Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

A Review of the Rational and Current Evidence on Colchicine for COVID-19

Author(s): Hazem S. Ghaith, Mohamed Diaa Gabra, Mohamed H. Nafady, Hamza Emad Elshawah, Ahmed Negida*, Gohar Mushtaq and Mohammad Amjad Kamal

Volume 28, Issue 39, 2022

Page: [3194 - 3201] Pages: 8

DOI: 10.2174/1381612827666211210142352

Price: $65

Abstract

The current coronavirus disease (COVID-19) pandemic has affected millions of individuals worldwide. Despite extensive research efforts, few therapeutic options currently offer direct clinical benefits for COVID-19 patients. Despite the advances in our understanding of COVID-19, the mortality rates remain significantly high owing to the high viral transmission rates in several countries and the rise of various mutations in the SARS-CoV-2. One currently available and widely used drug that combines both anti-inflammatory and immunomodulatory actions is colchicine, which has been proposed as a possible treatment option for COVID-19. Colchicine still did not get much attention from the medical and scientific communities despite its antiinflammatory and immunomodulatory mechanisms of action and positive preliminary data from early trials. This literature review article provides the scientific rationale for repurposing colchicine as a potential therapy for COVID-19. Further, we summarize colchicine’s mechanisms of action and possible roles in COVID-19 patients. Finally, we supplement this review with a summary of the doses, side effects, and early efficacy data from clinical trials to date. Despite the promising early findings from multiple observational and clinical trials about the potential of colchicine in COVID-19, the data from the RECOVERY trial, the largest COVID-19 randomized controlled trial (RCT) in the world, showed no evidence of clinical benefits in mortality, hospital stays, or disease progression (n = 11340 patients). However, multiple other smaller clinical trials showed significant clinical benefits. We conclude that while current evidence does not support the use of colchicine for treating COVID-19, the present body of evidence is heterogeneous and inconclusive. The drug cannot be used in clinical practice or abandoned from clinical research without additional large RCTs providing more robust evidence. At present, the drug should not be used except for investigational purposes.

Keywords: Anti-inflammatory agents, immunosuppressive agents, immune modulators, colchicine, COVID-19, SARS-CoV-2.

[1]
New Cases Of Covid-19 In World Countries [Internet]. Johns Hopkins University - Coronavirus Resource Center. 2020. Available from: https://coronavirus.jhu.edu/data/new-cases
[2]
Dror AA, Eisenbach N, Taiber S, et al. Vaccine hesitancy: the next challenge in the fight against COVID-19. Eur J Epidemiol 2020; 35(8): 775-9.
[http://dx.doi.org/10.1007/s10654-020-00671-y] [PMID: 32785815]
[3]
Troiano G, Nardi A. Vaccine hesitancy in the era of COVID-19. Public Health 2021; 194: 245-51.
[http://dx.doi.org/10.1016/j.puhe.2021.02.025] [PMID: 33965796]
[4]
FDA Fact sheet for health care providers emergency use authorization (EUA) of remdesivir (GS-5734TM). Food and Drug Administration 2020.
[5]
Food and Drug Administration (FDA) Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization for Potential COVID-19 Treatment. Press Announcements 2020.
[6]
Kosanke RM. WHO recommends-against-the-use-of-remdesivir-in-COVID-19-patients 2019. Available from: https://www.who.int/news-room/feature-stories/detail/who-recommends-against-the-useof- remdesivir-in-covid-19-patients
[7]
Gendelman O, Amital H, Bragazzi NL, Watad A, Chodick G. Continuous hydroxychloroquine or colchicine therapy does not prevent infection with SARS-CoV-2: Insights from a large healthcare database analysis. Autoimmun Rev 2020; 19(7): 102566.
[http://dx.doi.org/10.1016/j.autrev.2020.102566] [PMID: 32380315]
[8]
Merad M, Martin JC. Author correction: Pathological in-flammation in patients with COVID-19: A key role for mon-ocytes and macrophages. Nat Rev Immunol 2020; 20(7): 448.
[http://dx.doi.org/10.1038/s41577-020-0353-y] [PMID: 32488203]
[9]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[10]
Zhao W, He L, Tang H, Xie X, Tang L, Liu J. The Relation-ship Between Chest Imaging Findings and the Viral Load of COVID-19. Front Med (Lausanne) 2020; 7(598): 558539.
[http://dx.doi.org/10.3389/fmed.2020.558539] [PMID: 33015110]
[11]
Silva J, Lucas C, Sundaram M, Israelow B, Wong P, Klein J. Saliva viral load is a dynamic unifying correlate of COVID-19 severity and mortality. medRxiv 2021; 2021.01.04.21249236.
[http://dx.doi.org/10.1101/2021.01.04.21249236] [PMID: 33442706]
[12]
Schlesinger N, Firestein BL, Brunetti L. Colchicine in COVID-19: An old drug, new use. Curr Pharmacol Rep 2020; 6(4): 137-45.
[http://dx.doi.org/10.1007/s40495-020-00225-6] [PMID: 32837853]
[13]
Slobodnick A, Shah B, Pillinger MH, Krasnokutsky S. Col-chicine: Old and new. Am J Med 2015; 128(5): 461-70.
[http://dx.doi.org/10.1016/j.amjmed.2014.12.010] [PMID: 25554368]
[14]
Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci 2020; 10(1): 40.
[http://dx.doi.org/10.1186/s13578-020-00404-4] [PMID: 32190290]
[15]
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19). JAMA 2020; 324(8): 782-93.
[http://dx.doi.org/10.1001/jama.2020.12839] [PMID: 32648899]
[16]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recogni-tion by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS corona-virus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[17]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[18]
Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandi-an N, Miresmaeili SM, Bahreini E. A comprehensive review of COVID-19 characteristics. Biol Proced Online 2020; 22(1): 19.
[http://dx.doi.org/10.1186/s12575-020-00128-2] [PMID: 32774178]
[19]
Song F, Shi N, Shan F, et al. Emerging 2019 novel corona-virus (2019-NCoV) pneumonia. Radiology 2020; 295(1): 210-7.
[http://dx.doi.org/10.1148/radiol.2020200274] [PMID: 32027573]
[20]
Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol 2020; 33(6): 1007-14.
[http://dx.doi.org/10.1038/s41379-020-0536-x] [PMID: 32291399]
[21]
Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty 2020; 9(1): 45.
[http://dx.doi.org/10.1186/s40249-020-00662-x] [PMID: 32345362]
[22]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[23]
Yue H, Liang W, Gu J, et al. Comparative transcriptome analysis to elucidate the therapeutic mechanism of colchicine against atrial fibrillation. Biomed Pharmacother 2019; 119(July): 109422.
[http://dx.doi.org/10.1016/j.biopha.2019.109422] [PMID: 31514070]
[24]
Alkadi H, Khubeiz MJ, Jbeily R. Colchicine: A review on chemical structure and clinical usage. Infect Disord Drug Targets 2018; 18(2): 105-21.
[http://dx.doi.org/10.2174/1871526517666171017114901] [PMID: 29046164]
[25]
Ade R, Rai MK. Review: Colchicine, current advances and future prospects. Nusant Biosci 1970; 2(2): 90-6.
[http://dx.doi.org/10.13057/nusbiosci/n020207]
[26]
Lu Y, Chen J, Xiao M, Li W, Miller DD. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 2012; 29(11): 2943-71.
[http://dx.doi.org/10.1007/s11095-012-0828-z] [PMID: 22814904]
[27]
McLoughlin EC, O’Boyle NM. Correction: McLoughlin, E.C.; O’Boyle, N.M. Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals 2020, 13, 8. Pharmaceuticals (Basel) 2020; 13(4): 72.
[http://dx.doi.org/10.3390/ph13040072] [PMID: 32325955]
[28]
Niel E, Scherrmann JM. Colchicine today. Joint Bone Spine 2006; 73(6): 672-8.
[http://dx.doi.org/10.1016/j.jbspin.2006.03.006] [PMID: 17067838]
[29]
Hirayama I, Hiruma T, Ueda Y, Doi K, Morimura N. A criti-cally ill patient after a colchicine overdose below the lethal dose: a case report. J Med Case Reports 2018; 12(1): 191.
[http://dx.doi.org/10.1186/s13256-018-1737-5] [PMID: 29970148]
[30]
Ferron GM, Rochdi M, Jusko WJ, Scherrmann JM. Oral ab-sorption characteristics and pharmacokinetics of colchicine in healthy volunteers after single and multiple doses. J Clin Pharmacol 1996; 36(10): 874-83.
[http://dx.doi.org/10.1002/j.1552-4604.1996.tb04753.x] [PMID: 8930773]
[31]
Leung YY, Yao Hui LL, Kraus VB. Colchicine—Update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum 2015; 45(3): 341-50.
[http://dx.doi.org/10.1016/j.semarthrit.2015.06.013] [PMID: 26228647]
[32]
Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interac-tion with tubulin. Med Res Rev 2008; 28(1): 155-83.
[http://dx.doi.org/10.1002/med.20097] [PMID: 17464966]
[33]
Toker H, Yuce HB, Yildirim A, Tekin MB, Gevrek F. The effect of colchicine on alveolar bone loss in ligature-induced periodontitis. Braz Oral Res 2019; 33: e001.
[http://dx.doi.org/10.1590/1807-3107bor-2019.vol33.0001] [PMID: 30758401]
[34]
Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol 2019; 10(JAN): 50.
[http://dx.doi.org/10.3389/fmicb.2019.00050] [PMID: 30761102]
[35]
Siu KL, Yuen KS, Castaño-Rodriguez C, et al. Severe acute respiratory syndrome Coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3‐dependent ubiquitination of ASC. FASEB J 2019; 33(8): 8865-77.
[http://dx.doi.org/10.1096/fj.201802418R] [PMID: 31034780]
[36]
Castaño-Rodriguez C, Honrubia JM, Gutiérrez-Álvarez J, et al. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. MBio 2018; 9(3): e02325-17.
[http://dx.doi.org/10.1128/mBio.02325-17] [PMID: 29789363]
[37]
Standiford TJ, Ward PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res 2016; 167(1): 183-91.
[http://dx.doi.org/10.1016/j.trsl.2015.04.015] [PMID: 26003524]
[38]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[39]
Gallelli L, Zhang L, Wang T, Fu F. Severe acute lung injury related to COVID‐19 infection: A review and the possible role for Escin. J Clin Pharmacol 2020; 60(7): 815-25.
[http://dx.doi.org/10.1002/jcph.1644] [PMID: 32441805]
[40]
Molad Y. Update on colchicine and its mechanism of action. Curr Rheumatol Rep 2002; 4(3): 252-6.
[http://dx.doi.org/10.1007/s11926-002-0073-2] [PMID: 12010611]
[41]
Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Up-date on colchicine, 2017. Rheumatology (Oxford) 2018; 57 (Suppl. 1): i4-i11.
[http://dx.doi.org/10.1093/rheumatology/kex453] [PMID: 29272515]
[42]
Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophys-iology: A review. Clin Immunol 2020; 215: 108427.
[http://dx.doi.org/10.1016/j.clim.2020.108427] [PMID: 32325252]
[43]
Lupon E, Lellouch AG, Zal F, Cetrulo CL Jr, Lantieri LA. Combating hypoxemia in COVID-19 patients with a natural oxygen carrier, HEMO2Life® (M101). Med Hypotheses 2021; 146: 110421.
[http://dx.doi.org/10.1016/j.mehy.2020.110421] [PMID: 33308935]
[44]
Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extra-cellular traps (NETs), and T cell suppression. Adv Biol Regul 2020; 77: 100741.
[http://dx.doi.org/10.1016/j.jbior.2020.100741] [PMID: 32773102]
[45]
Martínez GJ, Robertson S, Barraclough J, et al. Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome. J Am Heart Assoc 2015; 4(8): e002128.
[http://dx.doi.org/10.1161/JAHA.115.002128] [PMID: 26304941]
[46]
Singh M, Pal S, Dhakad U, Srivastava R, Chattopadhyay N, Das SK. Effect of colchicine on inflammation-mediating cy-tokines in human osteoarthritic chondrocytes (in vitro mod-el). Osteoarthritis Cartilage 2018; 26: S305-6.
[http://dx.doi.org/10.1016/j.joca.2018.02.615]
[47]
Arbel Y, Abuzeid W, Rosenson RS, Weisman A, Farkouh ME. Old drugs for new indications in cardiovascular medi-cine. Cardiovasc Drugs Ther 2018; 32(2): 223-32.
[http://dx.doi.org/10.1007/s10557-018-6785-y] [PMID: 29633048]
[48]
Deftereos SG, Siasos G, Giannopoulos G, et al. The Greek study in the effects of colchicine in COvid-19 complications prevention (GRECCO-19 study): Rationale and study design. Hellenic J Cardiol 2020; 61(1): 42-5.
[http://dx.doi.org/10.1016/j.hjc.2020.03.002] [PMID: 32251729]
[49]
Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J 2020; 41(32): 3038-44.
[http://dx.doi.org/10.1093/eurheartj/ehaa623] [PMID: 32882706]
[50]
Hemkens LG, Ewald H, Gloy VL, et al. Colchicine for pre-vention of cardiovascular events. Cochrane Database Syst Rev 2016; 2016(1): CD011047.
[PMID: 26816301]
[51]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[52]
Hulswit RJG, de Haan CAM, Bosch BJ. Coronavirus Spike Protein and Tropism Changes. Ziebuhr J, Ed Advances in Virus Research . Academic Press 2016; 96: pp. 29-57.
[http://dx.doi.org/10.1016/bs.aivir.2016.08.004]
[53]
Deftereos SG, Giannopoulos G, Vrachatis DA, et al. Effect of colchicine vs standard care on cardiac and inflammatory biomarkers and clinical outcomes in patients hospitalized with coronavirus disease 2019. JAMA Netw Open 2020; 3(6): e2013136.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.13136] [PMID: 32579195]
[54]
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11(8): 875-9.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[55]
Piantoni S, Colombo E, Airò P, et al. The rationale for the use of colchicine in COVID-19: comments on the letter by Cumhur Cure M et al. Clin Rheumatol 2020; 39(8): 2489-90.
[http://dx.doi.org/10.1007/s10067-020-05232-y] [PMID: 32564213]
[56]
Group RC. Colchicine in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet Respir Med 2021; 9(12): 1419-26.
[http://dx.doi.org/10.1016/S2213-2600(21)00435-5] [PMID: 34672950]
[57]
Scarsi M, Piantoni S, Colombo E, et al. Association between treatment with colchicine and improved survival in a single-centre cohort of adult hospitalised patients with COVID-19 pneumonia and acute respiratory distress syndrome. Ann Rheum Dis 2020; 79(10): 1286-9.
[http://dx.doi.org/10.1136/annrheumdis-2020-217712] [PMID: 32732245]
[58]
Sandhu T, Tieng A, Chilimuri S, Franchin G. A case control study to evaluate the impact of colchicine on patients admit-ted to the hospital with moderate to severe covid-19 infec-tion. Can J Infect Dis Med Microbiol 2020; 2020: p. 8865954.
[http://dx.doi.org/10.1155/2020/8865954]
[59]
Lopes MI, Bonjorno LP, Giannini MC, et al. Beneficial ef-fects of colchicine for moderate to severe COVID-19: a ran-domised, double-blinded, placebo-controlled clinical trial. RMD Open 2021; 7(1): e001455.
[http://dx.doi.org/10.1136/rmdopen-2020-001455] [PMID: 33542047]
[60]
Finkelstein Y, Aks SE, Hutson JR, et al. Colchicine poison-ing: the dark side of an ancient drug. Clin Toxicol (Phila) 2010; 48(5): 407-14.
[http://dx.doi.org/10.3109/15563650.2010.495348] [PMID: 20586571]
[61]
Colchicine (Oral Route). Mayo Clinic - Drugs and Supplements Available from: https://www.mayoclinic.org/drugs-supplements/colchicine-oral-route/side-effects/drg-20067653?p=1
[62]
Stewart S, Yang KCK, Atkins K, Dalbeth N, Robinson PC. Adverse events during oral colchicine use: a systematic re-view and meta-analysis of randomised controlled trials. Arthritis Res Ther 2020; 22(1): 28.
[http://dx.doi.org/10.1186/s13075-020-2120-7] [PMID: 32054504]
[63]
Tardif J-C, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 2019; 381(26): 2497-505.
[http://dx.doi.org/10.1056/NEJMoa1912388] [PMID: 31733140]
[64]
Leung YY, Haaland B, Huebner JL, et al. Colchicine lack of effectiveness in symptom and inflammation modification in knee osteoarthritis (COLKOA): a randomized controlled trial. Osteoarthritis Cartilage 2018; 26(5): 631-40.
[http://dx.doi.org/10.1016/j.joca.2018.01.026] [PMID: 29426008]
[65]
Gunasekaran K, Mathew DE, Sudarsan TI, Iyyadurai R. Fatal colchicine intoxication by ingestion of Gloriosa superba tu-bers. BMJ Case Rep 2019; 12(5): e228718.
[http://dx.doi.org/10.1136/bcr-2018-228718] [PMID: 31101749]
[66]
Sadiq NM. Colchicine RKJTJ. StatPearls Available from: https://www.ncbi.nlm.nih.gov/books/NBK431102/

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy