.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.011] [PMID: 24583349]
[42]
Stahla-Beek, H.J.; April, D.G.; Saeedi, B.J.; Hannah, A.M.; Keenan, S.M.; Geiss, B.J. Identification of a novel antiviral inhibitor of the flavivirus guanylyltransferase enzyme. J. Virol., 2012, 86(16), 8730-8739.
[http://dx.doi.org/10.1128/JVI.00384-12] [PMID: 22674988]
[43]
Lim, S.P.; Wang, Q-Y.; Noble, C.G.; Chen, Y.L.; Dong, H.; Zou, B.; Yokokawa, F.; Nilar, S.; Smith, P.; Beer, D.; Lescar, J.; Shi, P.Y. Ten years of dengue drug discovery: progress and prospects. Antiviral Res., 2013, 100(2), 500-519.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.013] [PMID: 24076358]
[44]
Yin, Z.; Chen, Y-L.; Schul, W.; Wang, Q.Y.; Gu, F.; Duraiswamy, J.; Kondreddi, R.R.; Niyomrattanakit, P.; Lakshminarayana, S.B.; Goh, A.; Xu, H.Y.; Liu, W.; Liu, B.; Lim, J.Y.; Ng, C.Y.; Qing, M.; Lim, C.C.; Yip, A.; Wang, G.; Chan, W.L.; Tan, H.P.; Lin, K.; Zhang, B.; Zou, G.; Bernard, K.A.; Garrett, C.; Beltz, K.; Dong, M.; Weaver, M.; He, H.; Pichota, A.; Dartois, V.; Keller, T.H.; Shi, P.Y. An adenosine nucleoside inhibitor of dengue virus. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20435-20439.
[http://dx.doi.org/10.1073/pnas.0907010106] [PMID: 19918064]
[45]
Chen, Y-L.; Yin, Z.; Duraiswamy, J.; Schul, W.; Lim, C.C.; Liu, B.; Xu, H.Y.; Qing, M.; Yip, A.; Wang, G.; Chan, W.L.; Tan, H.P.; Lo, M.; Liung, S.; Kondreddi, R.R.; Rao, R.; Gu, H.; He, H.; Keller, T.H.; Shi, P.Y. Inhibition of dengue virus RNA synthesis by an adenosine nucleoside. Antimicrob. Agents Chemother., 2010, 54(7), 2932-2939.
[http://dx.doi.org/10.1128/AAC.00140-10] [PMID: 20457821]
[46]
McDowell, M.; Gonzales, S.R.; Kumarapperuma, S.C.; Jeselnik, M.; Arterburn, J.B.; Hanley, K.A. A novel nucleoside analog, 1-β-d-ribofuranosyl-3-ethynyl-[1,2,4]triazole (ETAR), exhibits efficacy against a broad range of flaviviruses in vitro. Antiviral Res., 2010, 87(1), 78-80.
[http://dx.doi.org/10.1016/j.antiviral.2010.04.007] [PMID: 20416341]
[47]
Chung, D.H.; Kumarapperuma, S.C.; Sun, Y.; Li, Q.; Chu, Y.K.; Arterburn, J.B.; Parker, W.B.; Smith, J.; Spik, K.; Ramanathan, H.N.; Schmaljohn, C.S.; Jonsson, C.B. Synthesis of 1-beta-D-ribofuranosyl-3-ethynyl-[1,2,4]triazole and its in vitro and in vivo efficacy against Hantavirus. Antiviral Res., 2008, 79(1), 19-27.
[http://dx.doi.org/10.1016/j.antiviral.2008.02.003] [PMID: 18394724]
[48]
Bretner, M.; Baier, A.; Kopańska, K.; Najda, A.; Schoof, A.; Reinholz, M.; Lipniacki, A.; Piasek, A.; Kulikowski, T.; Borowski, P. Synthesis and biological activity of 1H-benzotriazole and 1H-benzimidazole analogues--inhibitors of the NTpase/helicase of HCV and of some related Flaviviridae. Antivir. Chem. Chemother., 2005, 16(5), 315-326.
[http://dx.doi.org/10.1177/095632020501600504] [PMID: 16245647]
[49]
Nitsche, C.; Schreier, V.N.; Behnam, M.A.; Kumar, A.; Bartenschlager, R.; Klein, C.D. Thiazolidinone-peptide hybrids as dengue virus protease inhibitors with antiviral activity in cell culture. J. Med. Chem., 2013, 56(21), 8389-8403.
[http://dx.doi.org/10.1021/jm400828u] [PMID: 24083834]
[50]
Du, Y.; Ye, H.; Gill, T.; Wang, L.; Guo, F.; Cuconati, A.; Guo, J.T.; Block, T.M.; Chang, J.; Xu, X. N-Alkyldeoxynojirimycin derivatives with novel terminal tertiary amide substitution for treatment of bovine viral diarrhea virus (BVDV), Dengue, and Tacaribe virus infections. Bioorg. Med. Chem. Lett., 2013, 23(7), 2172-2176.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.108] [PMID: 23453839]
[51]
Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. A ligand binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 6986-6991.
[http://dx.doi.org/10.1073/pnas.0832193100] [PMID: 12759475]
[52]
Jadav, S.S.; Kaptein, S.; Timiri, A.; De Burghgraeve, T.; Badavath, V.N.; Ganesan, R.; Sinha, B.N.; Neyts, J.; Leyssen, P.; Jayaprakash, V. Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(8), 1747-1752.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.059] [PMID: 25791449]
[53]
Vernekar, S.K.V.; Qiu, L.; Zhang, J.; Kankanala, J.; Li, H.; Geraghty, R.J.; Wang, Z. 5′-Silylated 3′-1,2,3-triazolyl thymidine analogues as inhibitors of West Nile virus and dengue virus. J. Med. Chem., 2015, 58(9), 4016-4028.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00327] [PMID: 25909386]
[54]
Pridgeon, J.W.; Becnel, J.J.; Bernier, U.R.; Clark, G.G.; Linthicum, K.J. Structure-activity relationships of 33 carboxamides as toxicants against female Aedes aegypti (Diptera: Culicidae). J. Med. Entomol., 2010, 47(2), 172-178.
[http://dx.doi.org/10.1093/jmedent/47.2.172] [PMID: 20380297]
[55]
Saudi, M.; Zmurko, J.; Kaptein, S.; Rozenski, J.; Neyts, J.; Van Aerschot, A. Synthesis and evaluation of imidazole-4,5- and pyrazine-2,3-dicarboxamides targeting dengue and yellow fever virus. Eur. J. Med. Chem., 2014, 87, 529-539.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.062] [PMID: 25285371]
[56]
Oliveira, V.S.; Pimenteira, C.; da Silva-Alves, D.C.; Leal, L.L.; Neves-Filho, R.A.; Navarro, D.M.; Santos, G.K.; Dutra, K.A.; dos Anjos, J.V.; Soares, T.A. The enzyme 3-hydroxykynurenine transaminase as potential target for 1,2,4-oxadiazoles with larvicide activity against the dengue vector Aedes aegypti. Bioorg. Med. Chem., 2013, 21(22), 6996-7003.
[http://dx.doi.org/10.1016/j.bmc.2013.09.020] [PMID: 24095017]
[57]
Tok, F.; Kocyigit-Kaymakcioglu, B.; Tabanca, N.; Estep, A.S.; Gross, A.D.; Geldenhuys, W.J.; Becnel, J.J.; Bloomquist, J.R. Synthesis and structure-activity relationships of carbohydrazides and 1,3,4-oxadiazole derivatives bearing an imidazolidine moiety against the yellow fever and dengue vector, Aedes aegypti. Pest Manag. Sci., 2018, 74(2), 413-421.
[http://dx.doi.org/10.1002/ps.4722] [PMID: 28869331]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy