Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

An Overview of Metal-organic Frameworks-based Acid/Base Catalysts for Biofuel Synthesis

Author(s): Qiuyun Zhang*, Yutao Zhang, Jingsong Cheng, Hu Li* and Peihua Ma

Volume 24, Issue 16, 2020

Page: [1876 - 1891] Pages: 16

DOI: 10.2174/1385272824999200726230556

Price: $65

Abstract

Biofuel synthesis is of great significance for producing alternative fuels. Among the developed catalytic materials, the metal-organic framework-based hybrids used as acidic, basic, or supported catalysts play major roles in the biodiesel production. This paper presents a timely and comprehensive review of recent developments on the design and preparation of metal-organic frameworks-based catalysts used for biodiesel synthesis from various oil feedstocks, including MILs-based catalysts, ZIFs-based catalysts, UiO-based catalysts, Cu-BTC-based catalysts, and MOFs-derived porous catalysts. Due to their unique and flexible structures, excellent thermal and hydrothermal stability, and tunable host-guest interactions, as compared with other heterogeneous catalysts, metal-organic framework-based catalysts have good opportunities for application in the production of biodiesel at industrial scale.

Keywords: Metal-organic frameworks, heterogeneous catalysis, biofuels, biodiesel, recyclability, MILs-based catalysts.

Graphical Abstract
[1]
Lee, A.F.; Bennett, J.A.; Manayil, J.C.; Wilson, K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem. Soc. Rev., 2014, 43(22), 7887-7916.
[http://dx.doi.org/10.1039/C4CS00189C] [PMID: 24957179]
[2]
Li, H.; Guo, H.; Su, Y.; Hiraga, Y.; Fang, Z.; Hensen, E.J.M.; Watanabe, M.; Smith, R.L. N-formyl-stabilizing quasi-catalytic species afford rapid and selective solvent-free amination of biomass-derived feedstocks. Nat. Commun., 2019, 10(1), 1-13.
[http://dx.doi.org/10.1038/s41467-019-08577-4] [PMID: 30741927]
[3]
Rahman, N.J.A.A.; Ramli, K.; Jumbri, Y. Uemura. Biodiesel production from N. oculata microalgae lipid in the presence of Bi2O3/ZrO2 catalysts. Waste Biomass Valoriz., 2020, 11, 553-564.
[http://dx.doi.org/10.1007/s12649-019-00619-8]
[4]
Zhang, Q.Y.; Zhao, L.; Deng, T.L.; Zhang, Y.T.; Li, H. Catalytic production of biodiesel from esterification of lauric acid over a solid acid hybrid. Biointerface Res. Appl. Chem., 2020, 10, 5760-5764.
[http://dx.doi.org/10.33263/BRIAC104.760764]
[5]
Pugazhendhi, A.; Alagumalai, A.; Mathimani, T.; Atabani, A.E. Optimization, kinetic and thermodynamic studies on sustainable biodiesel production from waste cooking oil: an Indian perspective. Fuel, 2020, 273117725
[http://dx.doi.org/10.1016/j.fuel.2020.117725]
[6]
Li, H.; Zhang, Q.Y.; Bhadury, P.S.; Yang, S. Furan-type compounds from carbohydrates via heterogeneous catalysis. Curr. Org. Chem., 2014, 18, 547-597.
[http://dx.doi.org/10.2174/13852728113176660138]
[7]
Su, F.; Guo, Y. Advancements in solid acid catalysts for biodiesel production. Green Chem., 2014, 16(6), 2934-2957.
[http://dx.doi.org/10.1039/C3GC42333F]
[8]
Zhang, H.; Xu, C.C.; Zhou, K.; Yang, S. Chemo-catalytic esterification and transesterification over organic polymer-based catalysts for biodiesel synthesis. Curr. Org. Chem., 2019, 23(20), 2190-2203.
[http://dx.doi.org/10.2174/1385272823666190715124659]
[9]
Mardhiah, H.H.; Ong, H.C.; Masjuki, H.H.; Lim, S.; Lee, H.V. Review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew. Sustain. Energy Rev., 2017, 67, 1225-1236.
[http://dx.doi.org/10.1016/j.rser.2016.09.036]
[10]
Zhang, Q.Y.; Li, H.; Liu, X.F.; Qin, W.T.; Zhang, Y.P.; Xue, W.; Yang, S. Modified porous Zr-Mo mixed oxides as strong acid catalysts for biodiesel production. Energy Technol. (Weinheim), 2013, 1, 735-742.
[http://dx.doi.org/10.1002/ente.201300109]
[11]
Pan, H.; Li, H.; Zhang, H.; Wang, A.P.; Yang, S. Functional nanomaterials-catalyzed production of biodiesel. Curr. Nanosci., 2020, 16, 376-391.
[http://dx.doi.org/10.2174/1573413715666190411142820]
[12]
Di Serio, M.; Tesser, R.; Pengmei, L.; Santacesaria, E. Heterogeneous catalysts for biodiesel production. Energy Fuels, 2008, 22, 207-217.
[http://dx.doi.org/10.1021/ef700250g]
[13]
Wang, A.P.; Sudarsanam, P.; Xu, Y.F.; Zhang, H.; Li, H.; Yang, S. Functionalized magnetic nano-sized materials for efficient biodiesel synthesis via acid-base/enzyme catalysis. Green Chem., 2020, 22, 2977-3012.
[http://dx.doi.org/10.1039/D0GC00924E]
[14]
Soler, L.; Illanes, A.; Wilson, L. Immobilization of Alcaligenes sp. lipase as catalyst for the transesterification of vegetable oils to produce biodiesel. Catal. Today, 2016, 259, 177-182.
[http://dx.doi.org/10.1016/j.cattod.2015.06.025]
[15]
Pan, H.; Liu, Y.N.; Xia, Q.N.; Zhang, H.; Guo, L.; Li, H.; Jiang, L.C.; Yang, S. Synergetic combination of a mesoporous polymeric acid and a base enables highly efficient heterogeneous catalytic one-pot conversion of crude Jatropha oil into biodiesel. Green Chem., 2020, 22, 1698-1709.
[http://dx.doi.org/10.1039/C9GC04135D]
[16]
Bouaid, A.; Vázquez, R.; Martinez, M.; Aracil, J. Effect of free fatty acids contents on biodiesel quality. Pilot plant studies. Fuel, 2016, 174, 54-62.
[http://dx.doi.org/10.1016/j.fuel.2016.01.018]
[17]
Li, H.; Fang, Z.; Smith, R.L.; Yang, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Pror. Energy Combust. Sci., 2016, 55, 98-194.
[http://dx.doi.org/10.1016/j.pecs.2016.04.004]
[18]
Zhang, Q.Y.; Ling, D.; Lei, D.D.; Deng, T.L.; Zhang, Y.T.; Ma, P.H. Synthesis and catalytic properties of nickel salts of Keggin-type heteropolyacids embedded metal-organic framework hybrid nanocatalyst. Green Process Synth., 2020, 9, 131-138.
[http://dx.doi.org/10.1515/gps-2020-0014]
[19]
Ibrahim, N.A.; Rashid, U.; Choong, T.S.Y.; Nehdi, I.A. Synthesis of nanomagnetic sulphonated impregnated Ni/Mn/Na2SiO3 as catalyst for esterification of palm fatty acid distillate. RSC Advances, 2020, 10, 6098-6108.
[http://dx.doi.org/10.1039/C9RA08115A]
[20]
Li, H.; Li, Y.; Fang, Z.; Smith, R.L. Efficient catalytic transfer hydrogenation of biomass-based furfural to furfuryl alcohol with recycable Hf-phenylphosphonate nanohybrids. Catal. Today, 2019, 319, 84-92.
[http://dx.doi.org/10.1016/j.cattod.2018.04.056]
[21]
Li, H.; Yang, S.; Saravanamurugan, S.; Riisager, A. Glucose isomerization by enzymes and chemo-catalysts: status and current advances. ACS Catal., 2017, 7, 3010-3029.
[http://dx.doi.org/10.1021/acscatal.6b03625]
[22]
Zhang, Q.Y.; Zhang, Y.T.; Deng, T.L.; Wei, F.F.; Jin, J.X.; Ma, P.H. Sustainable production of biodiesel over heterogeneous acid catalysts.Biomass, Biofuels, Biochemicals: Recent Advances in Development of Platform Chemicals; Elsevier, 2020, pp. 407-432.
[http://dx.doi.org/10.1016/B978-0-444-64307-0.00016-0]
[23]
Kang, Y.S.; Lu, Y.; Chen, K.; Zhao, Y.; Wang, P.; Sun, W.Y. Metal-organic frameworks with catalytic centers: From synthesis to catalytic application. Coord. Chem. Rev., 2019, 378, 262-280.
[http://dx.doi.org/10.1016/j.ccr.2018.02.009]
[24]
Rasheed, T.; Rizwan, K.; Bilal, M.; Iqbal, H.M.N. Metal-organic framework-based engineered materials-fundamentals and applications. Molecules, 2020, 25(7), 1598.
[http://dx.doi.org/10.3390/molecules25071598] [PMID: 32244456]
[25]
Zhang, J.H.; Hu, Y.; Qin, J.X.; Yang, Z.X.; Fu, M.L. TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chem. Eng. J., 2020, 385123814
[http://dx.doi.org/10.1016/j.cej.2019.123814]
[26]
Zhang, Q.Y.; Liu, X.F.; Yang, T.T.; Yue, C.Y.; Pu, Q.L.; Zhang, Y.T. Facile synthesis of polyoxometalates tethered to post Fe-BTC frameworks for esterification of free fatty acids to biodiesel. RSC Advances, 2019, 9, 8113-8120.
[http://dx.doi.org/10.1039/C8RA10574J]
[27]
Li, D.D.; Xu, H.Q.; Jiao, L.; Jiang, H.L. Metal-organic frameworks for catalysis: state of the art, challenges, and opportunities. EnergyChem, 2019, 1100005
[http://dx.doi.org/10.1016/j.enchem.2019.100005]
[28]
Lin, Z.Z.; Luo, M.T.; Zhang, Y.D.; Wu, X.X.; Fu, Y.H.; Zhang, F.M.; Zhu, W.D. Coupling Ru nanoparticles and sulfonic acid moieties on single MIL-101 microcrystals for upgrading methyl levulinate into γ-valerolactone. Appl. Catal. A Gen., 2018, 563, 54-63.
[http://dx.doi.org/10.1016/j.apcata.2018.06.027]
[29]
Li, W.; Wang, K.; Huang, J.; Liu, X.; Fu, D.; Huang, J.; Li, Q.; Zhan, G. MxOy-ZrO2 (M = Zn, Co, Cu) solid solutions derived from schiff base-bridged UiO-66 composites as high-performance catalysts for CO2 hydrogenation. ACS Appl. Mater. Interfaces, 2019, 11(36), 33263-33272.
[http://dx.doi.org/10.1021/acsami.9b11547] [PMID: 31429544]
[30]
Zhang, D.J.; Wang, Z.M.; Li, J.K.; Hu, C.M.; Zhang, X.B.; Jiang, B.; Cao, Z.; Zhang, J.C.; Zhang, R.C. MOF-derived ZnCO2O4 porous micro-rice with enhanced electro-catalytic activity for the oxygen evolution reaction and glucose oxidation. RSC Advances, 2020, 10, 9063-9069.
[http://dx.doi.org/10.1039/C9RA08723K]
[31]
Xu, J.X.; Ji, Q.J.; Yan, X.M.; Wang, C.; Wang, L. Ni(acac)2/Mo-MOF-derived difunctional MoNi@MoO2cocatalyst to enhance the photocatalytic H2evolution activity of g-C3N4. Appl. Catal. B, 2020, 268118739
[http://dx.doi.org/10.1016/j.apcatb.2020.118739]
[32]
Mishra, V.K.; Goswami, R. A review of production, properties and advantages of biodiesel. Biofuels, 2018, 9, 273-289.
[http://dx.doi.org/10.1080/17597269.2017.1336350]
[33]
Dias, A.P.S.; Ramos, M.; Catarino, M.; Puna, J.; Gomes, J. Solvent assisted biodiesel production by co-processing beef tallow and soybean oil over calcium catalysts. Waste Biomass Valoriz., 2019, 2019, 1-11.
[http://dx.doi.org/10.1007/s12649-019-00903-7]
[34]
Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Norhasyima, R.S. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review. Renew. Sustain. Energy Rev., 2011, 15, 3501-3515.
[http://dx.doi.org/10.1016/j.rser.2011.05.005]
[35]
Zhang, Q.Y.; Wei, F.F.; Ma, P.H.; Zhang, Y.T.; Wei, F.H.; Chen, H.L. Mesoporous Al-Mo oxides as an effective and stable catalyst for the synthesis of biodiesel from the esterification of free-fatty acids in non-edible oils. Waste Biomass Valoriz., 2018, 9, 911-918.
[http://dx.doi.org/10.1007/s12649-017-9865-5]
[36]
dos Santos, T.C.; Santos, E.C.S.; Dias, J.P.; Barreto, J.; Stavale, F.L.; Ronconi, C.M. Reduced graphene oxide as an excellent platform to produce a stable Brønsted acid catalyst for biodiesel production. Fuel, 2019, 256115793
[http://dx.doi.org/10.1016/j.fuel.2019.115793]
[37]
Zhang, C.Y.; Shao, W.L.; Zhou, W.X.; Liu, Y.; Han, Y.Y.; Zheng, Y.; Liu, Y.J. Biodiesel production by esterification reaction on K+ modified MgAl-hydrotalcites catalysts. Catalysts, 2019, 9, 742.
[http://dx.doi.org/10.3390/catal9090742]
[38]
Naderi, F.; Nayebzadeh, H. Performance and stability assessment of Mg-Al-Fe nanocatalyst in the transesterification of sunflower oil: effect of Al/Fe molar ratio. Ind. Crops Prod., 2019, 141111814
[http://dx.doi.org/10.1016/j.indcrop.2019.111814]
[39]
Thoai, D.N.; Chanakaewsomboon, I.; Prasertsit, K.; Photaworn, S.; Tongurai, C. A novel inspection of mechanisms in conversion of refined palm oil to biodiesel with alkaline catalyst. Fuel, 2019, 256115831
[http://dx.doi.org/10.1016/j.fuel.2019.115831]
[40]
Jiao, J.; Gai, Q.Y.; Wei, F.Y.; Luo, M.; Wang, W.; Fu, Y.J.; Zu, Y.G. Biodiesel from Forsythia suspense [(Thunb.) Vahl (Oleaceae)] seed oil. Bioresour. Technol., 2013, 143, 653-656.
[http://dx.doi.org/10.1016/j.biortech.2013.06.018] [PMID: 23816358]
[41]
Laviola, B.G.; Rodrigues, E.V.; Teodoro, P.E.; de Azevedo Peixoto, L.; Bhering, L.L. Biometric and biotechnology strategies in Jatropha genetic breeding for biodiesel production. Renew. Sustain. Energy Rev., 2017, 76, 894-904.
[http://dx.doi.org/10.1016/j.rser.2017.03.116]
[42]
Pan, H.; Li, H.; Liu, X.F.; Zhang, H.; Yang, K.L.; Huang, S.; Yang, S. Mesoporous polymeric solid acid as efficient catalyst for (trans)esterification of crude Jatropha curcas oil. Fuel Process. Technol., 2016, 150, 50-57.
[http://dx.doi.org/10.1016/j.fuproc.2016.04.035]
[43]
Zhang, Q.; Li, H.; Yang, S. Facile and low-cost synthesis of mesoporous Ti-Mo bi-metal oxide catalysts for biodiesel production from esterification of free fatty acids in Jatropha curcas crude oil. J. Oleo Sci., 2018, 67(5), 579-588.
[http://dx.doi.org/10.5650/jos.ess17231] [PMID: 29628490]
[44]
Muthukumaran, C.; Praniesh, R.; Navamani, P.; Swathi, R.; Sharmila, G.; Kumar, N.M. Process optimization and kinetic modeling of biodiesel production using non-edible Madhuca indica oil. Fuel, 2017, 195, 217-225.
[http://dx.doi.org/10.1016/j.fuel.2017.01.060]
[45]
Sahafi, S.M.; Ahmadibeni, A.; Talebi, A.F.; Goli, S.A.H.; Aghbashlo, M.; Tabatabaei, M. Seed oils of Sisymbrium irio and Sisymbrium sophia as a potential non-edible feedstock for biodiesel production. Biofuels, 2018, 2018(1), 1-9.
[http://dx.doi.org/10.1080/17597269.2018.1457315]
[46]
Ayoob, A.K.; Fadhil, A.B. Valorization of waste tires in the synthesis of an effective carbon based catalyst for biodiesel production from a mixture of non-edible oils. Fuel, 2020, 264116754
[http://dx.doi.org/10.1016/j.fuel.2019.116754]
[47]
Anjum, S.S.; Prakash, O.; Pal, A. Conversion of non-edible Argemone mexicana seed oil into biodiesel through the transesterification process. Energ. Source. Part A, 2019, 41(19), 2356-2363.
[http://dx.doi.org/10.1080/15567036.2018.1563244 ]
[48]
Sun, N.; Zhang, M.H.; Dong, X.Q.; Wang, L.T. Preparation of sulfonated ordered mesoporous carbon catalyst and its catalytic performance for esterification of free fatty acids in waste cooking oils. RSC Advances, 2019, 9, 15941-15948.
[http://dx.doi.org/10.1039/C9RA02546D]
[49]
Gardy, J.; Osatiashtiani, A.; Céspedes, O.; Hassanpour, A.; Lai, X.J.; Lee, A.F.; Wilson, K.; Rehan, M. A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Appl. Catal. B, 2018, 234, 268-278.
[http://dx.doi.org/10.1016/j.apcatb.2018.04.046]
[50]
Panchal, B.; Chang, T.; Qin, S.J.; Sun, Y.Z.; Wang, J.X.; Bian, K. Optimization and kinetics of tung nut oil transesterification with methanol using novel solid acidic ionic liquid polymer as catalyst for methyl ester synthesis. Renew. Energy, 2020, 151, 796-804.
[http://dx.doi.org/10.1016/j.renene.2019.11.066]
[51]
Vicente, G.; Carrero, A.; Rodríguez, R.; del Peso, G.L. Heterogeneous-catalysed direct transformation of microalga biomass into Biodiesel-Grade FAMEs. Fuel, 2017, 200, 590-598.
[http://dx.doi.org/10.1016/j.fuel.2017.04.006]
[52]
Rana, A.; Alghazal, M.S.M.; Alsaeedi, M.M.; Bakdash, R.S.; Basheer, C.; Al-Saadi, A.A. Preparation and characterization of biomass carbon-based solid acid catalysts for the esterification of marine algae for biodiesel production. BioEnergy Res., 2019, 12, 433-442.
[http://dx.doi.org/10.1007/s12155-019-9965-0]
[53]
Sivagurulingam, A.P.A.; Sivanandi, P.; Pandian, S.; Arumugamurthi, S.S.; Sircar, A. Optimization and kinetic studies on biodiesel production from microalgae (Euglena sanguinea) using calcium methoxide as catalyst. Energ. Source. Part A, 2019, 41, 1497-1507.
[http://dx.doi.org/10.1080/15567036.2018.1549124]
[54]
Horike, S.; Dincǎ, M.; Tamaki, K.; Long, J.R. Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc., 2008, 130(18), 5854-5855.
[http://dx.doi.org/10.1021/ja800669j] [PMID: 18399629]
[55]
Hwang, Y.K.; Hong, D.Y.; Chang, J.S.; Jhung, S.H.; Seo, Y.K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. Engl., 2008, 47(22), 4144-4148.
[http://dx.doi.org/10.1002/anie.200705998] [PMID: 18435442]
[56]
Hartmann, M.; Fischer, M. Amino-functionalized basic catalysts with MIL-101 structure. Microporous Mesoporous Mater., 2012, 164, 38-43.
[http://dx.doi.org/10.1016/j.micromeso.2012.06.044]
[57]
Férey, G.; Draznieks, C.M.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743), 2040-2042.
[http://dx.doi.org/10.1126/science.1116275] [PMID: 16179475]
[58]
Jiang, X.; Wang, Z.; Wang, H.; Zhuo, Y.; Yuan, R.; Chai, Y. A novel metal-organic framework loaded with abundant N-(aminobutyl)-N-(ethylisoluminol) as a high-efficiency electrochemiluminescence indicator for sensitive detection of mucin1 on cancer cells. Chem. Commun. (Camb.), 2017, 53(70), 9705-9708.
[http://dx.doi.org/10.1039/C7CC05495E] [PMID: 28786441]
[59]
Ma, L.J.; Xu, L.; Jiang, H.R.; Yuan, X. Comparative research on three types of MIL-101(Cr)-SO3H for esterification of cyclohexene with formic acid. RSC Advances, 2019, 9, 5692-5700.
[http://dx.doi.org/10.1039/C8RA10366F]
[60]
Hasan, Z.; Jun, J.W.; Jhung, S.H. Sulfonic acid-functionalized MIL-101(Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol. Chem. Eng. J., 2015, 278, 265-271.
[http://dx.doi.org/10.1016/j.cej.2014.09.025]
[61]
de la Iglesia, Ó.; Sorribas, S.; Almendro, E.; Zornoza, B.; Téllez, C.; Coronas, J. Metal-organic framework MIL-101(Cr) based mixed matrix membranes for esterification of ethanol and acetic acid in a membrane reactor. Renew. Energy, 2016, 88, 12-19.
[http://dx.doi.org/10.1016/j.renene.2015.11.025]
[62]
Ribeiro, S.; Barbosa, A.D.S.; Gomes, A.C.; Pillinger, M.; Gonçalves, I.S.; Silva, L.C.; Balula, S.S. Catalytic oxidative desulfurization systems based on Keggin phosphotungstate and metal-organic framework MIL-101. Fuel Process. Technol., 2013, 116, 350-357.
[http://dx.doi.org/10.1016/j.fuproc.2013.07.011]
[63]
Han, M.J.; Gu, Z.; Chen, C.; Wu, Z.W.; Que, Y.G.; Wang, Q.; Wan, H.; Guan, G.F. Efficient confinement of ionic liquids in MIL-100(Fe) frameworks by the “impregnation-reaction-encapsulation” strategy for biodiesel production. RSC Advances, 2016, 6, 37110-37117.
[http://dx.doi.org/10.1039/C6RA00579A]
[64]
Han, M.J.; Li, Y.; Gu, Z.; Shi, H.; Chen, C.; Wang, Q.; Wan, H.; Guan, G.F. Immobilization of thiol-functionalized ionic liquids onto the surface of MIL-101(Cr) frameworks by S-Cr coordination bond for biodiesel production. Colloid. Surface. A, 2018, 553, 593-600.
[http://dx.doi.org/10.1016/j.colsurfa.2018.05.085]
[65]
Hassan, H.M.A.; Betiha, M.A.; Mohamed, S.K.; El-Sharkawy, E.A.; Ahmed, E.A. Salen-Zr(IV) complex grafted into amine-tagged MIL-101(Cr) as a robust multifunctional catalyst for biodiesel production and organic transformation reactions. Appl. Surf. Sci., 2017, 412, 394-404.
[http://dx.doi.org/10.1016/j.apsusc.2017.03.247]
[66]
Nikseresht, A.; Daniyali, A.; Ali-Mohammadi, M.; Afzalinia, A.; Mirzaie, A. Ultrasound-assisted biodiesel production by a novel composite of Fe(III)-based MOF and phosphotangestic acid as efficient and reusable catalyst. Ultrason. Sonochem., 2017, 37, 203-207.
[http://dx.doi.org/10.1016/j.ultsonch.2017.01.011] [PMID: 28427624]
[67]
Xie, W.L.; Wan, F. Biodiesel production from acidic oils using polyoxometalate-based sulfonated ionic liquids functionalized metal-organic frameworks. Catal. Lett., 2019, 149, 2916-2929.
[http://dx.doi.org/10.1007/s10562-019-02800-z]
[68]
Xie, W.L.; Huang, M.Y. Enzymatic production of biodiesel using immobilized lipase on core-shell structured Fe3O4@MIL-100 (Fe) composites. Catalysts, 2019, 9(10), 850.
[http://dx.doi.org/10.3390/catal9100850]
[69]
Phan, D.P.; Lee, E.Y. Phosphoric acid enhancement in a Pt-encapsulated Metal-Organic Framework (MOF) bifunctional catalyst for efficient hydrodeoxygenation of oleic acid from biomass. J. Catal., 2020, 386, 19-29.
[http://dx.doi.org/10.1016/j.jcat.2020.03.024]
[70]
Ammar, M.; Jiang, S.; Ji, S.F. Heteropoly acid encapsulated into zeolite imidazolate framework (ZIF-67) cage as an efficient heterogeneous catalyst for Friedel-Crafts acylation. J. Solid State Chem., 2016, 233, 303-310.
[http://dx.doi.org/10.1016/j.jssc.2015.11.014]
[71]
Malkar, R.S.; Yadav, G.D. Synthesis of cinnamyl benzoate over novel heteropoly acid encapsulated ZIF-8. Appl. Catal. A Gen., 2018, 560, 54-65.
[http://dx.doi.org/10.1016/j.apcata.2018.04.038]
[72]
Cai, G.R.; Ding, M.L.; Wu, Q.Y.; Jiang, H.L. Encapsulating soluble active species into hollow crystalline porous capsules beyond integration of homogeneous and heterogeneous catalysis. Natl. Sci. Rev., 2020, 7, 37-45.
[http://dx.doi.org/10.1093/nsr/nwz147]
[73]
Fazaeli, R.; Aliyan, H. Production of biodiesel through transesterifi cation of soybean oil using ZIF-8@GO doped with sodium and potassium catalyst. Russ. J. Appl. Chem., 2015, 88, 1701-1710.
[http://dx.doi.org/10.1134/S1070427215100237]
[74]
Saeedi, M.; Fazaeli, R.; Aliyan, H. Nanostructured sodium-zeolite imidazolate framework (ZIF-8) doped with potassium by sol-gel processing for biodiesel production from soybean oil. J. Sol-Gel Sci. Technol., 2016, 77, 404-415.
[http://dx.doi.org/10.1007/s10971-015-3867-1]
[75]
Rafiei, S.; Tangestaninejad, S.; Horcajada, P.; Moghadam, M.; Mirkhani, V.; Baltork, I.M.; Kardanpour, R.; Zadehahmadi, F. Efficient biodiesel production using a lipase@ZIF-67 nanobioreactor. Chem. Eng. J., 2018, 334, 1233-1241.
[http://dx.doi.org/10.1016/j.cej.2017.10.094]
[76]
Adnan, M.; Li, K.; Xu, L.; Yan, Y.J. X-shaped ZIF-8 for immobilization Rhizomucor miehei lipase via encapsulation and its application toward biodiesel production. Catalysts, 2018, 8, 96.
[http://dx.doi.org/10.3390/catal8030096]
[77]
Jeona, Y.; Chia, W.S.; Hwang, J.; Kim, D.H.; Kim, J.H.; Shul, Y.G. Core-shell nanostructured heteropoly acid-functionalized metal-organic frameworks: bifunctional heterogeneous catalyst for efficient biodiesel production. Appl. Catal. B, 2019, 242, 51-59.
[http://dx.doi.org/10.1016/j.apcatb.2018.09.071]
[78]
Xie, W.L.; Wan, F. Guanidine post-functionalized crystalline ZIF-90 frameworks as a promising recyclable catalyst for the production of biodiesel via soybean oil transesterification. Energy Convers. Manage., 2019, 198111922
[http://dx.doi.org/10.1016/j.enconman.2019.111922]
[79]
Chang, C.W.; Gong, Z.J.; Huang, N.C.; Wang, C.Y.; Yu, W.Y. MgO nanoparticles confined in ZIF-8 as acid-base bifunctional catalysts for enhanced glycerol carbonate production from transesterification of glycerol and dimethyl carbonate. Catal. Today, 2020, 351, 21-29.
[http://dx.doi.org/10.1016/j.cattod.2019.03.007]
[80]
Narenji-Sani, F.; Tayebee, R.; Chahkandi, M. New task-specific and reusable ZIF-like grafted H6P2W18O62 catalyst for the effective esterification of free fatty acids. ACS Omega, 2020, 5(17), 9999-10010.
[http://dx.doi.org/10.1021/acsomega.0c00358] [PMID: 32391488]
[81]
Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc., 2008, 130(42), 13850-13851.
[http://dx.doi.org/10.1021/ja8057953] [PMID: 18817383]
[82]
Torbina, V.V.; Nedoseykina, N.S.; Ivanchikova, I.D.; Kholdeeva, O.A.; Vodyankina, O.V. Propylene glycol oxidation with hydrogen peroxide over Zr-containing metal-organic framework UiO-66. Catal. Today, 2019, 333, 47-53.
[http://dx.doi.org/10.1016/j.cattod.2018.11.063]
[83]
Ding, J.; Yang, Z.; He, C.; Tong, X.; Li, Y.; Niu, X.; Zhang, H. UiO-66(Zr) coupled with Bi2MoO6 as photocatalyst for visible-light promoted dye degradation. J. Colloid Interface Sci., 2017, 497, 126-133.
[http://dx.doi.org/10.1016/j.jcis.2017.02.060] [PMID: 28282564]
[84]
Zhou, Y.X.; Song, J.L.; Liang, S.G.; Hu, S.Q.; Liu, H.Z.; Jiang, T.; Han, B.X. Metal-organic frameworks as an acid catalyst for the synthesis of ethyl methyl carbonate via transesterification. J. Mol. Catal. Chem., 2009, 308, 68-72.
[http://dx.doi.org/10.1016/j.molcata.2009.03.027]
[85]
Jrad, A.; Abu Tarboush, B.J.; Hmadeh, M.; Ahmad, M. Tuning acidity in zirconium-based metal organic frameworks catalysts for enhanced production of butyl butyrate. Appl. Catal. A Gen., 2019, 570, 31-41.
[http://dx.doi.org/10.1016/j.apcata.2018.11.003]
[86]
Cirujano, F.G.; Corma, A.; Xamena, F.X.L. Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: synthesis of biodiesel and other compounds of interest. Catal. Today, 2015, 257, 213-220.
[http://dx.doi.org/10.1016/j.cattod.2014.08.015]
[87]
Zhou, F.; Lu, N.Y.; Fan, B.B.; Wang, H.G.; Li, R.F. Zirconium-containing UiO-66 as an efficient and reusable catalyst for transesterification of triglyceride with methanol. J. Energy Chem., 2016, 25, 874-879.
[http://dx.doi.org/10.1016/j.jechem.2016.06.003]
[88]
Ullah, L.; Zhao, G.Y.; Xu, Z.C.; He, H.Y.; Usman, M.; Zhang, S.J. 12-Tungstophosphoric acid niched in Zr-based metal-organic framework: a stable and efficient catalyst for Friedel-Crafts acylation. Sci. China Chem., 2018, 61, 402-411.
[http://dx.doi.org/10.1007/s11426-017-9182-0]
[89]
Zhang, Q.Y.; Lei, D.D.; Luo, Q.Z.; Wang, J.L.; Deng, T.L.; Zhang, Y.T.; Ma, P.H. Efficient biodiesel production from oleic acid using metal-organic framework encapsulated Zr-doped polyoxometalate nano-hybrids. RSC Advances, 2020, 10, 8766-8772.
[http://dx.doi.org/10.1039/D0RA00141D]
[90]
Zhang, Q.Y.; Yang, T.T.; Liu, X.F.; Yue, C.Y.; Ao, L.F.; Deng, T.L.; Zhang, Y.T. Heteropoly acid-encapsulated metal–organic framework as a stable and highly efficient nanocatalyst for esterification reaction. RSC Advances, 2019, 9, 16357-16365.
[http://dx.doi.org/10.1039/C9RA03209F]
[91]
Xu, Z.C.; Zhao, G.Y.; Ullah, L.; Wang, M.; Wang, A.Y.; Zhang, Y.Q.; Zhang, S.J. Acidic ionic liquid based UiO-67 type MOFs: a stable and efficient heterogeneous catalyst for esterification. RSC Advances, 2018, 8, 10009-10016.
[http://dx.doi.org/10.1039/C8RA01119B]
[92]
Abou-Elyazed, A.S.; Ye, G.; Sun, Y.Y.; El-Nahas, A.M. A series of UiO-66(Zr)-structured materials with defects as heterogeneous catalysts for biodiesel production. Ind. Eng. Chem. Res., 2019, 58, 21961-21971.
[http://dx.doi.org/10.1021/acs.iecr.9b04344]
[93]
Xie, W.L.; Yang, X.L.; Hu, P.T. Cs2.5H0.5PW12O40 encapsulated in metal-organic framework UiO-66 as heterogeneous catalysts for acidolysis of soybean oil. Catal. Lett., 2017, 147, 2772-2782.
[http://dx.doi.org/10.1007/s10562-017-2189-z]
[94]
Xie, W.L.; Wan, F. Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils. Chem. Eng. J., 2019, 365, 40-50.
[http://dx.doi.org/10.1016/j.cej.2019.02.016]
[95]
Yang, H.; Li, J.; Wang, L.Y.; Dai, W.; Lv, Y.; Gao, S. Exceptional activity for direct synthesis of phenol from benzene over PMoV@MOF with O2. Catal. Commun., 2013, 35, 101-104.
[http://dx.doi.org/10.1016/j.catcom.2013.02.013]
[96]
Wu, Y.F.; Lv, Z.Q.; Zhou, X.; Peng, J.J.; Tang, Y.N.; Li, Z. Tuning secondary building unit of Cu-BTC to simultaneously enhance its CO2 selective adsorption and stability under moisture. Chem. Eng. J., 2019, 355, 815-821.
[http://dx.doi.org/10.1016/j.cej.2018.08.179]
[97]
Wee, L.H.; Bajpe, S.R.; Janssens, N.; Hermans, I.; Houthoofd, K.; Kirschhock, C.E.A.; Martens, J.A. Convenient synthesis of Cu3(BTC)2 encapsulated Keggin heteropolyacid nanomaterial for application in catalysis. Chem. Commun. (Camb.), 2010, 46(43), 8186-8188.
[http://dx.doi.org/10.1039/c0cc01447h] [PMID: 20927469]
[98]
Kayaert, S.; Bajpe, S.; Masschaele, K.; Breynaert, E.; Kirschhock, C.E.A.; Martens, J.A. Direct growth of Keggin polyoxometalates incorporated copper 1,3,5-benzenetricarboxylate metal organic framework films on a copper metal substrate. Thin Solid Films, 2011, 519, 5437-5440.
[http://dx.doi.org/10.1016/j.tsf.2011.03.012]
[99]
Wee, L.H.; Janssens, N.; Bajpe, S.R.; Kirschhock, C.E.A.; Martens, J.A. Heteropolyacid encapsulated in Cu3(BTC)2 nanocrystals: an effective esterification catalyst. Catal. Today, 2011, 171, 275-280.
[http://dx.doi.org/10.1016/j.cattod.2011.03.017]
[100]
Liu, Y.; Liu, S.; He, D.; Li, N.; Ji, Y.; Zheng, Z.; Luo, F.; Liu, S.; Shi, Z.; Hu, C. Crystal facets make a profound difference in polyoxometalate-containing metal-organic frameworks as catalysts for biodiesel production. J. Am. Chem. Soc., 2015, 137(39), 12697-12703.
[http://dx.doi.org/10.1021/jacs.5b08273] [PMID: 26387862]
[101]
Xie, W.L.; Wan, F. Basic ionic liquid functionalized magnetically responsive Fe3O4@HKUST-1 composites used for biodiesel production. Fuel, 2018, 220, 248-256.
[http://dx.doi.org/10.1016/j.fuel.2018.02.014]
[102]
Pangestu, T.; Kurniawan, Y.; Soetaredjo, F.E.; Santoso, S.P.; Irawaty, W.; Yuliana, M.; Hartono, S.B.; Ismadji, S. The synthesis of biodiesel using copper based metal-organic framework as a catalyst. J. Environ. Chem. Eng., 2019, 7103277
[http://dx.doi.org/10.1016/j.jece.2019.103277]
[103]
Guo, T.M.; Qiu, M.; Qi, X.H. Selective conversion of biomass-derived levulinic acid to ethyl levulinate catalyzed by Metal Organic Framework (MOF)-supported polyoxometalates. Appl. Catal. A Gen., 2019, 572, 168-175.
[http://dx.doi.org/10.1016/j.apcata.2019.01.004]
[104]
Jiang, H.R.; Lu, B.; Ma, L.J.; Yuan, X. Effect of crystal form control on improving performance of Cu3(BTC)2 immobilized phosphotungstic acid in esterification of cyclohexene with formic acid. Catal. Lett., 2020, 150, 1786-1797.
[http://dx.doi.org/10.1007/s10562-019-03090-1]
[105]
Zhang, Q.Y.; Yue, C.Y.; Ao, L.F.; Lei, D.D.; Ling, D.; Yang, D.; Zhang, Y.T. Facile one-pot synthesis of Cu-BTC metal-organic frameworks supported Keggin phosphomolybdic acid for esterification reactions. Energ. Source. Part A, 2019, 2019, 1-12.
[http://dx.doi.org/10.1080/15567036.2019.1651794]
[106]
Zhang, Q.; Ling, D.; Lei, D.; Wang, J.; Liu, X.; Zhang, Y.; Ma, P. Green and facile synthesis of metal-organic framework Cu-BTC-supported Sn (II)-substituted Keggin heteropoly composites as an esterification nanocatalyst for biodiesel production. Front Chem., 2020, 8, 129.
[http://dx.doi.org/10.3389/fchem.2020.00129] [PMID: 32257993]
[107]
Rodríguez, R.P.; López, E.M.; Guerrero, A.; Chiñas, L.E.; González, D.F.H.; Rivera, J.M. Hydrothermal synthesis of cobalt (II) 3D metal-organic framework acid catalyst applied in the transesterification process of vegetable oil. Mater. Lett., 2018, 217, 117-119.
[http://dx.doi.org/10.1016/j.matlet.2018.01.052]
[108]
Sargazi, G.; Afzali, D.; Ebrahimi, A.K.; Dalfard, A.B.; Malekabadi, S.; Karami, Z. Ultrasound assisted reverse micelle efficient synthesis of new Ta-MOF@ Fe3O4 core/shell nanostructures as a novel candidate for lipase immobilization. Mater. Sci. Eng. C, 2018, 93, 768-775.
[http://dx.doi.org/10.1016/j.msec.2018.08.041] [PMID: 30274110]
[109]
Li, Q.; Chen, Y.; Bai, S.; Shao, X.; Jiang, L.; Li, Q. Immobilized lipase in bio-based metal-organic frameworks constructed by biomimetic mineralization: a sustainable biocatalyst for biodiesel synthesis. Colloid. Surface B, 2020, 188110812
[http://dx.doi.org/10.1016/j.colsurfb.2020.110812] [PMID: 31981814]
[110]
Marso, T.M.M.; Kalpage, C.S.; Ganehenege, M.Y.U. Application of chromium and cobalt terephthalate metal organic frameworks as catalysts for the production of biodiesel from Calophyllum inophyllum oil in high yield under mild conditions. J. Inorg. Organomet. Polym. Mater., 2020, 30, 1243-1265.
[http://dx.doi.org/10.1007/s10904-019-01251-8]
[111]
AbdelSalam, H.; El-Maghrbi, H.H.; Zahran, F.; Zaki, T. Microwave-assisted production of biodiesel using metal-organic framework Mg3(bdc)3(H2O)2. Korean J. Chem. Eng., 2020, 37(4), 670-676.
[http://dx.doi.org/10.1007/s11814-020-0491-8]
[112]
Jagadeesh, R.V.; Murugesan, K.; Alshammari, A.S.; Neumann, H.; Pohl, M.M.; Radnik, J.; Beller, M. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 2017, 358(6361), 326-332.
[http://dx.doi.org/10.1126/science.aan6245] [PMID: 28935769]
[113]
Liu, T.K.; Hong, X.L.; Liu, G.L. In situ generation of Cu@3D-ZrOx framework catalyst for selective methanol synthesis from CO2/H2. ACS Catal., 2020, 10, 93-102.
[http://dx.doi.org/10.1021/acscatal.9b03738]
[114]
Liang, R.W.; Liang, Z.Y.; Chen, F.; Xie, D.H.; Wu, Y.L.; Wang, X.X.; Yan, G.Y.; Wu, L. Sodium dodecyl sulfate-decorated MOF-derived porous Fe2O3 nanoparticles: high performance, recyclable photocatalysts for fuel denitrification. Chin. J. Catal., 2020, 41, 188-199.
[http://dx.doi.org/10.1016/S1872-2067(19)63402-9]
[115]
Qin, L.; Ru, R.; Mao, J.W.; Meng, Q.; Fan, Z.; Li, X.; Zhang, G.L. Assembly of MOFs/polymer hydrogel derived Fe3O4-CuO@hollow carbon spheres for photochemical oxidation: freezing replacement for structural adjustment. Appl. Catal. B, 2020, 269118754
[http://dx.doi.org/10.1016/j.apcatb.2020.118754]
[116]
Li, H.; Liu, F.S.; Ma, X.L.; Wu, Z.J.; Li, Y.; Zhang, L.H.; Zhou, S.J.; Helian, Y.X. Catalytic performance of strontium oxide supported by MIL-100(Fe) derivate as transesterification catalyst for biodiesel production. Energy Convers. Manage., 2019, 180, 401-410.
[http://dx.doi.org/10.1016/j.enconman.2018.11.012]
[117]
Li, H.; Liu, F.S.; Ma, X.L.; Cui, P.; Guo, M.; Li, Y.; Gao, Y.; Zhou, S.J.; Yu, M.Z. An efficient basic heterogeneous catalyst synthesis of magnetic mesoporous Fe@C support SrO for transesterification. Renew. Energy, 2020, 149, 816-827.
[http://dx.doi.org/10.1016/j.renene.2019.12.118]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy