Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Experimental Animal Models: Tools to Investigate Antidiabetic Activity

Author(s): Rashmi Madhariya, Bhupendra Dixena, Alpana Ram, Amber Vyas and Akhlesh Kumar Jain*

Volume 29, Issue 2, 2023

Published on: 03 January, 2023

Page: [79 - 94] Pages: 16

DOI: 10.2174/1381612829666221220115649

Price: $65

Abstract

About 2.8% of the global population are being suffered from Diabetes mellitus. Diabetes mellitus is a group of metabolic disorders that is characterized by an absolute lack of insulin and resulting in hyperglycemia. To overcome the challenges, many antidiabetic drugs are being used, and research is being carried out in search of more effective anti-diabetic drugs. To study the effectiveness of antidiabetic drugs, many diabetic models, chemicals, and diabetogenic hormones were used at the research level. In this review, we summarised various animal models used, chemicals that induce diabetes, their properties, and the mechanism of action of these models. Further, diabetes mellitus is generally induced in laboratory animals by several methods that include: chemical, surgical and genetic manipulations. To better understand both the pathogenesis and potential therapeutic agents, appropriate animal models of type 1 & type 2 diabetes mellitus are needed. However, for an animal model to have relevance to the study of diabetes, either the characteristics of the animal model should mirror the pathophysiology and natural history of diabetes or the model should develop complications of diabetes with an etiology similar to that of the human condition. There appears to be no single animal model that encompasses all of these characteristics, but there are many that provide very similar characteristics in one or more aspects of diabetes in humans. The use of the appropriate animal model based on these similarities can provide much-needed data on pathophysiological mechanisms operative in human diabetes.

Keywords: Animal model, diabetes mellitus, hormones, hyperglycemia, rodent model, non-rodent model, streptozotocin, alloxan, genetic models.

« Previous
[1]
Burrack AL, Martinov T, Fife BT. T cell-mediated beta cell destruction: autoimmunity and alloimmunity in the context of type 1 diabetes. Front Endocrinol 2017; 8: 343.
[http://dx.doi.org/10.3389/fendo.2017.00343] [PMID: 29259578]
[2]
Tripathi V, Verma J. Current updates of Indian antidiabetic medicinal plants. Int J Res Pharm Chem 2014; 4(1): 114-8.
[3]
Garber AJ, Abrahamson MJ, Barzilay JI, et al. American association of clinical endocrinologists’ comprehensive diabetes management algorithm 2013 consensus statement-executive summary. Endocr Pract 2013; 19(3): 536-57.
[http://dx.doi.org/10.4158/EP13176.CS] [PMID: 23816937]
[4]
Blomme EAG, Will Y. Toxicology strategies for drug discovery: Present and future. Chem Res Toxicol 2016; 29(4): 473-504.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00407] [PMID: 26588328]
[5]
Dabravolski SA, Orekhova VA, Baig MS, et al. The role of mitochondrial mutations and chronic inflammation in diabetes. Int J Mol Sci 2021; 22(13): 6733.
[http://dx.doi.org/10.3390/ijms22136733] [PMID: 34201756]
[6]
Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15(11): 635-50.
[http://dx.doi.org/10.1038/s41574-019-0254-y] [PMID: 31534209]
[7]
Colli ML, Szymczak F. Molecular footprints of the immune assault on pancreatic beta cells in type 1 diabetes. Front Endocrinol. 2020; 666.
[8]
Rodriguez-Calvo T, Richardson SJ, Pugliese A. Pancreas pathology during the natural history of type 1 diabetes. Curr Diab Rep 2018; 18(11): 124.
[http://dx.doi.org/10.1007/s11892-018-1084-3] [PMID: 30293191]
[9]
Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: Current concepts and future perspectives. Eur Cardiol 2019; 14(1): 50-9.
[http://dx.doi.org/10.15420/ecr.2018.33.1] [PMID: 31131037]
[10]
D’Adamo E, Caprio S. Type 2 diabetes in youth: Epidemiology and pathophysiology. Diabetes Care 2011; 34 (Suppl. 2): S161-5.
[http://dx.doi.org/10.2337/dc11-s212] [PMID: 21525449]
[11]
Wiederkehr A, Wollheim CB. Minireview: implication of mitochondria in insulin secretion and action. Endocrinology 2006; 147(6): 2643-9.
[http://dx.doi.org/10.1210/en.2006-0057] [PMID: 16556766]
[12]
Hahn A, Zuryn S. Mitochondrial Genome (mtDNA) Mutations that Generate Reactive Oxygen Species. Antioxidants 2019; 8(9): 392.
[13]
DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med 2003; 348(26): 2656-68.
[http://dx.doi.org/10.1056/NEJMra022567] [PMID: 12826641]
[14]
Ježek J, Cooper K, Strich R. Reactive oxygen species and mitochondrial dynamics: The yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants 2018; 7(1): 13.
[http://dx.doi.org/10.3390/antiox7010013] [PMID: 29337889]
[15]
Geto Z, Molla MD, Challa F, Belay Y, Getahun T. Mitochondrial dynamic dysfunction as a main triggering factor for inflammation associated chronic non-communicable diseases. J Inflamm Res 2020; 13: 97-107.
[http://dx.doi.org/10.2147/JIR.S232009] [PMID: 32110085]
[16]
Yaribeygi H, Atkin SL, Sahebkar A. Mitochondrial dysfunction in diabetes and the regulatory roles of antidiabetic agents on the mitochondrial function. J Cell Physiol 2019; 234(6): 8402-10.
[http://dx.doi.org/10.1002/jcp.27754] [PMID: 30417488]
[17]
Kwak SH, Park KS, Lee KU, Lee HK. Mitochondrial metabolism and diabetes. J Diabetes Investig 2010; 1(5): 161-9.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00047.x] [PMID: 24843427]
[18]
Humphreys WG, Will Y, Guengerich FP. Toxicology strategies for drug discovery-present and future: Introduction. ACS Publications 2016; p. 437.
[19]
Islam M, Wilson RD. Experimentally induced rodent models of type 2 diabetes animal models in diabetes research. Springer 2012; pp. 161-74.
[20]
Etuk E. Animals models for studying diabetes mellitus. Agric Biol J N Am 2010; 1(2): 130-4.
[21]
Lieschke GJ, Currie PD. Animal models of human disease: Zebrafish swim into view. Nat Rev Genet 2007; 8(5): 353-67.
[http://dx.doi.org/10.1038/nrg2091] [PMID: 17440532]
[22]
Matteucci E, Giampietro O. Proposal open for discussion: Defining agreed diagnostic procedures in experimental diabetes research. J Ethnopharmacol 2008; 115(2): 163-72.
[http://dx.doi.org/10.1016/j.jep.2007.08.040] [PMID: 17961942]
[23]
Tripathi V, Verma J. Different models used to induce diabetes: A comprehensive review. Int J Pharm Pharm Sci 2014; 6(6): 29-32.
[24]
Rohilla A, Ali S. Alloxan induced diabetes: Mechanisms and effects. Int J Res Pharm Biomed Sci 2012; 3(2): 819-23.
[25]
Avci P, Sadasivam M, Gupta A, et al. Animal models of skin disease for drug discovery. Expert Opin Drug Discov 2013; 8(3): 331-55.
[http://dx.doi.org/10.1517/17460441.2013.761202] [PMID: 23293893]
[26]
Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ. Islet cell transplantation for the treatment of type 1 diabetes: Recent advances and future challenges. Diabetes Metab Syndr Obes 2014; 7: 211-23.
[PMID: 25018643]
[27]
Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E. The use of animal models in the study of diabetes mellitus. In Vivo 2009; 23(2): 245-58.
[PMID: 19414410]
[28]
Al-Awar A, Kupai K, Veszelka M, Szűcs G, Attieh Z, Murlasits Z, et al. Experimental diabetes mellitus in different animal models. J Diabetes Res 2016; 2016.
[http://dx.doi.org/10.1155/2016/9051426]
[29]
Ramesh A, Chhabra P, Brayman K. Pancreatic islet transplantation in type 1 diabetes mellitus: An update on recent developments. Curr Diabetes Rev 2013; 9(4): 294-311.
[http://dx.doi.org/10.2174/15733998113099990063] [PMID: 23721158]
[30]
Bachmanov AA, Reed DR, Tordoff MG, Price RA, Beauchamp GK. Nutrient preference and diet-induced adiposity in C57BL/ 6ByJ and 129P3/J mice. Physiol Behav 2001; 72(4): 603-13.
[http://dx.doi.org/10.1016/S0031-9384(01)00412-7] [PMID: 11282146]
[31]
Coutinho-Silva R, Robson T, Beales PE, Burnstock G. Changes in expression of P2X7 receptors in NOD mouse pancreas during the development of diabetes. Autoimmunity 2007; 40(2): 108-16.
[http://dx.doi.org/10.1080/08916930601118841] [PMID: 17364502]
[32]
Eddouks M, Chattopadhyay D, Zeggwagh NA. Animal models as tools to investigate antidiabetic and anti-inflammatory plants. Evid Based Complement Alternat Med 2012; 2012
[http://dx.doi.org/10.1155/2012/142087]
[33]
Jan SA, Habib N, Shinwari ZK, Ali M, Ali N. The anti-diabetic activities of natural sweetener plant Stevia: An updated review. SN Appl Sci 2021; 3(4): 517.
[http://dx.doi.org/10.1007/s42452-021-04519-2]
[34]
Yeung AWK, Aggarwal BB, Barreca D, et al. Dietary natural products and their potential to influence health and disease including animal model studies. Anim Sci Pap Rep 2018; 36(4): 345-58.
[35]
Bule M, Abdurahman A, Nikfar S, Abdollahi M, Amini M. Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food Chem Toxicol 2019; 125: 494-502.
[http://dx.doi.org/10.1016/j.fct.2019.01.037] [PMID: 30735748]
[36]
Hasan MM, Ahmed QU, Mat Soad SZ, Tunna TS. Animal models and natural products to investigate in vivo and in vitro antidiabetic activity. Biomed Pharmacother 2018; 101: 833-41.
[http://dx.doi.org/10.1016/j.biopha.2018.02.137] [PMID: 29635892]
[37]
Okoduwa SIR, Umar IA, James DB, Inuwa HM. Appropriate insulin level in selecting fortified diet-fed, streptozotocin-treated rat model of type 2 diabetes for anti-diabetic studies. PLoS One 2017; 12(1): e0170971.
[http://dx.doi.org/10.1371/journal.pone.0170971] [PMID: 28129400]
[38]
Femminella GD, Bencivenga L, Petraglia L, Visaggi L, Gioia L, Grieco FV, et al. Antidiabetic drugs in Alzheimer’s disease: Mechanisms of action and future perspectives. J Diabetes Res 2017; 2017: 7420496.
[http://dx.doi.org/10.1155/2017/7420796]
[39]
AL-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019; 9(9): 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[40]
Ponnulakshmi R, Shyamaladevi B, Vijayalakshmi P, Selvaraj J. In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. Toxicol Mech Methods 2019; 29(4): 276-90.
[http://dx.doi.org/10.1080/15376516.2018.1545815] [PMID: 30461321]
[41]
Bobiş O, Dezmirean DS, Moise AR. Honey and diabetes: the importance of natural simple sugars in diet for preventing and treating different type of diabetes. Oxid Med Cell Longev 2018; 2018: 4757893.
[42]
Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 2015; 70(1): 5-47.
[http://dx.doi.org/10.1002/0471141755.ph0547s70]
[43]
Radenković M, Stojanović M, Prostran M. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. J Pharmacol Toxicol Methods 2016; 78: 13-31.
[http://dx.doi.org/10.1016/j.vascn.2015.11.004] [PMID: 26596652]
[44]
Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail ISB. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. BioMed research international 2014; 2014: 801269.
[http://dx.doi.org/10.1155/2014/801269]
[45]
Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacol Res 2005; 52(4): 313-20.
[http://dx.doi.org/10.1016/j.phrs.2005.05.004] [PMID: 15979893]
[46]
Bathina S, Srinivas N, Das UN. BDNF protects pancreatic β cells (RIN5F) against cytotoxic action of alloxan, streptozotocin, doxorubicin and benzo(a)pyrene in vitro. Metabolism 2016; 65(5): 667-84.
[http://dx.doi.org/10.1016/j.metabol.2016.01.016] [PMID: 27085775]
[47]
Kumar S, Vasudeva N, Sharma S. GC-MS analysis and screening of antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala oil in streptozotocin induced diabetes mellitus in rats. Cardiovasc Diabetol 2012; 11(1): 95.
[http://dx.doi.org/10.1186/1475-2840-11-95] [PMID: 22882757]
[48]
Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res 2007; 125(3): 451-72.
[PMID: 17496368]
[49]
Fang JY, Lin CH, Huang TH, Chuang SY. In vivo rodent models of type 2 diabetes and their usefulness for evaluating flavonoid bioactivity. Nutrients 2019; 11(3): 530.
[http://dx.doi.org/10.3390/nu11030530] [PMID: 30823474]
[50]
Baeyens L, De Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 2005; 48(1): 49-57.
[http://dx.doi.org/10.1007/s00125-004-1606-1] [PMID: 15616797]
[51]
Fujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: Infections and autoimmune disease. Clin Microbiol Rev 2006; 19(1): 80-94.
[http://dx.doi.org/10.1128/CMR.19.1.80-94.2006] [PMID: 16418524]
[52]
Grieb P. Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: In search of a relevant mechanism. Mol Neurobiol 2016; 53(3): 1741-52.
[http://dx.doi.org/10.1007/s12035-015-9132-3] [PMID: 25744568]
[53]
Lu L, Jiang Y, Jaganathan R, Hao Y. Current advances in pharmacotherapy and technology for diabetic retinopathy: A systematic review. J Ophthalmol 2018; 2018
[54]
Chen H, Shen WL, Wang XH, et al. Paradoxically enhanced heart tolerance to ischaemia in type 1 diabetes and role of increased osmolarity. Clin Exp Pharmacol Physiol 2006; 33(10): 910-6.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04463.x] [PMID: 17002667]
[55]
Mordes JP, Rossini AA. Animal models of diabetes. Am J Med 1981; 70(2): 353-60.
[http://dx.doi.org/10.1016/0002-9343(81)90772-5] [PMID: 6451172]
[56]
Islam M. Animal models of diabetic neuropathy: Progress since 1960s. J Diabetes Res 2013; 2013
[57]
Ighodaro OM, Adeosun AM, Akinloye OA. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina 2017; 53(6): 365-74.
[http://dx.doi.org/10.1016/j.medici.2018.02.001] [PMID: 29548636]
[58]
McLetchie NG. Alloxan diabetes: A discovery, albeit a minor one. J R Coll Phys Edinb 2002; 32(2): 134-42.
[PMID: 12434795]
[59]
Guberski DL, Thomas VA, Shek WR, et al. Induction of type I diabetes by Kilham’s rat virus in diabetes-resistant BB/Wor rats. Science 1991; 254(5034): 1010-3.
[http://dx.doi.org/10.1126/science.1658938] [PMID: 1658938]
[60]
Jörns A, Arndt T, zu Vilsendorf AM, et al. Islet infiltration, cytokine expression and beta cell death in the NOD mouse, BB rat, Komeda rat, LEW.1AR1-iddm rat and humans with type 1 diabetes. Diabetologia 2014; 57(3): 512-21.
[http://dx.doi.org/10.1007/s00125-013-3125-4] [PMID: 24310561]
[61]
Rabinovitch A. Immunoregulatory and cytokine imbalances in the pathogenesis of IDDM. Therapeutic intervention by immunostimulation? Diabetes 1994; 43(5): 613-21.
[http://dx.doi.org/10.2337/diab.43.5.613] [PMID: 8168635]
[62]
Lenzen S. Animal models of human type 1 diabetes for evaluating combination therapies and successful translation to the patient with type 1 diabetes. Diabetes Metab Res Rev 2017; 33(7)e2915
[http://dx.doi.org/10.1002/dmrr.2915] [PMID: 28692149]
[63]
Zhou C, Pridgen B, King N, Xu J, Breslow JL. Hyperglycemic Ins2AkitaLdlr−/− mice show severely elevated lipid levels and increased atherosclerosis: A model of type 1 diabetic macrovascular disease. J Lipid Res 2011; 52(8): 1483-93.
[http://dx.doi.org/10.1194/jlr.M014092] [PMID: 21606463]
[64]
Yoshinari O, Igarashi K. Anti-diabetic effect of pyroglutamic acid in type 2 diabetic Goto-Kakizaki rats and KK- Ay mice. Br J Nutr 2011; 106(7): 995-1004.
[http://dx.doi.org/10.1017/S0007114511001279] [PMID: 21736843]
[65]
Bansal R, Ahmad N, Kidwai JR. Alloxan-glucose interaction: Effect on incorporation of14C-leucine into pancreatic islets of rat. Acta Diabetol Lat 1980; 17(2): 135-43.
[http://dx.doi.org/10.1007/BF02580995] [PMID: 7004041]
[66]
Pan HJ, Reifsnyder P, Vance DE, Xiao Q, Leiter EH. Pharmacogenetic analysis of rosiglitazone-induced hepatosteatosis in new mouse models of type 2 diabetes. Diabetes 2005; 54(6): 1854-62.
[http://dx.doi.org/10.2337/diabetes.54.6.1854] [PMID: 15919809]
[67]
Thirone ACP, Scarlett JA, Gasparetti AL, et al. Modulation of growth hormone signal transduction in kidneys of streptozotocin-induced diabetic animals: Effect of a growth hormone receptor antagonist. Diabetes 2002; 51(7): 2270-81.
[http://dx.doi.org/10.2337/diabetes.51.7.2270] [PMID: 12086960]
[68]
Campbell J, Chaikof L, Davidson IWF. Metahypophyseal diabetes produced by growth hormone. Endocrinology 1954; 54(1): 48-58.
[http://dx.doi.org/10.1210/endo-54-1-48] [PMID: 13151091]
[69]
Alford A, Furrow E, Borofsky M, Lulich J. Animal models of naturally occurring stone disease. Nat Rev Urol 2020; 17(12): 691-705.
[http://dx.doi.org/10.1038/s41585-020-00387-4] [PMID: 33159170]
[70]
Ferris HA, Kahn CR. New mechanisms of glucocorticoid-induced insulin resistance: make no bones about it. J Clin Invest 2012; 122(11): 3854-7.
[http://dx.doi.org/10.1172/JCI66180] [PMID: 23093783]
[71]
Wang S, Jensen JN, Seymour PA, et al. Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc Natl Acad Sci USA 2009; 106(24): 9715-20.
[http://dx.doi.org/10.1073/pnas.0904247106] [PMID: 19487660]
[72]
Guz Y, Nasir I, Teitelman G. Regeneration of pancreatic β cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 2001; 142(11): 4956-68.
[http://dx.doi.org/10.1210/endo.142.11.8501] [PMID: 11606464]
[73]
Xiong XJ. Pancreatic Islet-specific overexpression of Reg3β protein: McGill University (Canada); 2011.
[74]
Nir T, Melton DA, Dor Y. Recovery from diabetes in mice by β cell regeneration. J Clin Invest 2007; 117(9): 2553-61.
[http://dx.doi.org/10.1172/JCI32959] [PMID: 17786244]
[75]
Choi SB, Park CH, Choi MK, Jun DW, Park S. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci Biotechnol Biochem 2004; 68(11): 2257-64.
[http://dx.doi.org/10.1271/bbb.68.2257] [PMID: 15564662]
[76]
Williamson EM, Okpako DT, Evans FJ. Selection, preparation and pharmacological evaluation of plant material. John Wiley & Sons 1996; Vol. 1.
[77]
Masiello P. Animal models of type 2 diabetes with reduced pancreatic β-cell mass. Int J Biochem Cell Biol 2006; 38(5-6): 873-93.
[http://dx.doi.org/10.1016/j.biocel.2005.09.007] [PMID: 16253543]
[78]
Andersen DK, Andren-Sandberg Å, Duell EJ, et al. Pancreatitis- diabetes-pancreatic cancer. Pancreas 2013; 42(8): 1227-37.
[http://dx.doi.org/10.1097/MPA.0b013e3182a9ad9d] [PMID: 24152948]
[79]
Butler AA, Kesteson RA, Khong K, et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000; 141(9): 3518-21.
[http://dx.doi.org/10.1210/endo.141.9.7791] [PMID: 10965927]
[80]
Heydemann A. An overview of murine high fat diet as a model for type 2 diabetes mellitus. J Diabetes Res 2016; 2016
[http://dx.doi.org/10.1155/2016/2902351]
[81]
Lutz TA, Woods SC. Overview of animal models of obesity. Curr Protoc Pharmacol 2012; 58(1)5.61: 1-5.
[http://dx.doi.org/10.1002/0471141755.ph0561s58]
[82]
O’Rahilly S. Human genetics illuminates the paths to metabolic disease. Nature 2009; 462(7271): 307-14.
[http://dx.doi.org/10.1038/nature08532] [PMID: 19924209]
[83]
Chua SC Jr, Chung WK, Wu-Peng XS, et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 1996; 271(5251): 994-6.
[http://dx.doi.org/10.1126/science.271.5251.994] [PMID: 8584938]
[84]
Bates SH, Kulkarni RN, Seifert M, Myers MG Jr. Roles for leptin receptor/STAT3-dependent and -independent signals in the regulation of glucose homeostasis. Cell Metab 2005; 1(3): 169-78.
[http://dx.doi.org/10.1016/j.cmet.2005.02.001] [PMID: 16054060]
[85]
Chua S Jr, Herberg L, Leiter EH. Obesity/diabetes in mice with mutations in leptin or leptin receptor genes animal models of diabetes frontiers in research london. Boca Raton: Fla CRC 2007; pp. 61-102.
[86]
Cottrell EC, Mercer JG. Leptin receptors. Appetite Control 2012; pp. 3-21.
[87]
Wong SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S. Animal models of metabolic syndrome: A review. Nutr Metab 2016; 13(1): 65.
[http://dx.doi.org/10.1186/s12986-016-0123-9] [PMID: 27708685]
[88]
Wang Y-w, Sun G-d, Sun J, Liu S-j, Wang J, Xu X-h, et al. Spontaneous type 2 diabetic rodent models. J Diabetes Res 2013.
[http://dx.doi.org/10.1155/2013/401723]
[89]
Biessels GJ, Bril V, Calcutt NA, et al. Phenotyping animal models of diabetic neuropathy: a consensus statement of the diabetic neuropathy study group of the EASD (Neurodiab). J Peripher Nerv Syst 2014; 19(2): 77-87.
[http://dx.doi.org/10.1111/jns5.12072] [PMID: 24934510]
[90]
Asrafuzzaman M, Cao Y, Afroz R, Kamato D, Gray S, Little PJ. Animal models for assessing the impact of natural products on the aetiology and metabolic pathophysiology of Type 2 diabetes. Biomed Pharmacother 2017; 89: 1242-51.
[http://dx.doi.org/10.1016/j.biopha.2017.03.010] [PMID: 28320091]
[91]
Aref A-BM, Ahmed OM, Ali LA, Semmler M. Maternal rat diabetes mellitus deleteriously affects insulin sensitivity and Beta- cell function in the offspring. J Diabetes Res 2013; 2013
[http://dx.doi.org/10.1155/2013/429154]
[92]
Hull RL, Kodama K, Utzschneider KM, Carr DB, Prigeon RL, Kahn SE. Dietary-fat-induced obesity in mice results in beta cell hyperplasia but not increased insulin release: evidence for specificity of impaired beta cell adaptation. Diabetologia 2005; 48(7): 1350-8.
[http://dx.doi.org/10.1007/s00125-005-1772-9] [PMID: 15937671]
[93]
Miura T, Suzuki W, Ishihara E, et al. Impairment of insulin-stimulated GLUT4 translocation in skeletal muscle and adipose tissue in the Tsumura Suzuki obese diabetic mouse: A new genetic animal model of type 2 diabetes. Eur J Endocrinol 2001; 145(6): 785-90.
[http://dx.doi.org/10.1530/eje.0.1450785] [PMID: 11720905]
[94]
Allan MF, Eisen EJ, Pomp D. The M16 mouse: An outbred animal model of early onset polygenic obesity and diabesity. Obes Res 2004; 12(9): 1397-407.
[http://dx.doi.org/10.1038/oby.2004.176] [PMID: 15483204]
[95]
Krentz AJ, Bailey CJ. Oral antidiabetic agents: Current role in type 2 diabetes mellitus. Drugs 2005; 65(3): 385-411.
[http://dx.doi.org/10.2165/00003495-200565030-00005] [PMID: 15669880]
[96]
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat Rev Cardiol 2020; 17(9): 585-607.
[http://dx.doi.org/10.1038/s41569-020-0339-2] [PMID: 32080423]
[97]
Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS. Update on animal models of diabetic retinopathy: From molecular approaches to mice and higher mammals. Dis Model Mech 2012; 5(4): 444-56.
[http://dx.doi.org/10.1242/dmm.009597] [PMID: 22730475]
[98]
Portha B, Giroix M-H, Tourrel-Cuzin C, Le-Stunff H, Movassat J. The GK rat: A prototype for the study of non-overweight type 2 diabetes. animal models in diabetes research 2012; 933: 125-59.
[99]
Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res 2015; 59(1): 1-23.
[http://dx.doi.org/10.1111/jpi.12240] [PMID: 25904189]
[100]
Koyama M, Wada R, Mizukami H, et al. Inhibition of progressive reduction of islet β-cell mass in spontaneously diabetic Goto-Kakizaki rats by α-glucosidase inhibitor. Metabolism 2000; 49(3): 347-52.
[http://dx.doi.org/10.1016/S0026-0495(00)90242-7] [PMID: 10726913]
[101]
O’Rourke CM, Davis JA, Saltiel AR, Cornicelli JA. Metabolic effects of troglitazone in the Goto-Kakizaki rat, a non-obese and normolipidemic rodent model of non-insulin-dependent diabetes mellitus. Metabolism 1997; 46(2): 192-8.
[http://dx.doi.org/10.1016/S0026-0495(97)90301-2] [PMID: 9030828]
[102]
Ishii Y, Ohta T, Sasase T. Non-obese type 2 diabetes animals models. London: Glucose Tolerance, IntechOpen 2012; pp. 223-42.
[103]
Allen RS, Feola A, Motz CT, et al. Retinal deficits precede cognitive and motor deficits in a rat model of type II diabetes. Invest Ophthalmol Vis Sci 2019; 60(1): 123-33.
[http://dx.doi.org/10.1167/iovs.18-25110] [PMID: 30640976]
[104]
Gong CY, Lu B, Sheng Y-C, Yu Z-Y, Zhou J-Y, Ji L-L. The development of diabetic retinopathy in Goto-Kakizaki rat and the expression of angiogenesis-related signals. Chin J Physiol 2016; 1-9.
[http://dx.doi.org/10.4077/CJP.2016.BAE383] [PMID: 27080465]
[105]
Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2015; 1852(2): 232-42.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.030] [PMID: 24997452]
[106]
Alves Figueiredo HJ. Improving islet-graft revascularization 2018.
[107]
Tourrel C, Bailbé D, Meile MJ, Kergoat M, Portha B. Glucagon- like peptide-1 and exendin-4 stimulate β-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 2001; 50(7): 1562-70.
[http://dx.doi.org/10.2337/diabetes.50.7.1562] [PMID: 11423477]
[108]
Irako T, Akamizu T, Hosoda H, et al. Ghrelin prevents development of diabetes at adult age in streptozotocin-treated newborn rats. Diabetologia 2006; 49(6): 1264-73.
[http://dx.doi.org/10.1007/s00125-006-0226-3] [PMID: 16570155]
[109]
Singh MP, Pathak K. Animal models for biological screening of anti-diabetic drugs: An overview. Eur J Exp Biol 2015; 5(5): 37-48.
[110]
Ansari P, Tabasumma N, Snigdha NN, et al. Diabetic retinopathy: An overview on mechanisms, pathophysiology and pharmacotherapy. Diabetology 2022; 3(1): 159-75.
[http://dx.doi.org/10.3390/diabetology3010011]
[111]
Swidan SZ, Montgomery PA. Effect of blood glucose concentrations on the development of chronic complications of diabetes mellitus. Pharmacotherapy 1998; 18(5): 961-72.
[PMID: 9758308]
[112]
Meng JM, Cao SY, Wei XL, et al. Effects and mechanisms of tea for the prevention and management of diabetes mellitus and diabetic complications: An updated review. Antioxidants 2019; 8(6): 170.
[http://dx.doi.org/10.3390/antiox8060170] [PMID: 31185622]
[113]
Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: Where are we now and where to go? J Diabetes Investig 2011; 2(1): 18-32.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00070.x] [PMID: 24843457]
[114]
Li L, Li Y, Zhou Y, et al. Jiangtang Xiaozhi Recipe (Hypoglycemic and fat reducing formula) prevents diabetic retinopathy in streptozotocin-induced diabetic rats. Chin J Integr Med 2017; 23(6): 425-32.
[http://dx.doi.org/10.1007/s11655-016-2595-x] [PMID: 27338824]
[115]
Weerasekera LY, Balmer LA, Ram R, Morahan G. Characterization of retinal vascular and neural damage in a novel model of diabetic retinopathy. Invest Ophthalmol Vis Sci 2015; 56(6): 3721-30.
[http://dx.doi.org/10.1167/iovs.14-16289] [PMID: 26047174]
[116]
Drago F, La Manna C, Emmi I, Marino A. Effects of sulfinpyrazone on retinal damage induced by experimental diabetes mellitus in rabbits. Pharmacol Res 1998; 38(2): 97-100.
[http://dx.doi.org/10.1006/phrs.1998.0339] [PMID: 9721595]
[117]
Olivares AM, Althoff K, Chen GF, et al. Animal models of diabetic retinopathy. Curr Diab Rep 2017; 17(10): 93.
[http://dx.doi.org/10.1007/s11892-017-0913-0] [PMID: 28836097]
[118]
Engerman RL, Bloodworth JMB Jr. Experimental diabetic retinopathy in dogs. Arch Ophthalmol 1965; 73(2): 205-10.
[http://dx.doi.org/10.1001/archopht.1965.00970030207013] [PMID: 14237790]
[119]
Schröder S, Palinski W, Schmid-Schönbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol 1991; 139(1): 81-100.
[PMID: 1713023]
[120]
Spadella CT, Machado JLM, Lerco MM, Ortolan E, Schellini SA, Gregório E, Eds. Temporal relationship between successful pancreas transplantation and control of ocular complications in alloxan-induced diabetic rats. Transplant Proc. 2008; 40(2): 518-23.
[121]
Lai AKW, Lo AC. Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res 2013; 2013: 106594.
[http://dx.doi.org/10.1155/2013/106594]
[122]
Feit-Leichman RA, Kinouchi R, Takeda M, et al. Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest Ophthalmol Vis Sci 2005; 46(11): 4281-7.
[http://dx.doi.org/10.1167/iovs.04-1361] [PMID: 16249509]
[123]
Kumar S, Zhuo L. Longitudinal in vivo imaging of retinal gliosis in a diabetic mouse model. Exp Eye Res 2010; 91(4): 530-6.
[http://dx.doi.org/10.1016/j.exer.2010.07.010] [PMID: 20655908]
[124]
Su L, Ji J, Bian J, Fu Y, Ge Y, Yuan Z. Tacrolimus (FK506) prevents early retinal neovascularization in streptozotocin-induced diabetic mice. Int Immunopharmacol 2012; 14(4): 606-12.
[http://dx.doi.org/10.1016/j.intimp.2012.09.010] [PMID: 23032068]
[125]
Kern TS, Tang J, Mizutani M, et al. Response of capillary cell death to aminoguanidine predicts the development of retinopathy: Comparison of diabetes and galactosemia. Invest Ophthalmol Vis Sci 2000; 41(12): 3972-8.
[PMID: 11053301]
[126]
Joussen AM, Doehmen S, Le ML, et al. TNF-α mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol Vis 2009; 15: 1418-28.
[PMID: 19641635]
[127]
Cai X, McGinnis JF. Diabetic retinopathy: Animal models, therapies, and perspectives. J Diabetes Res 2016; 2016
[http://dx.doi.org/10.1155/2016/3789217]
[128]
Quiroz J, Yazdanyar A. Animal models of diabetic retinopathy. Ann Transl Med 2021; 9(15): 1272.
[http://dx.doi.org/10.21037/atm-20-6737] [PMID: 34532409]
[129]
Drewes AM, Krarup AL, Detlefsen S, Malmstrøm M-L, Dimcevski G, Funch-Jensen P. Pain in chronic pancreatitis: the role of neuropathic pain mechanisms. Gut 2008; 57(11): 1616-27.
[http://dx.doi.org/10.1136/gut.2007.146621] [PMID: 18566105]
[130]
Liu B, Liu W-S, Han B-Q, Sun Y-Y. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World J Gastroenterol 2007; 13(5): 725-31.
[http://dx.doi.org/10.3748/wjg.v13.i5.725] [PMID: 17278195]
[131]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058-70.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[132]
Sullivan KA, Hayes JM, Wiggin TD, et al. Mouse models of diabetic neuropathy. Neurobiol Dis 2007; 28(3): 276-85.
[http://dx.doi.org/10.1016/j.nbd.2007.07.022] [PMID: 17804249]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy